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Introduction: EEG signals can non-invasively monitor the brain activities and have

been widely used in brain-computer interfaces (BCI). One of the research areas is

to recognize emotions objectively through EEG. In fact, the emotion of people

changes over time, however, most of the existing a�ective BCIs process data

and recognize emotions o	ine, and thus cannot be applied to real-time emotion

recognition.

Methods: In order to solve this problem, we introduce the instance selection

strategy into transfer learning and propose a simplified style transfer mapping

algorithm. In the proposed method, the informative instances are firstly selected

from the source domain data, and then the update strategy of hyperparameters is

also simplified for style transfer mapping, making the model training more quickly

and accurately for a new subject.

Results: To verify the e�ectiveness of our algorithm, we carry out the experiments

on SEED, SEED-IV and the o	ine dataset collected by ourselves, and achieve the

recognition accuracies up to 86.78%, 82.55% and 77.68% in computing time of

7s, 4s and 10s, respectively. Furthermore, we also develop a real-time emotion

recognition system which integrates the modules of EEG signal acquisition, data

processing, emotion recognition and result visualization.

Discussion: Both the results of o	ine and online experiments show that the

proposed algorithm can accurately recognize emotions in a short time, meeting

the needs of real-time emotion recognition applications.

KEYWORDS

brain-computer interface, EEG signals, real-time emotion recognition, instance selection,

transfer learning

1. Introduction

Brain-Computer Interface (BCI) is a communication system that does not depend on

the output path composed of peripheral nerves and muscles (Wan et al., 2005; Schalk et al.,

2008; Hamadicharef, 2010). The BCI allows users to control computers or other devices

through brain activity and involves many research fields such as medicine, neurology, signal

processing, and pattern recognition. In recent years, the affective BCI (aBCI) has attracted

great interests which endows BCI system with the ability to detect, process and respond to

the affective states of humans using EEG signals (Accordino et al., 2007; Mu and Lu, 2020;

Wu et al., 2022b). The aBCI has shown great development potential in many application

fields, for example, it can help the patients with psychological diseases establish effective

social interaction (Murias et al., 2007; Lee et al., 2014); remind the driver to better focus
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on the driving to avoid traffic (Gao et al., 2019); make the

machine analyze the emotion of human and provide emotional

companionship (Park et al., 2009).

Emotion is one of the most important physiological and

psychological states of the human body. Modern medicine believes

that emotion is directly related to human health (Luneski et al.,

2010). Prolonged negative emotion can reduce creativity and cause

a loss of focus, even cause anxiety and depression (Walsh et al.,

2005). Accurate and reliable emotion monitoring can, on one hand,

help to restore emotion and enhance concentration and, on the

other hand, help service providers to analyze user preferences and

thus provide more personalized products and services (Mauss and

Robinson, 2009). Currently, emotion monitoring is based on two

main types of physiological signals: subjective physiological signals

such as voice and expression, and objective physiological signals

such as EEG and ECG. Since the EEG signal has the advantages of

high temporal resolution, not easy to pretend and the popularity of

non-invasive portable acquisition devices, it has been widely used

for emotion detection.

As shown in Figure 1, the workflow of EEG signal-based

emotion recognition includes the acquisition of EEG signals, signal

pre-processing, feature extraction and classification, and the output

of recognition result. For the EEG processing, the acquired EEG

signals need to be pre-processed first to improve the signal-to-noise

ratio by themethods such as filtering, artifact removal and principal

component analysis, because their amplitudes are very small and

susceptible to be interfered by other electrophysiological signals.

And then, the features in time domain, frequency domain and

time-frequency domain are extracted and decoded to recognize the

emotion of experimenter by using the recognition methods such as

machine learning.

The existing methods of emotion recognition based on EEG

signals have the following two limitations:

• Most of the methods use the models trained on existing data

to test the new subject for real-time emotion recognition.

However, the EEG signals are non-stationary and the training

and testing samples must be collected from the same

individual or even the same test environment, otherwise

the recognition accuracy will drop dramatically. This means

building universal models that work across subjects is

challenging.

• Most of the existing cross-subject methods need to analyze

the results manually or process data offline, which require

all the EEG data to be saved first. While the human

emotions always change in real-time, the above methods are

time-consuming and user-unfriendly, difficult to support the

practical applications of real-time emotion recognition.

To address both of these points, our work aims to explore an

algorithm that can recognize emotion in cross-subject situation

quickly and accurately. By selecting the informative instances and

simplifying the update strategy of hyperparameters, we propose

a simplified style transfer mapping method based on instance

selection (SSTM-IS), which can use a small amount of labeled data

in the target domain to make the model adapt for the new subject in

a short time. To verify the effectiveness of the proposed method, we

compare and analyze the performance of representative methods

in terms of accuracy and computing time on SEED (Zheng and

Lu, 2015), SEED-IV (Zheng et al., 2019), and collected dataset by

ourselves for emotion recognition. The experimental results show

that our algorithm achieves the accuracy rate of 86.78% in the

computing time of 7 s on the SEED dataset, 82.55% in 4 s on SEED-

IV and 77.68% in 10 s on self-collected dataset. In addition, the

work in this paper also includes the design and implementation of

a real-time aBCI system to test the proposed algorithm in practical

application. There are three key contributions in this work:

• By selecting the informative instances and simplifying the

update strategy of hyperparameters in style transfer mapping,

we propose the SSTM-IS algorithm to perform the cross-

subject emotion recognition more accurately and quickly.

