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Reflecting on what is “skill” in
human motor skill learning
Goldy Yadav* and Julie Duque

Cognition and Actions Lab, Institute of Neuroscience, Université Catholique de Louvain, Brussels,
Belgium

Humans have an exceptional ability to execute a variety of skilled movements.

Researchers have been long interested in understanding behavioral and

neurophysiological basis of human motor skill learning for advancing both

fundamental neuroscientific knowledge and clinical outcomes. However, despite

decades of work in this field there is a lack of consensus about what is meant by

“skill” in skill learning. With an advent of various task paradigms testing human

motor behavior and increasing heterogeneity in motor learning assessments

methods, it is very crucial to identify key features of skill in order to avoid

any ambiguity that may result in misinterpretation or over-generalization of

findings, which could have serious implications for replication and translational

research. In this review, we attempt to highlight the features of skill following a

historical approach, considering the seminal work that led to the first definitions

of skill and including some contemporary concepts emerging from human

motor learning research. Overall, based on this literature, we emphasize that

skill has some fundamental characteristics, such as- (i) optimal movement

selection and execution, (ii) improved movement speed and accuracy, and (iii)

reduced movement variability and error. These features of skill can emerge

as a consequence of extensive practice/training/learning, thus resulting in an

improved performance state beyond baseline levels. Finally we provide some

examples of model tasks that can appropriately capture these features of skill, and

conclude that any neuroscientific endeavor aimed at understanding the essence

of skill in human motor skill learning should focus on these aspects.
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1. Introduction

Human beings can learn to perform a variety of skilled movements ranging from
dancing, painting, playing musical instruments, riding a bicycle, driving a car, playing a wide
range of sports and so on. This ability to perform such complex movements is undoubtedly
one of the characteristic functions of the human brain which enables us to interact with our
environment. Even simpler actions such as reaching for and grasping a cup of tea, holding
a pen for writing and tying one’s shoelaces are complex problems for the nervous system,
but are performed in a rather seamless manner by us on a day-to-day basis. Motor skill
learning is a key ability that enables us to acquire and store such actions and distinguishes
humans from other species. As a society we value this ability which enables us to make
a wide variety of movements, and are awed by the fine skills of musicians, dancers and
sports players. Scientists have long been fascinated by this capacity of humans to learn
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complex skilled movements and have tried to probe its underlying
neurophysiological basis to advance fundamental neuroscientific
understanding as well as for translational goals.

Literature available on skill learning can sometime confuse
readers and/or young researchers getting into this field of study. As
a master’s student doing her thesis on skill learning and retention
in 2014, the now co-author of this paper (Goldy Yadav) often
came across research papers loosely using the term “skill” for tasks
assessing motor performance under controlled conditions (such as
motor learning under externally induced perturbations). Despite
several decades of work, we still lack a clear understanding of
what we mean by skill in human motor learning research field.
Challenges in formulating a formal definition of skill has been
felt by many, as our views are fragmented and lack consensus
(nicely elucidated more recently by Christensen, 2019). This can
have serious implication for result interpretations and replication
of findings in this area of research. Moreover, this can be very
misleading not only for fundamental motor skill learning research,
but also motor rehabilitation programs which aim to translate
lab-based research findings for patient benefits. A much-needed
consensus on definitions and measurement standards of task
paradigms is critical for reducing the time lag in translation of
scientific discoveries for clinical practices (Shumway-Cook and
Woollacott, 2007; Morris et al., 2011).

This review paper is therefore an attempt to obtain clarity on
what is meant by “skill” by highlighting key concepts that came out
of some seminal work and how those ideas can be used as a strong
framework for current and future skill learning research. We aim
to shed light on how our understanding of skill in the context of
human motor learning has evolved with time. First, we lay out what
is broadly meant by motor learning and highlight early theories
of motor learning that shaped our understanding of skills. Next,
we delve deeper into a specific form of motor learning that is of
interest to us, i.e., motor skill learning and attempt to understand
the specific features of skill based on prevailing research in the
field. Finally, we conclude by emphasizing the key features of skill
that should be incorporated in motor skill learning research work
to better assess, measure and understand the underlying nature of
human skill behavior. We also provide some examples of existing
model tasks that very well incorporate these features.

2. What is motor learning?

Motor learning can be broadly defined as practice induced
changes in motor performance. The early era of motor learning
research involved studying motor behavior using a “task oriented”
approach and the term “skill” was often synonymous with
perceptual-motor performance. At that time there was little
emphasis on variables or factors that underlie motor learning
at an individual level. Such work explored global features of
motor learning in humans (Hull, 1943), and often involved gross
measurements and scoring of movement parameters such as
movement time. Over time, researchers started shifting from these
global measures to local measures in order to better understand
the nuances of human motor behavior. Some of these assessments
involved studying the amount of time taken to process visual
information before initiating movements, the role of attention in
motor performance and how error detection occurs during the

movement (Schmidt, 1975). As a result, a number of theories were
proposed to explain human motor learning. For instance, Keele
(1968) proposed that “motor programs” are required for making
precise and accurate bodily movements. These motor programs
were thought of as a sequence of “stored commands” in the brain
which enables us to make a set of movements by seamlessly
incorporating the external feedback. Later Adams (1971) argued
that motor programs are abstract memory forms that are prepared
before movement initiation and contain information about the
pattern of muscle contraction and relaxation for a given movement
type. In other words, the human brain acquires and stores a set of
stored muscle commands that are ready to use at any given time for
making a movement.

