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Tinnitus is a neuropathological phenomenon caused by the recognition of

external sound that does not actually exist. Existing diagnostic methods for

tinnitus are rather subjective and complicated medical examination procedures.

The present study aimed to diagnose tinnitus using deep learning analysis

of electroencephalographic (EEG) signals while patients performed auditory

cognitive tasks. We found that, during an active oddball task, patients with tinnitus

could be identified with an area under the curve of 0.886 through a deep

learning model (EEGNet) using EEG signals. Furthermore, using broadband (0.5 to

50 Hz) EEG signals, an analysis of the EEGNet convolutional kernel feature maps

revealed that alpha activity might play a crucial role in identifying patients with

tinnitus. A subsequent time-frequency analysis of the EEG signals indicated that

the tinnitus group had significantly reduced pre-stimulus alpha activity compared

with the healthy group. These differences were observed in both the active and

passive oddball tasks. Only the target stimuli during the active oddball task yielded

significantly higher evoked theta activity in the healthy group compared with

the tinnitus group. Our findings suggest that task-relevant EEG features can be

considered as a neural signature of tinnitus symptoms and support the feasibility

of EEG-based deep-learning approach for the diagnosis of tinnitus.
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1. Introduction

Tinnitus is the illusory perception of sound in the absence of an external sound
(Jastreboff and Sasaki, 1994; Baguley et al., 2013; Mohamad et al., 2016). People with
tinnitus experience impaired cognitive efficiency and difficulties in mental concentration
(Hallam et al., 2004). Based on functional imaging studies, it is generally accepted that
tinnitus is associated with maladaptive neuroplasticity because of impairment in the auditory
system (Schaette and McAlpine, 2011; Faber et al., 2012; Roberts et al., 2013; Kaya and
Elhilali, 2014; Hong et al., 2016; Ahn et al., 2017). Most symptoms of tinnitus can be
attributed to reorganization and hyperactivity in the auditory central nervous system
(Muhlnickel et al., 1998; Kaltenbach and Afman, 2000; Salvi et al., 2000; Eggermont and
Roberts, 2004). Tinnitus perception can be subject to top-down modulation of auditory
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processing (Mitchell et al., 2005) or attentional bottom-up
processes that are influenced by stimulus salience. We reported
neurophysiological and neurodynamic evidence revealing a
differential engagement of top-down impairment along with
deficits in bottom-up processing in patients with tinnitus (Hong
et al., 2016). In addition, we observed that fronto-central cross-
frequency coupling was absent during the resting state (Ahn et al.,
2017), reflecting that maladaptive neuroplasticity or abnormal
reorganization occurs in the auditory default mode network of
patients with tinnitus.

Due to many possible causes, such as abnormality in top-down
or bottom-up processes, and different symptoms, such as hearing
loss or noise trauma, there is currently no universally effective
clinical method for tinnitus diagnosis (Hall et al., 2016; Liu et al.,
2022). At present, the diagnosis battery for tinnitus relies mainly
on subjective assessments and self-reports, such as case history,
audiometric tests, detailed tinnitus inquiry, tinnitus matching, and
neuropsychological assessment (Basile et al., 2013; Tang et al.,
2019).

Neuroimaging techniques are widely applied to monitor
neural activity and diagnose different brain disorders.
Electroencephalography (EEG) has emerged as one of the
most practical techniques since it gives an insight into the
temporal neuro-dynamics, it has an excellent temporal resolution
(milliseconds or better), good portability, and an inexpensive
set-up cost in comparison to other neuroimaging techniques,
such as magnetoencephalography (MEG) or functional magnetic
resonance imaging (fMRI) (Min et al., 2010). Many researchers
have proposed that the assessment of abnormal neural activity
as assessed by EEG signals may aid in the diagnosis of tinnitus
since this disease is often associated with changes in the brain.
Specifically, it is hypothesized that subjective tinnitus is the result
of abnormal neural synchrony and spontaneous firing rates in
the auditory system, therefore an EEG-based diagnostic approach
for tinnitus may be an objective method to evaluate or predict its
symptoms (Ibarra-Zarate and Alonso-Valerdi, 2020).

Here, to investigate whether patients with tinnitus can be
identified using top-down or bottom-up EEG features, we used
an active oddball paradigm (as a top-down directed task) in
comparison to a passive oddball paradigm (as a bottom-up directed
task). Task-relevant modulations may be reflected in event-related
oscillations and provide the essential electrophysiological features
for identifying patients with tinnitus. Thus, in the present study, we
extracted top-down and bottom-up EEG cognitive signals and used
them as discriminative features to identify patients with tinnitus
using a novel deep-learning-based tinnitus-diagnostic tool.

Recent studies used machine learning to reduce reliance on
experts and mitigate the influence of personal factors in the
tinnitus-diagnosis process (Li P.-Z. et al., 2016; Wang et al.,
2017; Sun et al., 2019). However, most machine learning EEG
studies in tinnitus used resting-state EEG and focused on model
performance or methodology (Mohagheghian et al., 2019; Sun
et al., 2019; Allgaier et al., 2021). Therefore, there is a need for
additional research on the diagnostic efficacy of EEG not only
in resting-state but also in task-based studies (Mohagheghian
et al., 2019; Allgaier et al., 2021). We hypothesized that there
would be differences in brain activity during auditory cognitive
tasks, reflecting distinct brain processing mechanisms between
healthy individuals and patients with tinnitus. To assess, we used

time-frequency analysis of EEG signals during task performance
and evaluated neurophysiological differences in EEG spectral
activity between the healthy and tinnitus groups. Importantly, we
discriminated patients with tinnitus from healthy individuals using
a deep learning decoding model and investigated whether the
features learned by the model were consistent with task-relevant
neurophysiological correlates.