• We validate the proposed algorithm on both of the public and

self-collected datasets. The experimental results demonstrate

that the proposed algorithm can achieve higher accuracy in

a shorter computing time, satisfying the needs of real-time

emotion recognition applications.

• We design and implement a real-time emotion recognition

system that integrates the modules of EEG signal acquisition,

data processing, emotion recognition and result visualization.

The applicability of the proposed algorithm is also verified

online in a real case.

This paper is structured as follows: Section 2 briefly discusses

the related works. The proposed emotion recognition algorithm is

described in detail in Section 3. Subsequently in Section 4, the real-

time emotion recognition system is developed and realized. And

then Section 5 gives and analyzes both of the offline and online

experimental results. Finally, some conclusions and future works

are presented in Section 6.

2. Related works

As we know, the EEG signals are non-stationary and various

people to people. The emotion recognition model trained on the

existing dataset is often not applicable to new subjects. While the

applications of real-time emotion recognition require algorithms

to accurately and quickly recognize the EEG signals of a newcomer.

A common solution is to introduce transfer learning into EEG

emotion recognition (Jayaram et al., 2016; Wu et al., 2022a), so as

to make the model adapt to new individuals. The core of transfer

learning is to find the similarity between existing knowledge and

new one, so can use the existing to learn the new. In transfer

learning, the existing knowledge is denoted as the source domain,

and the new knowledge to be learned is defined as the target

domain. The distribution between the source domain and target

domain are different but related to each other. It is necessary to

reduce the distribution difference between the source and target

domains for knowledge transfer.

For the EEG emotion recognition, one method is to use

all unlabeled data from target domain to train the model, and

enhance the model performance by reducing the differences

between the source domain and target domain. Li et al. (2021)

proposed the BiDANN-S framework for cross-subject emotion

recognition, which reduces the differences across domains by
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FIGURE 1

The workflow of EEG signal-based emotion recognition: stimulating the subject’s emotions, collecting EEG signals and recognizing emotions based

on the features extracted from the pre-processed EEG signals.

adversarially training domain discriminators. Li et al. (2020b) used

the adversarial training to adjust the marginal distribution of the

shallow layers for reducing the difference between the source and

target domains, while using correlation enhancement to adjust the

conditional distribution of the deep layers for enhancing network

generalization. Chen et al. (2021) proposed the MS-MDA network

based on domain-invariant and domain-specific features, so that

different domain data share the same underlying features, while

preserving the domain-specific features. This kind of methods

given above belong to deep learning algorithms, as we know, the

deep learning algorithms use the back propagation for parameter

optimization, and needs a large amount of data inmodel calibration

phase to improve the recognition performance of new subjects. As

a result, when a new subject comes, the consuming time for model

calibration is relatively long and thus these algorithms are not

suitable for the applications of real-time EEG emotion recognition.

Another method mainly obtains the domain invariant features

from the differences of multiple source domains to train a general

model. In the training phase, it is not necessary to obtain any data

from the target domain. Ma et al. (2019) proposed a new adversarial

domain generalization framework, DResNet, in which the domain

information was used to learn unbiased weights across subjects and

biased weights specific to subjects. However, the performance of

the model obtained by this method is generally worse than that

of models with target domain data participating in the training.

For example, the accuracy rate of the PPDA model with all target

domain data participating in training is 1.30% higher than that

of the PPDA_NC without target domain data involved in training

(Zhao et al., 2021).

From the above analysis, it can be inferred that one of the

ideas to obtain a real-time emotion recognition model with good

performance is to integrate the two kinds of methods, that is, using

a small amount of target domain data for supervised learning, and

training a generalized model. Chai et al. (2017) proposed an ASFM

to integrate both the marginal and conditional distributions within

a unified framework, which achieves an accuracy of 83.51% on the

SEED dataset. It should be noticed that on the selection of source

domain, the works described above use all the subjects’ source

domain data to train the model without selection. However, the

studies in Yi and Doretto (2010) and Lin and Jung (2017) have

shown that the inappropriate selection of source domain data may

cause the negative transfer. In addition, the large amount of data

involved in model training phase increases the computing time

and is not applicable to real-time emotion recognition. Li et al.

(2020a) considered each subject as a source domain for multi-

source domain selection and proposed a MS-STM algorithm which

reduces the domain difference when using a small amount of

labeled target data. Later, Chen et al. (2022) proposed a conceptual

online framework FOIT in which they selected instance data from

source domains, but the resulting recognition accuracy is not

satisfactory and the framework is not verified in an actual scene.

On the real-time emotion recognition system, to the best of our

knowledge, there are few reports on relevant work. Jonathan et al.

(2016) developed a mobile application for processing and analyzing

EEG signals, which can display the EEG spectrum, classify EEG

signals, visualize, and analyze the classification results. However,

this system does not realize the data upload function, and only uses

the offline data that has been stored on the server. Nandi et al.

(2021) proposed a real-time emotion classification system based

on logistic regression classifier, and carried out the experiments of

simulating real-time emotion recognition on DEAP. Weiss et al.

(2022) compared several classifiers and chose the logistic regression

to realize a real-time EEG emotion recognition system on SEED-

IV. Although the above works put forward the concept of real-

time emotion recognition system, they use the models trained on

existing data to test the new subject, without model calibrating.

