AUTHOR=Hong Eul-Seok , Kim Hyun-Seok , Hong Sung Kwang , Pantazis Dimitrios , Min Byoung-Kyong TITLE=Deep learning-based electroencephalic diagnosis of tinnitus symptom JOURNAL=Frontiers in Human Neuroscience VOLUME=17 YEAR=2023 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2023.1126938 DOI=10.3389/fnhum.2023.1126938 ISSN=1662-5161 ABSTRACT=

Tinnitus is a neuropathological phenomenon caused by the recognition of external sound that does not actually exist. Existing diagnostic methods for tinnitus are rather subjective and complicated medical examination procedures. The present study aimed to diagnose tinnitus using deep learning analysis of electroencephalographic (EEG) signals while patients performed auditory cognitive tasks. We found that, during an active oddball task, patients with tinnitus could be identified with an area under the curve of 0.886 through a deep learning model (EEGNet) using EEG signals. Furthermore, using broadband (0.5 to 50 Hz) EEG signals, an analysis of the EEGNet convolutional kernel feature maps revealed that alpha activity might play a crucial role in identifying patients with tinnitus. A subsequent time-frequency analysis of the EEG signals indicated that the tinnitus group had significantly reduced pre-stimulus alpha activity compared with the healthy group. These differences were observed in both the active and passive oddball tasks. Only the target stimuli during the active oddball task yielded significantly higher evoked theta activity in the healthy group compared with the tinnitus group. Our findings suggest that task-relevant EEG features can be considered as a neural signature of tinnitus symptoms and support the feasibility of EEG-based deep-learning approach for the diagnosis of tinnitus.