2. Materials and methods

2.1. Participants

Eleven patients with tinnitus (six women; mean age 32.1 years)
and 11 age-matched healthy volunteers (five women; mean age
27.2 years) participated in the experiment. All patients had definite
signs of chronic tinnitus, which lasted longer than 3 months but less
than a year but had normal hearing otherwise. We assessed normal
hearing with the following criteria: (i) the audiometric threshold
was within 25 dB of the pure tone average at octave frequencies
within 250–8,000 Hz; (ii) transient-evoked otoacoustic emissions
(TEOAEs) were recorded in the external ear canal after stimulation
with at least 5 dB signal-to-noise ratio (SNR), and distortion
product otoacoustic emissions (DPOAEs) were recorded with at
least 3 dB SNR; (iii) peak latencies for waves I-III were less than
2.4 ms, and for wave V were less than 6.2 ms on 90 dB normalized
hearing level click-evoked auditory brainstem responses (ABR);
and (iv) the tympanic membrane had a normal appearance on
otoscope examination. Note, normal wave I-III latencies typically
suggest intact peripheral auditory nerves (Moller et al., 1981; Moller
and Jannetta, 1982), and normal otoacoustic emissions typically
suggest normally functioning cochlear hair cells (Kemp, 1978; Mills
and Rubel, 1994). However, it is possible that deafferentation was
present in some of the tinnitus patients, though not detectible
by conventional tests (TEOAEs, DPOAEs, ABR, and otoscope
examination).

In addition, we introduced the following exclusion criteria to
match patients and healthy volunteers in cognitive abilities: (i)
age older than 50 years; (ii) present or past diagnosis of vertigo,
Meniere’s disease, noise exposure, hyperacusis, or psychiatric
problems; (iii) exposure to ototoxic drugs; (iv) complex cases of
tinnitus, for example, a failure of tinnitus pitch matching.

To assess tinnitus severity, all patients completed a tinnitus
questionnaire with a 0–10 scale (0: no annoyance; 10: severe
annoyance) and a Korean translation of the Tinnitus Handicap
Inventory of the American Tinnitus Association (Newman et al.,
1996). The healthy volunteers had normal hearing and no signs of
tinnitus.

Note, the data in this study were previously collected and
published by our group. Extended details on the participants, data
acquisition, and audiometric and tinnitus tests are provided in our
previous study (Hong et al., 2016).

2.2. Materials and procedure

Participants performed auditory active and passive oddball
tasks during EEG acquisition (Figure 1). During the active
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FIGURE 1

Experimental design. (A) The auditory stimulus presentation sequence comprised a series of frequent standard “S” stimuli (80% occurrence
probability; 500 Hz tones) and rare target “T” stimuli (20% occurrence probability; 8 kHz tones for healthy subjects and individual tinnitus
pitch-matched frequencies for patients). Stimuli were presented for 200 ms and had variable interstimulus interval (1,300–1,700 ms). Participant
conducted a sound discrimination task in the active oddball task (B), and passively watched a silent movie in the passive oddball task (C).

oddball task, two auditory stimuli (standard and target stimuli)
were presented in random order for 200 ms, with standard
stimuli being more frequent than target stimuli by an 8:2 ratio.
Participants were instructed to discriminate between the frequently
occurring standard stimuli and infrequently occurring target
stimuli by pressing a button. We employed an active oddball
task because the P300 component of the event-related potential
(ERP) reflects fundamental cognitive processes (Donchin and
Coles, 1988; Johnson, 1988; Picton, 1992; Polich, 1993, 2007) and
is strongly elicited by this task (Katayama and Polich, 1999).
Specifically, the P300 component is known to be involved in the
contextual updating process (Polich, 2003). In the active oddball
task, the P300 elicited by the target stimulus is a large, positive
potential that is strongest over the parietal electrodes and occurs
at about 300 ms post-stimulus in healthy young adults. Because
the active oddball task required the participants’ active responses
and therefore engaged cognitive decision-making processes, the
results were interpreted as mostly auditory top-down effects. On
the other hand, the same stream of auditory stimuli used in the
active oddball task was also passively heard by the participants
and was principally interpreted as a bottom-up process. This is
because auditory bottom-up attention is a sensory-driven selection
mechanism for shifting perception toward a salient auditory

subset within an auditory scene (Kaya and Elhilali, 2014). In the
passive oddball task, a mismatch negativity (MMN) component
of ERP would be elicited. Since it is observed even if subjects
do not perform a task using the stimulus stream, the MMN is
a relatively preattentive and automatic response to an auditory
stimulus deviating from the preceding standard stimuli (Näätänen
and Kreegipuu, 2012). As deviant stimuli (physically the same
as the target stimuli in the active oddball task) would evoke
greater negative potentials compared to standard stimuli, with a
fronto-central scalp maximum around 200 ms post-stimulus, this
discrepancy is often isolated from the rest of the ERPs with a
deviant-minus-standard difference wave, which is called an MMN.