Besides they all use the offline datasets or simulated real-time

emotion recognition for verification, not performing the real-time

emotion recognition applications in real scene.

According to the above analysis, the human emotions always

change over time, and thus it is necessary to realize a real-time

emotion recognition system with good performance in practical
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FIGURE 2

Framework of the proposed SSTM-IS algorithm.

application. The existing transfer learning methods for EEG

emotion recognition either use all the subjects’ source domain

data to train the model without selection, or consider each subject

as a source domain for multi-source domain selection, which

may cause negative transfer and increase the computing time.

To address this problem, this paper proposes a simplified STM

algorithm by optimizing the updating strategy of hyperparameters

in STM and using SVM classifier with a one-vs-one scheme for

parameter optimization. On the other hand, we also refine the

granularity of selecting source domain data, and obtain the most

informative instances to further enhance the generalization of the

model. With the above improvements, the algorithm proposed

can achieve higher accuracy by using a small amount of data for

model calibrating in a short computing time, satisfying the need of

real-time EEG emotion recognition applications.

3. Methods

In this section, we present the proposed SSTM-IS method

which consists of two main steps as shown in Figure 2. Firstly, our

work is to refine the granularity of selecting source domain data

from different subjects to different sample instances, and select

the most informative instances from the source domain through

a classifier trained by the labeled data from the target domain

to improve the recognition accuracy of new subject. And then

by simplifying the updating strategy of hyperparameters in STM,

a simplified STM (SSTM) algorithm is developed to make the

distributions of source and target domains more similar.

Define the source domain as S = {si, i = 1, 2, ..., ns} and its

corresponding label is L = {y1s , y
2
s , ..., y

ns
s }. The target domain is

T = {ti, i = 1, 2, ..., nt} which is divided into the labeled and

unlabeled parts, and the labeled part corresponds to the label LT .

Here, ns and nt are, respectively, the sample numbers of source

domain and target domain data. S and T have different marginal

distributions. The DE features (Duan et al., 2013; Shi et al., 2013)

of the source domain are extracted and denoted as SL = {siL ∈

Rm|i = 1, 2, ..., n
′

s}, where n
′

s represents the number of DE feature

samples of source domain andm represents the feature dimension.

Similarly for the target domain, the DE features of the labeled

and unlabeled data are TL = {tiL ∈ Rm|i = 1, 2, ..., n
′

t_L} and

TU = {tiU ∈ Rm|i = 1, 2, ..., n
′

t_U}, respectively, where n
′

t_L and

n
′

t_U represent the feature numbers of the labeled and unlabeled

target domain data. U
′
= {U

′

i ∈ Rm|i = 1, 2, ..., n
′

t_U} represents

the features mapped from TU .

3.1. Instance selection

Using the source domain data and target domain data for

transfer learning can build a robust emotion recognition model.

Among the existing EEG emotion recognition algorithms, some

methods use all of the subjects’ data to train the model and do not

perform the selection of source domain data. The others consider

each subject as a source domain for multi-source domain selection,

and the selected source domain data are all involved in the model

training. However, the inappropriate selection of source domain

data may cause the negative transfer. In addition, the large amount

of data involved in model training increases the computing time

and is not applicable to real-time recognition. Inspired by the

idea of sample query in active learning (Hossain et al., 2018), we

propose to refine the granularity of selecting source domain data

from different subjects to different sample instances. The specific
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Input: SL = {siL ∈ Rm|i = 1, ..., n
′

s}: source domain data, siL is

sample; L = {y1s , y
2
s , ..., y

n
′

s
s }: the labels to SL;

T = TL ∪ TU: target domain data, including

labeled TL(corresponding labels are LT =

{y1t , y
2
t , ..., y

n
′

t_L
t }) and unlabeled TU; nc: the number of

emotional categories in labels;

k,β , γ: hyper parameter;

Output: ŷ: predicted labels on the unlabeled data;

1: TL → C0

2: for each i ∈ [1, n
′

s] do

3: wi = Acc(C0 , s
i
L)

4: end for

5: W = {w1,w2, ...,wn
′
s
}

6: SL = {siL sorted by wi and grouped by yis} = S1L ∪ S2L ∪ ... ∪ S
nc
L

7: Ssel = S1L[1 : k] ∪ S2L[1 : k] ∪ ... ∪ S
nc
L [1 : k]

8: for each tiL ∈ TL do

9: oi calculated by Equation(4)

10: end for

11: learn STM A, b with {tiL, oi}

12: Ssel → C

13: U
′

1∼n
′

t_U

is transformed by A, b → x, x ∈ TU

14: predict ŷ = C(U
′

1∼n
′

t_U

)

Algorithm 1. Simplified STM based on instance selection.

strategy is training a classifier with labeled target domain data and

using the classifier to select the most informative instances from

the source domain to improve the emotion recognition accuracy of

new subject.