Participants performing the active oddball task were required
to respond by pressing a button with one hand when a standard
stimulus was detected and another button with the opposite
hand when an infrequent target stimulus was detected (Duncan-
Johnson and Donchin, 1977; Polich, 1989; Verleger and Berg, 1991;
Figure 1). While the participants performed the active oddball task,
they were instructed to fixate their eyes on a cross presented at
the center of a screen to minimize any possible distracting effects
due to alterations in visual attention. The passive oddball task
presented the same auditory stimuli as the active oddball task,
but participants had to remain still without pressing the button.
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In addition, to distract from attending to the auditory stimuli,
participants performing the passive oddball task were shown a
black-and-white silent movie (“Modern Times”: Charlie Chaplin’s
movie).

The distance between the participant and the monitor was
80 cm, and visual stimuli were displayed within a visual angle of
6.5◦ to avoid image formation in the blind spot. The frequencies
of the target stimuli in the oddball paradigm for the tinnitus group
were their individual tinnitus-pitch-matched frequencies, and the
target-stimulus frequency of the healthy group was 8 kHz, which
was the most prominent as the individual tinnitus frequency in
the tinnitus group. It has been reported that tinnitus patients
respond sensitively to tinnitus sound stimuli (Cuny et al., 2004;
Li Z. et al., 2016; Milner et al., 2020). The standard-stimulus
frequency for both groups was 500 Hz. The experimental paradigm
consisted of 320 standard stimuli (80% occurrence probability in
the stimulus set) and 80 target stimuli (20% occurrence probability
in the stimulus set), which were presented in random order. To
minimize temporal expectancies, the interstimulus intervals (ISIs)
were set to have variable intervals, ranging randomly between 1,300
and 1,700 ms, and centered at 1,500 ms (Min et al., 2008). All
auditory stimuli were generated through Adobe Audition software
(version 3.0, Adobe Systems Incorporated, San Jose, CA), and
were presented through insert-earphones (EARTONE 3A

R©

, 3M
Company, Indianapolis, IN, USA) in both ears of the participants.
All participants performed the task in the same environment, and
the acoustic intensities of all stimuli were set to 50 dB SPL (sound
pressure level) using a sound level meter (Type 2250, Brüel and Kjör
Sound and Vibration Measurement, Denmark).

2.3. EEG recordings

EEG signals were recorded using a BrainAmp DC amplifier
(Brain Products, Germany) with a 32 Ag/AgCl-electrode actiCAP
having a 10–10 electrode system placement. The ground was set
as the AFz electrode, and the reference was set as an electrode on
the tip of the nose. The impedances of the electrodes were lowered
below 5 k� during electrode setup. EEG data were collected with
a sampling frequency of 1 kHz and an analog band-pass filter
of 0.5–70 Hz. An electrooculography (EOG) electrode was placed
below the left eye to track eye movement artifacts. Vertical and
horizontal electroocular signals were then estimated using the
Fp1–EOG and F7–F8 electrode pairs, respectively. EOG artifacts
were removed using an independent component analysis algorithm
(Makeig et al., 1997; Winkler et al., 2011). The Brainstorm software
(Tadel et al., 2011) was used to extract peristimulus data from
−500 ms (baseline) to +1,000 ms with respect to stimulus onset.
Every trial was baseline-corrected to remove the mean (−500
to 0 ms) from each channel. Trials containing large fluctuations
exceeding ±100 µV maximum amplitude or 50 µV/ms maximal
voltage gradient were excluded from further analyses.

2.4. ERP analysis

Two dominant ERP components were analyzed: P300 and
MMN. Depending on the regions of the brain in which the
activity was most prominent (i.e., regions of interest), the following

corresponding electrodes were chosen for analysis: for P300
(maximum peak 200–400 ms post-stimulus), four centro-parietal
electrodes (Cz, CP1, CP2, and Pz); for MMN (minimum peak
100–300 ms post-stimulus), four frontal-central electrodes (Fz,
FC1, FC2, and Cz). All time windows were based on their
grand averages while taking individual variations into account.
Baseline corrections were conducted using the 500–0 ms pre-
stimulus interval. The amplitudes and latencies of each peak were
compared between healthy and tinnitus groups. To display the ERP
components, an offline filter (0.5–30 Hz) was applied to the results.

2.5. Time-frequency analysis

We used the Morlet wavelet transform to compute time-
frequency responses (Herrmann et al., 2005). For the estimation of
total activity (which includes the combined contribution of both
phase-locked and non-phase-locked responses to the stimulus), the
Morlet wavelet transform was applied to individual trials, and the
resulting power of individual trials was averaged to obtain total
activity. For the estimation of evoked activity (response phase-
locked to the stimulus), the individual trials were first averaged, and
the Morlet wavelet transform was applied to the averaged (evoked)
trial. Since alpha-band oscillatory activity is the most pronounced
rhythm in the human brain during relaxed (mentally inactive)
wakefulness, we studied whether alpha activity differed between
the tinnitus and healthy groups, which could suggest differences in
preparatory mental states between the two groups. Furthermore,
we also studied EEG theta oscillations, which have been linked to
top-down regulation of memory processes (Sauseng et al., 2008).
We did not investigate other frequency bands because they did not
exhibit observable differences across the experimental conditions.
Since the dominant frequency in each frequency band varies per
individual, we determined subject-specific frequencies for each
band but confined them to be within 8 to 13 Hz for the alpha band
and 4 to 8 Hz for the theta band.

To calculate the pre-stimulus total activity in the alpha band,
we averaged signal power in a baseline window −400 to −100 ms
prior to stimulus onset. To calculate the evoked theta activity, we
measured the maximum theta power in the time window between
0 and 500 ms after stimulus onset. All time windows were selected
based on their grand-averages. Baseline correction was performed
on the evoked theta activity using the pre-stimulus interval −400
to −100 ms prior to stimulus onset. No baseline correction was
applied to the total alpha activity since we were interested in
studying effects related to the pre-stimulus (i.e., baseline) total
alpha activity (Min and Herrmann, 2007). Based on the areas of
the brain where the EEG oscillatory activity was most pronounced,
three parietal electrodes (Pz, P3, and P4) were selected for spectral
analysis. The averaged amplitudes across the selected electrodes
were analyzed at their dominant peaks within the corresponding
time window (Heinrich et al., 2014; Karamacoska et al., 2019).

2.6. Decoding analysis

Deep learning has been tremendously successful, in large part
because it enables the automatic learning of discriminative features
from the data (LeCun et al., 1989, 2015; Boureau et al., 2010;

Frontiers in Human Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1126938
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1126938 May 2, 2023 Time: 11:16 # 5

Hong et al. 10.3389/fnhum.2023.1126938

FIGURE 2

P300 and MMN responses. (A) Grand-averaged P300 topographies and ERP time courses at electrode Pz of both healthy controls (red line) and
patients with tinnitus (blue line) for the target stimuli during the active oddball task. (B) Grand-averaged MMN topographies and ERP time courses at
electrode Fz of both healthy controls (red line) and patients with tinnitus (blue line) for the target minus standard stimuli during the passive oddball
task.

Glorot et al., 2011). Recently, there has been a growing interest
in adapting convolutional neural networks (CNNs) for EEG signal
processing (Schirrmeister et al., 2017; Acharya et al., 2018; Lotte
et al., 2018; Roy et al., 2019). Deep-learning approaches typically
need large amounts of data due to the vast number of parameters
that have to be learned (LeCun et al., 2015). Therefore, CNNs do
not at first appear to be suitable for a relatively small number of
EEG trials. However, a compact CNN called EEGNet was recently
been proposed that performs well with relatively small numbers
of EEG data (Lawhern et al., 2018). EEGNet is optimized for a
small number of learnable parameters and thus reduces the need
for additional techniques to deal with limited data, such as data
augmentation (Dinarès-Ferran et al., 2018; Haradal et al., 2018;
Ramponi et al., 2018; Zhang et al., 2019; Freer and Yang, 2020).
That is, it performs well without the need for data augmentation,
making the model simpler to implement (Lawhern et al., 2018). In
addition, it has been shown that neurophysiologically interpretable
features, instead of artifacts and noise, can be extracted from
the EEGNet model (Lawhern et al., 2018). For these reasons, we
selected the EEGNet architecture over other deep-learning models.
Although the basic EEGNet may not result in the best performance
(Zancanaro et al., 2021), we opted to use this model because it
is a well-established architecture suitable for general applications
and interpretations would not be confounded by any complex
modifications (Borra et al., 2021; Zhu et al., 2021).

For training and evaluation of the EEGNet model to detect
tinnitus patients, we used the time series of EEG data (30
electrodes) of both healthy and tinnitus groups (Lawhern et al.,
2018). The architecture and parameters of the EEGNet are listed
in both Supplementary Figure 1 and Supplementary Table 1. To
investigate which frequency band of the EEG signals contributed
dominantly to tinnitus-patient identification, the EEGNet model
was separately trained with EEG signals from each frequency band
but also using broadband data. The EEG data were band-pass
filtered in the following frequency bands: delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), gamma (30–50 Hz),
and broadband (0.5–50 Hz). In each stimulus-type and task-type
condition (i.e., four decoding conditions: target stimuli in the

active oddball task, standard stimuli in the active oddball task,
target stimuli in the passive oddball task, and standard stimuli
in the passive oddball task), the filtered single-trial EEG inputs
were used for training and evaluation of the model. To prevent
biases in classification performance, the same numbers of EEG data
were randomly sampled for both the healthy and tinnitus groups.
In addition, to compare EEG decoding performance between the
different types of auditory stimuli, the number of EEG trials of the
standard stimuli was set to be equal to that of the target stimuli.
To compare the decoding performance between pre-stimulus
and post-stimulus time windows, the EEG data segmented from
500 ms pre-stimulus to 1,000 ms post-stimulus were additionally
decoded in separate time windows relative to stimulus onset: pre-
stimulus (500 ms pre-stimulus to stimulus onset) and post-stimulus
(stimulus onset to 1,000 ms post-stimulus) periods.