For the procedure of instance selection shown in Figure 2, we

first train an SVM classifier C0 by using the DE feature TL of the

labeled target domain data and its corresponding label YL. Here, C0

is the same for all the domain subjects, and is trained by the sessions

with different emotion categories from labeled target domain. The

probability of each sample in source domain denoted as wi is then

predicted by C0 and taken as the information contained in each

sample instance:

wi = Acc(C0, s
i
L), i = 1, 2, ..., n

′

s. (1)

Subsequently, the instances can be selected according to their

prediction probabilities wi. To avoid the unbalanced distribution,

we sort the instances of the source domain within each emotion

category according to the amount of information it contains as

SL_sort , and select the top k samples of instance data with the

highest probabilities for each emotion category as the top k highest

informative instances Ssel:

SL_sort = {SiL sorted by wi and grouped by y
i
s} = S1L ∪ S2L ∪ ... ∪ S

nc
L ,

(2)

Ssel = S1L[1 : k] ∪ S2L[1 : k] ∪ ... ∪ S
nc
L [1 : k], (3)

where yis is the emotion label of each instance in source domain,

and nc is the number of emotion categories. And thus, we can

get the informative instance data Ssel for the subsequent transfer

learning to reduce the data redundancy and improve the computing

efficiency.

3.2. Simplified STM

The STM algorithm (Li et al., 2020a) solves a style transfer

mapping to project the target domain data T to another space,

where the differences between the target domain T and the source

domain S are reduced. In this way, the classifier C trained by

the source domain data can be used for the classification of the

target domain data in a specific space. As shown in Figure 2, the

category number for classifiers of C0 and C is consistent with those

of emotions recognized. Assuming the DE features of the source

and target domains obey Gaussian distribution, the labeled target

domain data TL can be mapped by the Gaussian model into:

O = {oi ∈ Rm}, oi = µc +min{1,
ρ

d(tiLc , c)
}, i = 1, ..., n

′

t_L, (4)

d(tiLc , c) =

√

(tiLc − µc)T
∑−1

c (tiLc − µc), (5)

where oi is themapped value of tiL by the Gaussianmodel, d(tiLc , c) is

the Mahalanobis distance in emotion category of c (c = 1, 2, ..., nc),

tiLc is the target domain data corresponding to c, and µc is the

average of the instances labeled with c in Ssel. Here, ρ is used to

control the deviation between oi and µc.

Suppose the affine transformation from oi back to tiL is

represented as Aoi + b, the parameters A ∈ Rm×m and b ∈ Rm

can be learned by optimizing the weighted square error with regular

terms:

min
A∈Rm×m ,b∈Rm

∑n
′

t_L

i=1

∥

∥Aoi + b− tiL
∥

∥

2

2
+ β ‖A− Im×m‖

2
F + γ

∥

∥b
∥

∥

2

2
,

(6)

where the hyperparameters β and γ are used to control the state

between non-transfer and over-transfer. The STMmethod (Li et al.,

2020a) updates the values of β and γ in each iteration of calculation,

spending much computing time. Through the experiment, it is

found that the fixed values of β and γ can be obtained to shorten

the computing time without reducing the accuracy. So we select β

and γ as the fixed constants, and then Equation (6) can be solved as

follows:

A = QP−1, b =
1

f̂
(t̂ − Aô), (7)

Q =
∑n

′

t_L

i=1 fit
i
L(o

i)T −
1

f̂
t̂ôT + βIm×m, (8)

P =
∑n

′

t_L

i=1 fio
i(oi)T −

1

f̂
ôôT + βIm×m, (9)

ô =
∑n

′

t_L

i=1 fio
i, (10)
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FIGURE 3

The flowchart of online emotion recognition.

FIGURE 4

The EEG acquisition device used in our experiments: (A) Emotiv EPOC X, (B) the electrode distribution.

t̂ =
∑n

′

t_L

i=1 fit
i
L, (11)

f̂ =
∑n

′

t_L

i=1 fiγ , (12)

where the parameter fi is the confidence of tiL to oi. Since the

parameter γ is fixed, f̂ will not change with iteration, which reduces

the computing time.

The specific pseudo code of SSTM-IS algorithm is shown in

Algorithm 1. According to the description given above, we first

select the most informative instance samples from the source

domain, and then perform the transfer learning between the

selected instances and the labeled target domain data by simplifying

the updating strategy of hyperparameters in STM, improving the

emotion recognition accuracy and increasing the computing speed.

4. Real-time emotion recognition
system

Most of the existing emotion recognition systems based on

EEG signals are limited to manual offline for data processing and

result analysis. This way of offline processing needs to load all

the data first, and thus cannot perform the real-time emotion

recognition obviously. The SSTM-IS algorithm proposed in this

paper can establish a model suitable for new subjects from existing

data in a short computing time, and can be well-applied to real-

time emotion recognition. To verify the effectiveness of the SSTM-

IS algorithm in practical use, we simulate the real-time emotion

recognition in on-line situation. The system framework is shown

in Figure 3.

For the actual online situation, we develop a real-time EEG

emotion recognition system that integrates EEG signal acquisition,

processing, emotion recognition and result visualization, as shown
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FIGURE 5

The accuracy results under di�erent values of β and γ .