We trained the decoding model for up to 100 epochs,
and the best model was finally selected based on the epoch
with the minimum validation loss. To evaluate performance,
the average of the area under the curve (AUC) in the receiver
operating characteristic (ROC) curves, sensitivity, specificity, and
accuracy were obtained through the 11-fold leave-one-pair-out
cross-validation (Kohavi, 1995; Zou et al., 2007; Pedregosa et al.,
2011), in which a pair indicated one healthy individual and
one patient with tinnitus. Nine out of 11 folds were used as a
training set to train the model, one fold out of the remaining
two folds was used for validation, and the remaining one fold
was finally used for the model evaluation. This process was
repeated 11 times to obtain a total of 11 AUCs of model
performance, and the model performance was evaluated through
the average of these AUCs. Supplementary Tables 2–4 detail the
classification power of the model (sensitivity, specificity, accuracy,
and AUC) for each frequency band during the pre-stimulus,
post-stimulus, and entire trial period, respectively. In addition,
to investigate the cases of misclassifications made by the deep-
learning-based model, the misclassified trials from a sample pair
of healthy/patient subjects were separately analyzed and compared
with the correctly classified trials in the case of EEG alpha activity
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for the target stimuli in the active oddball task. After the 11-
fold cross-validation, the averaged time-frequency representations
were computed across all the EEG trials collected individually for
the following classifications: true positive (i.e., correctly classified
tinnitus patients as tinnitus patients), false positive (i.e., incorrectly
classified healthy individuals as tinnitus patients), true negative
(i.e., correctly classified healthy individuals as healthy individuals),
and false negative (i.e., incorrectly classified tinnitus patients as
healthy individuals).

To compare the EEGNet-based decoding performance against
other classical machine-learning techniques, a support vector
machine (SVM) (Scholkopf et al., 1997; Manyakov et al., 2011)
classifier was applied to the current dataset. For the SVM approach,
the alpha-band time series of the entire EEG trial at the electrode Pz
was used as an input feature to the classifier since alpha activity is
generally predominant around the parietal region (Dockree et al.,
2007; Cosmelli et al., 2011; Groppe et al., 2013). To investigate
the effect of alpha band in the decoding performance of SVM, the
AUC was also computed in the case of removing the alpha band,
through a band-stop filter, from the input signals. With this feature
representation, we applied a SVM with the radial-basis function as
a kernel. The regularization parameter and the kernel parameter
were chosen using grid search.

To investigate the contribution of each individual frequency
band to model training, beyond assessing the classification
performance of the EEGNet trained on band-limited data, we also
performed a feature analysis of the convolutional layer filter of
the EEGNet trained on broadband data (Deng et al., 2021; Riyad
et al., 2021). The convolutional layer kernel of the EEGNet model
used in this study worked as a temporal filter, which performs a
similar role to a filter bank (Ang et al., 2012). Since the sampling
rate of the EEG data used for model training and evaluation was
1,000 Hz and the size of the convolutional layer filter was 500,
the time window of the convolutional layer filter was 500 ms. To
identify the most influential frequencies in the EEGNet model, the
input signals, learned filter weights of the first convolutional layer,
and corresponding feature maps were projected to the frequency
domain using the Fast Fourier Transform (Deng et al., 2021;
Riyad et al., 2021). Normalized spectra were then averaged over
the 11 cross-validation folds. More specifically, the feature map
was computed by a convolution between the input signal and
the learned filter weights of the first convolutional layer of the
EEGNet model. The spectral power of the eight filters of the first
convolutional layer of the present model in each frequency point
was normalized by its maximum power over all the eight filters,
and the results were averaged across 11 folds. A similar analysis was
conducted to compute the spectra of the feature maps.

Last, to investigate the robustness and stability of the
deep neural network model, we additionally assessed decoding
performance using a smaller number of filters in the first
convolutional layer (five instead of eight filters) of the EEGNet
architecture. This result is shown in the Supplementary Material.

2.7. Statistical analysis

The independent-sample Mann–Whitney U test was
performed to compare the measures between the two groups

(healthy and tinnitus) and to compare the AUCs between the
two decoding methods of EEGNet and SVM. To statistically
assess decoding performances, we evaluated whether the AUC
was statistically significantly higher than the chance level using
Wilcoxon signed-rank tests (Z scores). All analysis and statistical
processing were performed using MATLAB (ver. R2021a,
MathWorks, Natick, MA, USA), Python (Python Software
Foundation) or SPSS Statistics (ver. 26, IBM, Armonk, NY, USA).

3. Results

3.1. P300 and MMN

Significantly higher P300 amplitudes were observed in healthy
controls than patients with tinnitus during the active oddball
task (healthy group, 18.673µV, tinnitus group, 7.865µV; U = 16,
p < 0.005; Figure 2A). On the other hand, the MMN amplitudes
were not significantly different between the two groups during the
passive oddball task (healthy group, −3.150µV, tinnitus group,
−3.092µV; U = 54, n.s.; Figure 2B).

3.2. Pre-stimulus total alpha and
post-stimulus evoked theta activities

In the active oddball task, we observed significant differences
in both pre-stimulus alpha and evoked theta activities between the
two groups (Figure 3). For the target stimuli, the healthy group
had stronger pre-stimulus alpha activity (healthy group, 4.521µV2,
tinnitus group, 1.187µV2; U = 4, p < 0.0005) and stronger evoked
theta activity (healthy group, 2.431µV2, tinnitus group, 0.336µV2;
U = 16, p < 0.005) compared with the tinnitus group. For the
standard stimuli, the healthy group exhibited salient pre-stimulus
alpha activity compared with the tinnitus group (healthy group,
4.747µV2, tinnitus group, 1.235µV2; U = 4, p < 0.0005), but the
two groups had no significant differences in evoked theta activity.

In the passive oddball task, for the target stimuli, the healthy
group had pronounced pre-stimulus alpha activity compared with
the tinnitus group (healthy group, 1.702µV2, tinnitus group,
0.958µV2; U = 21, p < 0.01), but the two groups had no significant
differences in evoked theta activity. For the standard stimuli,
the healthy group exhibited salient pre-stimulus alpha activity
compared with the tinnitus group (healthy group, 1.693µV2,
tinnitus group, 0.969µV2; U = 20, p < 0.01), but the two
groups had no significant differences in evoked theta activity
(Supplementary Figure 2).

3.3. Classification performance of the
EEGNet model

The EEGNet model effectively discriminated patients with
tinnitus from healthy controls, most often achieving the best
performance using spectral features in the alpha band. For example,
when using the entire trial time period, for the target stimuli
in the active oddball task, the highest AUC of 0.886 ± 0.042
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FIGURE 3

Time-frequency representations in the active oddball task. (A) Time-frequency representations of grand-averaged total activity across three parietal
electrodes (Pz, P3, and P4) during the active oddball task. (B) Time-frequency representations of grand-averaged evoked activity across the same
three parietal electrodes during the active oddball task. Note the pronounced pre-stimulus total alpha (8–13 Hz) and evoked theta (4–8 Hz) activities
in the healthy group compared with the tinnitus group.

(mean ± standard error; Z = 2.934, p < 0.005) was achieved
using the EEG alpha band (Figure 4A). The AUCs by the EEGNet
indicated marginally better decoding performance than those by

the SVM (EEGNet, 0.886, SVM, 0.759; U = 34, p = 0.08; red and
blue lines in Figure 4A). The SVM-based AUC in the case of
removing the alpha band from the input signals was 0.73 (black
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FIGURE 4

Classification performance of the EEGNet model for the target stimuli in the active oddball task using EEG alpha activity. (A) The area under the
curve (AUC) scores of each fold in the receiver operating characteristic (ROC) curves were obtained through 11-fold leave-one-pair-out
cross-validation using EEG alpha activity in the target stimuli during the active oddball task. Each curve represents the ROC curve for each fold in the
cross-validation, with the corresponding AUC scores noted within the legend. The red solid line represents the EEGNet-based averaged AUC across
11 folds, and the blue solid line represents the SVM-based averaged AUC across 11 folds. The black solid line represents the SVM-based averaged
AUC based on the removal of the alpha band from the input signals (noted as “SVM NA” in the legend). The green dotted line indicates the chance
level. Error bands indicate standard errors of the mean (EEGNet in red, and SVM in blue, and SVM NA in dark gray). (B) Confusion matrix of the
EEGNet model classification results.

line in Figure 4A). The SVM-based AUC based on the alpha band
(0.759) was not significantly different from that of the removal of
the alpha band (0.73; U = 50, n.s.). The associated confusion matrix
of the EEGNet model is provided in Figure 4B. Similarly, for the
standard stimuli in the active oddball task, the highest AUC of
0.858 ± 0.049 (Z = 2.934, p < 0.005) was also achieved using the
EEG alpha band. On the other hand, for the target stimuli in the
passive oddball task, the highest AUC of 0.819 ± 0.068 (Z = 2.669,
p < 0.01) was achieved using the EEG broadband. For the standard
stimuli in the passive oddball task, the highest AUC of 0.807± 0.058
(Z = 2.756, p < 0.01) was achieved using the EEG alpha activity.

Further details for the classification performance of the EEGNet
model across all frequency bands, different evaluation metrics
(sensitivity, specificity, accuracy, AUC), and different time periods
(pre-stimulus, post-stimulus, and entire trial) are provided in
Figure 5 and Supplementary Tables 2–4.

Overall, for the pre-stimulus period, EEG alpha activity showed
the highest average AUC of 0.815± 0.048 (Z = 2.934, p < 0.005) for
the target stimulus in the active oddball task (Figure 5A). For the
post-stimulus period, EEG broadband activity showed the highest
average AUC of 0.871 ± 0.032 (Z = 2.934, p < 0.005) for the target
stimulus in the active oddball task (Figure 5B). For the entire trial
period, EEG alpha band yielded the highest AUC of 0.886 ± 0.042
for the target stimulus in the active oddball task (Figure 5C). As
shown in Supplementary Figure 3, these results were largely stable
even when changing the number of filters in the first convolutional
layer of the EEGNet architecture.