FIGURE 6

The accuracy and computing time of the proposed algorithm by selecting di�erent number of instances on SEED dataset.

in Figure 3. The system uses an Emotiv EPOC X with 14-channel

electrodes to collect EEG signals, namely AF3, F7, F3, FC5, T7, P7,

O1, O2, P8, T8, FC6, F4, F8, AF4 with additional two reference

electrodes CMS and DRL, as shown in Figure 4. The sampling

frequency of Emotiv EPOC X is 256 Hz and the bandwidth is 0.20–

43Hz. The Emotiv EPOCX is connected to the server by Bluetooth,

and the EEG signals of the subjects are recorded by calling the

EmotivPRO API. Here, the Client 1 is the experimental interface

of the subject, which is used to realize the interaction between the

subject and the server. In the experiment, the necessary prompts

can be given to subjects by Client 1, allowing them to control the

experimental process according to their own experiences, such as

the length of rest time. We collected and stored the EEG data of the

subjects who have experimented on this system before as the source

domain data. As shown in Figure 3, when a new subject comes,

he receives video stimulation, conducts subjective evaluation, and

controls the experimental process through the interface of Client

1. The server follows the experimental paradigm to control the

experimental process, stores and processes experimental data, as

well as responds to the requests from pages. In the work process,

the server collects the first three sessions of EEG data from the new

subject as the labeled target domain data, and uses these labeled
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FIGURE 7

The accuracy and computing time of the proposed algorithm by selecting di�erent number of instances on SEED-IV dataset.

FIGURE 8

The accuracy and computing time of the proposed algorithm by selecting di�erent number of instances on self-collected dataset.

data to train a classifier for selecting the informative instance data

from source domain. And then the simplified STM is called to

obtain an emotion recognition model by using these labeled data

and selected instance data. Subsequently, the server pre-processes

the raw EEG data within every segment of 10 s by using the MNE-

Python library for bandpass filtering of 0.10–50 Hz and notching

filter for denoising. And then the DE features are extracted to put

into the trained model for real-time emotion recognition. Once

the model training is completed, the system only needs several

milliseconds to output a emotion prediction for a 10s data segment.

Finally, the server feeds the raw EEG signals and recognition

results into the Client 2 for visualization. Here, the Client 2 is

used to monitor the state of the subject, present video stimuli,

visualize the raw EEG signals as well as their spectral maps and

topographic maps, and analyze the real-time emotion recognition

results.

5. Experiments and results

5.1. Datasets and settings

In order to verify the performance of the proposed SSTM-IS

algorithm, we select two public datasets SEED (Zheng and Lu,
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TABLE 1 Performance comparisons with the existing typical EEG emotion

recognition algorithms on SEED and SEED-IV datasets.

Dataset Method Acc (%) Runtime (s)

SEED TCA (Pan et al., 2010) 64.24± 15.34 298

CORAL (Sun and

Saenko, 2016)

63.59± 7.60 19

MS-MDA (Chen et al.,

2021)

85.04± 7.85 1,959

PPDA_NC (Zhao et al.,

2021)

85.40± 7.10 -

PPDA (Zhao et al., 2021) 86.70± 7.10 -

DResNet (Ma et al., 2019) 85.30± 8.00 -

MS-STM (Li et al., 2020a) 83.22± 13.96 776

ASFM (Nandi et al.,

2021)

83.51± 10.18 -

FOIT (Chen et al., 2022) 82.05± 12.36 32

SSTM 84.02± 5.38 22

Instance-sel 79.66± 8.15 5

SSTM-IS 86.78 ± 6.65 7

SEED_IV TCA (Pan et al., 2010) 29.06± 2.16 155

CORAL (Sun and

Saenko, 2016)

32.79± 12.25 43

MS-STM (Li et al., 2020a) 80.28± 9.93 833

FOIT (Chen et al., 2022) 78.15± 7.31 20

SSTM 81.66± 6.10 7

Instance-sel 64.22± 17.80 3

SSTM-IS 82.55 ± 8.48 4

Self-

collected

TCA (Pan et al., 2010) 47.04± 4.91 203

CORAL (Sun and

Saenko, 2016)

46.26± 2.56 31

MS-MDA (Chen et al.,

2021)

68.98± 4.91 347

MS-STM (Li et al., 2020a) 67.83± 4.75 89

SSTM 76.96± 4.08 9

Instance-sel 70.31± 5.62 6

SSTM-IS 77.68 ± 5.13 10

The bold values indicate the best performance in the current dataset.

2015) and SEED-IV (Zheng et al., 2019), as well as the collected

14-channel EEG signal dataset for offline and online experiments.

The SEED dataset (Zheng and Lu, 2015) selected 15 Chinese film

clips with the types of positive, neutral, and negative as visual

stimuli, and each clip is about 4 min. The 15 subjects conducted

three experiments by using the same stimuli with an interval of

1 week, and 3,394 samples had been collected for each subject in

one experiment. The SEED-IV dataset (Zheng et al., 2019) selected

24 movie clips with four emotions of happiness, sadness, fear, and

neutral (6 clips for each emotion), and the duration of each movie

clip is about 2 min. The 15 subjects conducted three groups of

experiments which used completely different stimuli at different

times, and 822 samples had been collected in one experiment. Both

SEED and SEED-IV datasets use 62-channel acquisition equipment

to record EEG signals of subjects at a sampling rate of 1,000

Hz, and pre-process the collected data as follows: downsampling

to 200 Hz, using 0.3–50 Hz band-pass filter and extracting DE

features. Both of the two datasets contain raw data and extracted

features, and are available at http://bcmi.sjtu.edu.cn/~seed/index.

html.

The dataset collected by ourselves recorded the EEG signals of

10 subjects at a sampling rate of 256 Hz with the Emotiv EPOC

X, a 14-channel wireless portable EEG acquisition instrument.