3.4. Contribution of each EEG frequency
band to decoding performance

To identify which frequency band in the EEGNet model with
broadband EEG data critically contributed to the performance,
we computed the normalized spectral power of the input, the
learned filter weights of the first convolutional layer, and its
corresponding feature map (Deng et al., 2021; Riyad et al.,
2021; Figure 6). The most prominent contribution of the
convolutional layer filters was observed in the alpha band. This
suggests that the first layer of the EEGNet model enhanced the
alpha band at the expense of other frequencies, as also evident
by the spectra of the input versus output (feature map) of
this layer.

3.5. Cases of misclassification

We compared the time-frequency representations of
the correctly classified versus misclassified EEG trials in a
sample pair of healthy/patient subjects (Figure 7). After
the 11-fold cross-validation, the averaged time-frequency
representations were computed across all trials in the cases
of true positive (N = 632), false positive (N = 223), true
negative (N = 533), and false negative (N = 124). Patterns in
the time-frequency plots revealed that the misclassified EEG trials
clearly lacked the prominent features of the correctly classified
EEG trials.
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FIGURE 5

AUC scores of the EEGNet model across different frequency bands. AUCs are displayed for (A) pre-stimulus, (B) post-stimulus, and (C) entire trial
period in each frequency band. AT: active oddball task, target stimuli; AS: active oddball task, standard stimuli; PT: passive oddball task, target stimuli;
PS: passive oddball task, standard stimuli. Error bars represent standard errors of the mean. The dotted lines indicate the chance level. Asterisks
indicate statistical significance (*p < 0.05; **p < 0.005).

4. Discussion

This study demonstrated that human EEG signals provide
promising tinnitus identification features that enable practical
tinnitus-diagnostic applications. Based on the EEG spectral
analysis, we observed different behaviors of pre-stimulus alpha
and evoked theta activities during task performance between
healthy controls and patients with tinnitus, suggesting that these
spectral components may be crucial features for EEG-based
diagnosis of tinnitus. It is noteworthy that the tinnitus group

showed significantly reduced pre-stimulus alpha activity compared
with healthy participants. Since pre-stimulus alpha activity might
reflect the top-down preparation for upcoming stimuli (Min and
Herrmann, 2007; Jensen and Mazaheri, 2010), the reduced pre-
stimulus alpha power in the tinnitus group may reveal abnormal
preparatory top-down processing in the pre-stimulus period. This
is consistent with prior studies that found suppressed parietal alpha
activity when patients with tinnitus focused on the tinnitus sound
rather than when they focused on their own body (Milner et al.,
2020). Since the classical P300 and MMN were obviously observed
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FIGURE 6

Decisive EEG spectral features in the decoding model. The input signals (blue lines), learned filter weights of the first convolutional layer (red lines),
and corresponding feature maps (green lines) of the EEGNet model trained on broadband data were projected to the frequency domain using Fast
Fourier Transform (at electrode Pz) and spectra were averaged over the 11 cross-validation folds. Error bands indicate standard errors of the mean.

in the active and passive oddball tasks, respectively (Figure 2),
the present experimental paradigm seemed to be well designed
for investigating each top-down and bottom-up processing. Our
results showed more pronounced differences in alpha activity in
the active oddball task (i.e., top-down processing) than the passive
oddball task (i.e., bottom-up processing). This is probably because
suppression of EEG alpha activity is known to be associated with
active cognitive processing (Sauseng et al., 2005; Klimesch et al.,
2007; Min and Park, 2010), and top-down attention was not focused
on the presented auditory stimuli in the passive oddball task (Sarter
et al., 2001). Furthermore, since evoked theta activity reflects post-
stimulus top-down processing (Sauseng et al., 2008), the absence
of evoked theta activity during the active oddball task in the
tinnitus group (Figure 3B) also suggests that this group may have
compromised top-down processing after stimulation (Hong et al.,
2016). It is also notable that the results of time-frequency analyses
demonstrated that the misclassified EEG trials clearly lacked the
prominent features of correctly classified EEG trials (Figure 7).

In agreement with the EEG spectral analysis, the spectral
analysis of the first convolutional layer of the EEGNet model
further implicated the EEG alpha band as the most decisive feature
for the classification of patients with tinnitus (Figure 6). Further,
the significant differences in EEG alpha activity between healthy
and tinnitus groups were observed in both the active and passive
oddball tasks (see Supplementary Figure 2 for results on the
passive oddball task). Overall, our findings consistently point to

alterations in alpha band activity as a key discriminative feature in
diagnosing tinnitus.

To investigate whether the healthy and tinnitus groups could
be distinguished even before stimulus presentation, the EEGNet
model was also trained and evaluated by dividing the EEG trial data
into corresponding time segments (Figure 5). For the target stimuli
in the active oddball task, although the EEG alpha band in the
entire trial period yielded the highest AUC of 0.886 (accuracy 0.774,
sensitivity 0.827, and specificity 0.721), the EEG alpha activity in
the pre-stimulus period also showed a considerably high AUC of
0.815 (accuracy 0.748, sensitivity 0.833, and specificity 0.662). This
observation is consistent with the significantly higher pre-stimulus
alpha activity in the healthy versus the tinnitus group (Figure 3A).
Similarly, during the passive oddball task, pre-stimulus EEG alpha
activity resulted in a high AUC of 0.776 (accuracy 0.696, sensitivity
0.750, and specificity 0.642) for the target stimuli.