In the selection of stimuli videos, by taking into account the

native language environment of the subjects, we selected 12

Chinese short videos with three emotions of positive, neutral,

and negative as video stimuli, after the subjective evaluation

from 800 short videos. The duration of each short video is

about 1–3 min. In the experiment, the emotion types of two

adjacent videos are different and the videos are played pseudo-

randomly, and 2,495 samples had been collected for each subject.

With the 14-channel EEG signals obtained, the band-pass filter

is used for 0.10–50 Hz frequency filtering, and the notch filter

is employed for denoising. And then the pre-processed EEG

signals are cut into 1-s segments and the DE features are also

extracted.

For the experimental paradigm on the self-collected dataset,

after filling in basic information, the subject needs to read the

experiment description and completes a 5-min baseline recording

with opening or closing eyes alternately every 15 s. During a 15-s

baseline recording, the subject is required to remain relaxed, blink

as infrequently as possible, and look at a fixation cross “+” on the

screen. Then a video stimulus is displayed and the subject is asked

to stay as still as possible and blink as infrequently as possible when

watching the stimulus. After that, the subject filled in the subjective

evaluation scales based on his immediate true feelings. To eliminate

the effect of the previous stimulus, the subject is asked to complete

two simple calculation questions within ten as a distraction. Next, a

more than 30-s period of rest is taken, during which a blank screen

is displayed and the subject is asked to clear his brain of all thoughts,

feelings and memories as much as possible. When the subject clicks

the “NEXT” button on the screen, the next trial starts. The above

process is repeated until 12 short videos have been played.

In the experiments, we use the leave-one-subject-out

verification method on the SEED, SEED-IV, and self-collected

datasets, and employ all sessions of the subjects in the source

domain as the source data. For the three-category SEED and

self-collected datasets, the first three sessions are taken from target

domain as the labeled data. For the SEED-IV dataset with four

categories, since two adjacent sessions may have the same emotion

category, we use the first several sessions from target domain as

the labeled data until all emotion categories have presented. In the

target domain, the data amounts used for calibration and testing

are 674 and 2,720 in SEED, 499 and 323 in SEED-IV, 330 and 2,165

in self-collected dataset.

For the hyperparameters of β and γ in Equation (6), we set

their values through the experiment. Take the SEED dataset as

an example, Figure 5 presents the accuracy results under different

values of β and γ . It can be seen from Figure 5 that, when γ = 0

and β = 0, the accuracy is only 73.14%; when γ = 0 and β > 0,
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FIGURE 9

Confusion matrix of the proposed method in cross-subject on (A) SEED, (B) SEED-IV, and (C) self-collected datasets.

the accuracy is about 81%. When γ > 0 and β > 0, the accuracy

fluctuates in a small range around 86%, and when γ = 2 and

β = 0.2, the accuracy reaches the local maximum of 86.78%.

The same to SEED-IV and self-collected datasets. Therefore, we set

γ = 2 and β = 0.2 in the experiments. It is found that the fixed

values of β and γ can be obtained to shorten the computing time

without reducing the accuracy.

5.2. O	ine experiments

5.2.1. Analysis on the quantity selection of
instances

Firstly, we test the effect of the number of instance selection

on the performance of emotion recognition. Here, the incremental

number of instances is selected according to the size of the dataset.

Concretely, we select the number of instances from 500 to all with

the incremental number being 1,000 for the SEED dateset, from

100 to all with the incremental number being 200 for the SEED-IV

dataset, and from 500 to all with the incremental number being 500

for the self-collected dataset. The experimental results are shown in

Figures 6–8, respectively.

In Figures 6–8, the horizontal axis corresponds to the number

of selected instances k for each emotion category. The box denotes

the accuracy under different values of k corresponding to the left

vertical axis, and the blue line represents the computing time

of model under different values of k corresponding to the right

vertical axis. For the term of computing time, it is increased as

the number of selected instances increases, as shown in the blue

line. For the term of accuracy, it can be seen from Figures 6–

8 that, it is not the more the number of instances is, the

higher the recognition accuracy is. The accuracy can be rapidly

improved before the number of selected instances reaches a certain

value, which indicates that the selected instances during this
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FIGURE 10

The recognition accuracies corresponding to di�erent numbers of selected instances used to calibrate the model on (A) SEED and (B) self-collected

datasets.

FIGURE 11

Distribution of the selected instances from the subjects on the SEED: (A) positive, (B) neutral, and (C) negative.
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FIGURE 12

Distribution of the selected instances from the subjects on the SEED-IV: (A) happy, (B) sad, (C) neutral, and (D) fear.

period is informative and can be well-transferred to improve the

generalization ability of the model. However, when the number

of the instance exceeds this certain value, the improvement of the

accuracy slows down until reaching the maximum value, tending to

be flat and decrease. This indicates that too many instances selected

will also cause data redundancy and lead to negative transfer,

degrading the performance of the model. It can be seen from

Figures 6–8 that on the SEED, SEED-IV, and the dataset collected

by ourselves, the selection number k in Equation (3) is, respectively,

chosen to be 6,500, 1,100, and 5,500 for the instances with different

emotion categories to train the model, which can obtain higher

accuracy and lower standard deviation with 86.78± 6.65%, 82.55±

8.48%, and 77.68 ± 5.13% in computing time of 7, 4, and 10 s,

respectively.