The SVM-based AUC based on the alpha band (0.759) was
not significantly different from that of the removal of the alpha
band (0.73) (Figure 4A). This observation suggests that other
frequencies also contain relevant information, as confirmed by our
EEGNet model in Figure 5, and EEGNet might as well exploit this
information to some extent. Although the performance of EEGNet-
based decoding was only marginally better than that of the SVM-
based decoding (Figure 4A), the use of the deep learning-based
EEGNet offers significant advantages over classical approaches
such as SVM. This is because deep learning methods are capable
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FIGURE 7

Time-frequency representations of misclassified EEG trials compared with those correctly classified. (A) Time-frequency representations of total
activity averaged across three parietal electrodes (Pz, P3, and P4) for the target stimuli in the active oddball task. (B) Time-frequency representations
of evoked activity averaged across the same three parietal electrodes for the target stimuli in the active oddball task. All the plots are computed
across all the EEG trials (from a sample pair of healthy/patient subjects) collected individually for true positive, false positive, true negative, and false
negative.
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of automatically learning complex patterns from data, resulting
in improved performance compared to traditional hand-crafted
features that require prior knowledge and expertise to select, such
as the choice of discriminative EEG channels and frequency bands
(Yang et al., 2022). In other words, EEGNet can work directly with
raw EEG data, eliminating the need for manual feature extraction
(Song et al., 2022).

Symptoms of tinnitus have been linked to hyperactivity and
reorganization of the auditory central nervous system (Muhlnickel
et al., 1998; Kaltenbach and Afman, 2000; Salvi et al., 2000;
Eggermont and Roberts, 2004) with the engagement of other non-
auditory brain areas, including the dorsolateral prefrontal cortex
(DLPFC; Schlee et al., 2009; Vanneste et al., 2010) and anterior
cingulate cortex (ACC; Muhlau et al., 2006; Vanneste et al., 2010).
The DLPFC subserves higher-order functions and domain-general
executive control functions (Fuster, 1989; Miller and Cummings,
2007; McNamee et al., 2015). The ACC mediates specific functions,
such as error detection, attention, and motivation (Johnston et al.,
2007; Silton et al., 2010). Both DLPFC and ACC have also been
found to be involved in auditory attention (Alain et al., 1998;
Lewis et al., 2000; Voisin et al., 2006), thus playing a role in top-
down modulation of auditory processing (Mitchell et al., 2005).
There is evidence that tinnitus influences affect auditory selective
attention (Andersson et al., 2000; Rossiter et al., 2006), with
patients reporting concentration difficulties due to their tinnitus
(Andersson et al., 1999; Heeren et al., 2014). This is consistent with
a study suggesting that a failure in top-down inhibitory processes
might play a causal role in tinnitus (Norena et al., 1999). Given
that EEG alpha oscillations are linked to top-down processing
(Min and Herrmann, 2007; Min and Park, 2010) and inhibitory
control of task-irrelevant processing (Klimesch et al., 2007; Min and
Park, 2010), our findings provide interpretable neurophysiological
correlates of tinnitus that are consistent with prior literature.

Thus, the present deep-learning method of EEG-based tinnitus
diagnosis demonstrated its capability of extracting and harnessing
interpretable EEG features generally corresponding to known
neurophysiological observations. The highest AUC in the alpha
band (Figure 5) can be attributed to the difference in alpha
activity between the healthy and tinnitus groups observed in the
time-frequency analysis (Figure 3). These results were consistently
observed, irrespective of the type of experimental task (active
or passive oddball tasks). Taken together, these findings indicate
that the EEGNet model was trained based on tinnitus-related
neurophysiological signatures particularly reflected in EEG alpha
activity.

The proposed deep learning-based decoding approach for the
identification of tinnitus symptoms could become an effective
future technology for the diagnosis or prediction of tinnitus. The
training of EEGNet was based on raw EEG data without prior
knowledge of important features, which has critical implications
when used in practice. However, the present tinnitus-diagnostic
approach still has potential for improvement in subsequent studies.
A critical limitation is that a larger sample size would have
improved the statistical power of our study, but sample sizes were
limited by the recruitment of healthy/patient subjects. Thus, despite
the use of non-parametric statistical tests (e.g., Mann–Whitney U
tests and Wilcoxon signed-rank tests), the limited statistical power
should be carefully considered when interpreting our findings.
Several data-augmentation methods, such as generative adversarial

networks (Haradal et al., 2018; Ramponi et al., 2018) or random
transformations (e.g., rotation, jittering, scaling, or frequency
warping) (Freer and Yang, 2020), may ameliorate the problem
of insufficient numbers of EEG data, thus leading to applicable
numbers of data for a deep-learning approach.

Overall, our deep-learning approach presents significant
advantages over existing methods for tinnitus diagnosis. Our study
shows that EEGNet can automatically identify robust task-relevant
EEG features, which may facilitate the development of practical
and ubiquitous EEG-based applications for disease diagnosis in
cutting-edge clinical platforms. Looking ahead, as large amounts
of data are progressively collected for heterogeneous symptoms of
tinnitus, deep-learning approaches such as the one presented here
may prove effective in further discovering stable and generalizable
features. Such features may correspond to the varying spectrums
of patients with tinnitus, enabling accurate classification and
stratification of patients.
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