5.2.2. Ablation experiments
As illustrated in Figure 2, the key components of the proposed

SSTM-IS are instance selection and SSTM. To evaluate the effects

of these two components on the SSTM-IS, we remove one at a

time and evaluate the performance of the ablated models. The

experimental results of the proposed SSTM-IS and two ablated

models are summarized in Table 1. Here, the model of SSTM

indicates to use all the source domain data for transfer learning

without the component of instance selection. And the model of

instance-sel represents to use the selected instances to perform

the classification directly without transfer learning. It can be

seen from Table 1 that on the SEED, SEED-IV, and self-collected

datasets, the proposed SSTM-IS achieves the best accuracies of

86.78, 82.55, and 77.68%, the model of SSTM obtains the accuracies

of 84.02, 81.66, and 76.96%, and the model of instance-sel gets the

accuracies of 79.66, 64.22, and 70.31%, respectively. This indicates

by jointly using two components of SSTM and instance selection,

the proposed SSTM-IS algorithm can achieve the best performance

on the SEED, SEED-IV, and self-collected datasets. In addition, the

component of SSTM has a stronger impact on the performance

compared with the instance selection, verifying the effectiveness

of transfer learning. Moreover, the impact of instance selection on

SEED is greater than that on SEED-IV. This may be because the

SEED has a large amount of data and more redundancy in source

domain, and thus the instance selection is more effective than that

on the SEED-IV.
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FIGURE 13

Distribution of the selected instances from the subjects on the self-collected dataset: (A) positive, (B) neutral, and (C) negative.

5.2.3. Comparison with other methods
In order to prove the effectiveness of the proposed algorithm,

we compare several representative algorithms with our method

on the public datasets of SEED and SEED-IV as well as the

dataset collected by ourselves. The experimental results are shown

in Table 1 in terms of accuracy and runtime. Among these

representative methods compared in Table 1, MS-MDA (Chen

et al., 2021), PPDA (Zhao et al., 2021), and DResNet (Ma et al.,

2019) are incorporated as the benchmark algorithms by using deep

learning. It should be noted that in Table 1, the results of MS-

MDA (Chen et al., 2021) are the reproductions with the open

source codes on the SEED dataset. The accuracies and runtime

of TCA (Pan et al., 2010), CORAL (Sun and Saenko, 2016), MS-

STM (Li et al., 2020a), and FOIT (Chen et al., 2022) on SEED

and SEED-IV are referenced from the results given in (Chen

et al., 2022). In addition, the accuracies and runtime of TCA (Pan

et al., 2010), CORAL (Sun and Saenko, 2016), MS-MDA (Chen

et al., 2021), and MS-STM (Li et al., 2020a) on the self-collected

dataset are the reproductions with their open source codes. All

the experiments are implemented by using Python and a GPU of

NVIDIA GeForce GTX 1080.

It can be seen from Table 1 that compared with the existing

representative EEG emotion recognition algorithms, the proposed

SSTM-IS algorithm can achieve an accuracy of 86.78 ± 6.65%

on the SEED dataset, which is 0.09% higher than the current

best performance PPDA algorithm (Zhao et al., 2021) with the

standard deviation reduced by 6.34%. On the SEED-IV dataset, the

accuracy of our method reaches 82.55 ± 8.48%, which is 2.83%

higher than that of MS-STM (Li et al., 2020a) with the standard

deviation reduced by 14.60%. On the self-collected dataset, the

accuracy of our method reaches 77.68 ± 5.13%, which is 14.52%

higher than that of MS-STM (Li et al., 2020a). On the other hand,

the proposed method uses a small amount of target domain data

to train the model for a new subject, and the runtime of model

training is 7, 4, and 10 s on the SEED, SEED-IV, and self-collected

datasets, respectively. Once the model training is completed, our

algorithm only needs several milliseconds to recognize the emotion

state of un-labeled EEG samples. However, the existing deep

learningmethods use back propagation as the optimization strategy

and need a long time to train the model for a new subject.

Specifically, it can also be seen from Table 1 that the runtime of

the proposed SSTM-IS algorithm is much more less than that

of the deep learning method of MS-MDA (Chen et al., 2021)

on the SEED dataset (7 vs. 1959 s) as well as the self-collected

dataset (10 vs. 347 s). This indicates that our method can quickly

calibrate the model suitable for new subjects, greatly shortening
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FIGURE 14

The visualization interface of online EEG emotion recognition system.

the runtime and more suiting for the real-time EEG emotion

recognition system.

5.2.4. Additional evaluations
To analyze the recognition ability of the proposed algorithm for

different emotion categories, the confusion matrix of predictions

made on the SEED, SEED-IV, and self-collected datasets are shown

in Figure 9. It can be seen from Figure 9A that on the SEED

dataset, with the instance number being 6,500 for different emotion

categories, the projection effects from source to target show

difference between the different emotion recognition. Specifically,

our method achieves the recognition accuracies of 78.22, 85.76,

and 95.19% for the emotion categories of positive, neutral, and

negative, respectively. This difference is also shown on the SEED-

IV and self-collected datasets. For the SEED-IV dataset as shown

in Figure 9B, our method can obtain the recognition accuracies

of 89.36, 80.49, 66.67, and 72.50%, respectively for the emotion

categories of happiness, sadness, fear and neutral. And for the self-

collected dataset as shown in Figure 9C, our method can obtain

the recognition accuracies of 77.06, 82.83, and 77.69%, respectively

for the emotion categories of positive, neutral, and negative. The

results on the SEED, SEED-IV, and self-collected datasets indicate

that the proposed algorithm has strong discriminative capability for

different emotion categories.

In addition, the proposed SSTM-IS algorithm needs a small

amount of the labeled target domain data for supervised learning

when training the model. In the previous experiments, we used

the EEG data collected under the first three stimulus videos

for the supervised learning. However, in the real-time emotion

recognition applications, the less supervised data needed means

the better experience for user. Therefore, we explore the impact of

the number of selected instances used for supervised learning on

the recognition accuracy by adding the instances collected within

20 s successively on the SEED and self collected datasets. The

experimental results are shown in Figure 10. It can be seen from

Figure 10 that, the recognition accuracy increases with the number

of instances supervised until it tends to be flat and fluctuates in a

small range. This gives us the insight, that is, a balance between the

accuracy and user experience can be found in practice by selecting

the number of instances where the accuracy levels off, reducing the

amount of supervised data in the target domain to calibrate the

model.

Considering the experimental results shown in Section 5.2.1,

where the higher accuracy and lower deviation can be obtained

for the selected instances of 6,500, 1,100, and 5,500 from the

source domains of the SEED, SEED-IV, and self-collected datasets,

respectively, here we further explore the data distributions of these

selected instances in the source domain. The visualization results

are presented in Figures 11–13, respectively.

We can find from Figures 11–13 that for each of the three

datasets, the selected instances come from almost all the subjects

of the source domain. With the number of source domain instances

being the same for each emotion category, the numbers of selected

instances vary from subject to subject in the source domain between

the different emotion recognition. This demonstrates that the

instances from subjects contribute differently to the construction

of emotion recognition model on the target domain. The proposed
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strategy of instance selection is capable of obtaining the most

informative samples from different subjects in the source domain

for transfer learning on the target domain, which increases the

generalizability of the model and reduces the negative transfer

caused by data redundancy effectively.

5.3. Online experiments

In order to verify the reliability of our algorithm in the

actual scenes, we use the real-time EEG emotion recognition

system developed in Section 4 to conduct the real-time

emotion recognition experiment for practical application.

For the experimental paradigm in the online experiment,

the experimental process is similar to that on the self-

collected dataset. It should be noted that, the first three

sessions of EEG data are collected from the new subject as

the labeled target domain data to calibrate the model by

the server. After the model calibrating is completed, the

emotion recognition results will be displayed in real time for

the experimenters.

For the actual online situation as shown in Figure 3, we pre-

process the raw data within every segment of 10 s and extract the

DE features to put into the trained model for real-time emotion

recognition. In the experiment, we divide the emotion states into

three categories: positive, neutral, and negative. The visualization

interface of the realistic experiment is shown in Figure 14. Here,

the three windows in the first row are used for monitoring the

subject state, stimulus display and real-time raw EEG signals.

The window on the left of the second row shows the spectrum

diagram and topographical maps of EEG signals, which are used

to visualize the changes in frequency characteristics of EEG signals.

And the window on the right shows the real-time and historical

emotion recognition results. In the actual experiment, when the

model training is completed, the proposed system outputs an

emotion prediction for every 10s EEG data segment. The real-

time system developed above implements the transfer learning

algorithm by using a small amount of data for model calibrating,

and it has also been verified in the real-time emotion recognition

applications in real scene. In addition, it should be explained

that we think it is inaccurate to take the label of the whole

stimulating video as the ground truth for every 10 s data segment,

and thus we did not conduct quantitative analysis on the online

accuracy. It can be inferred that the emotion varies sometimes

very fast and is effected by many factors such as the individual

difference and induced effect of stimulating video, the online

accuracy will be lower than the experimental results on the offline

dataset.

6. Discussion and conclusion

The above experiments indicate that the proposed SSTM-

IS algorithm brings a solid improvement in the accuracy and

computing time for EEG emotion recognition. The strategy of

instance selection is used to obtain the informative data samples

from the source domain, which shortens the computing time

for training the model. At the same time, the simplified STM

method can further reduce the time cost without decreasing

the accuracy. The offline experiments on the public and self-

collected datasets show that the proposed SSTM-IS has improved

the accuracy with less time cost compared with the representative

methods. Specifically, the accuracies on the SEED, SEED-IV, and

self-collected datasets have been improved to 86.78 ± 6.65%, 82.55

± 8.48%, and 77.68 ± 5.13%, respectively, and the computing

time has been shortened to 7, 4, and 10 s. In addition, we also

develop a real-time EEG emotion recognition system to carry out

the actual online experiments. The online experimental results

demonstrate that, the designed system with the proposed SSTM-IS

can provide a practically feasible solution for the actual applications

of aBCIs.

There are also some tips for future works. First, the

proposed algorithm still needs to collect a small amount of

data from new individuals for model calibration, which reduces

the user experience to a certain extent. In the future, the

real-time emotion recognition algorithms can be explored

without calibration. Second, the data of new subjects can be

incorporated selectively into the source domain to optimize

the data composition in realistic scenarios. Besides, the

developed system also reserves the acquisition interfaces of

other physiological signals to facilitate the subsequent integration

of multiple physiological signals to further improve the system

performance.
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