Around the same time period, another popular theory about
motor learning was proposed by Schmidt (1975)- this theory was
an attempt to explain why we need not have distinct individual
motor commands for each movement that we make. According
to this theory, there are clustered and generalized motor programs
called “schemas,” which can be fine-tuned to make specific discrete
sets of movements. In fact, long ago Bartlett (1932) had suggested
that such schemas are critical given the limited storage capacity
of the human brain, and possibly underlie our astonishing ability
to quickly learn novel sets of movements. Interestingly, the idea
of schema formation underlying motor learning is evident in
some recent work as well (Newell, 2003; Sherwood and Lee, 2003;
Shea and Wulf, 2005; van Vugt et al., 2014; Willey and Liu,
2018). This notion has also been used to explain motor skill
behavior. For instance, van Vugt et al. (2014) studied expert pianists
and found that highly skilled complex actions emerge from a
combination of simpler movements known as motor primitives
(equivalent of motor schema). The authors argue that our nervous
system efficiently uses these motor primitives to produce a wide
repertoire of complex movements that can be enhanced through
skill learning. We believe these concepts of skill can also have
implications for studying and understanding expert motor skill
behavior which typically operates on a different timescale than lab-
based experimental setup requiring hundreds of hours of training,
but may share underlying common features (for interesting work
on elite performers see Wulf et al., 2002; Beilock and Carr, 2004;
Wulf and Su, 2007; Abdollahipour et al., 2015; Singh and Wulf,
2022).

According to the schema model of motor learning (Schmidt,
1975), the nervous system requires four parameters for a
goal-directed movement–(i) initial task conditions, (ii) response
specifications of the movement to be made, (iii) sensory
consequences of the executed movement, and (iv) outcome of
the executed movement. Eventually after producing a set of
movements, the nervous system extracts abstract information
about the relationship among these four parameters. This abstract
relationship is stored as schema to enable us to perform these
movements later when required. Once a schema has developed,
only two inputs/specifications are needed to this schema in order
to execute a movement- (i) initial task conditions and, (ii) the
desired outcome of the movement. Schmidt (1975) argued that
since these inputs to the schema are never exactly the same,
every movement that we execute is almost always novel, although
appearing similar from a broader level. This view finds support
from Bartlett (1932) who said, “we do not execute the movement
exactly as we have made it before.” This may explain the inherent
variability underlying complex movement execution (more details
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on variability in Section “3.3. Skill as performance optimization”).
Basically, a motor response is nearly never repeated given the
number of possibilities that may arise from a given schema.
In this process of motor execution, sensory outcomes of the
movement are anticipated using the schema and each of the
resultant sensory outcomes are compared with respective incoming
sensory information (interoceptive and proprioceptive feedback)
during or after the movement. In case of a mismatch between
the anticipated and actual sensory information, an error value is
assigned which is later used to update the schema. The primary goal
of the nervous system, therefore, during motor learning is to reduce
such errors.

The errors resulting due to the mismatch between anticipated
and actual sensory consequences can also serve as a substitute
for knowledge of results (KR) which can be used to update the
schema (Salmoni et al., 1984; Winstein, 1991; Guadagnoli and Kohl,
2001). KR is one of the key ways to improve motor performance
and enhance learning. During a motor learning task, KR is mostly
presented in three ways so as to facilitate corrective responses
(Adams, 1987)–(i) by directly presenting the pattern of the motor
response to the participant for which error must be inferred,
(ii) feedback in the form of the actual motor response that the
participant made along with the ideal expected motor response,
where the difference between the two is the error which can be
easily inferred by the participant; and (iii) partial error information
for the motor response made by the participant. In addition
to providing KR to improve motor performance, learning by
observation is another effective way. Newell (1985) proposed that
learning through observations may help in easy identification of
errors, and hence enable efficient motor responses. Motor learning
by observation has been mainly shown to enhance performance in
a number of studies (Shea et al., 2000; Stefan et al., 2005; Wulf et al.,
2005; Celnik et al., 2006; Granados and Wulf, 2007; Nishizawa and
Kimura, 2017; Kawasaki et al., 2018; Jayasinghe, 2019), with some
distinctive effects reported for observation and motor task type
(please see Sorgente et al., 2022 for details). KR and observation,
therefore, may play a critical role (as external factors/interventions)
during skill acquisition to optimize skill performance (more details
in section “3.3. Skill as performance optimization”).

The points described above highlight the broader aspects
of human motor learning. Now let’s focus more specifically
on how motor learning is studied in the laboratory. In this
context it is largely investigated using two classic paradigms-
motor skill learning and motor adaptation. Our understanding
of each of these two paradigms has evolved with time, enabling
us to better understand the nuances of human motor behavior.
Motor skill learning is characterized by performance changes
beyond baseline/starting levels in the absence of any external
perturbation (more details in the next section). Such changes may
be characterized, for instance, by increased spatial and temporal
accuracy of movements over the practice session (Adams, 1987;
Reis et al., 2009; van der Steen et al., 2014; Yadav and Mutha, 2020).
Features of skill learning include, but are not limited to- reduction
in trial-to-trial variability, changes in speed-accuracy relationship
or other performance limiting variables, offline gains, acquisition
of new control policies and exploration (Dayan and Cohen, 2011;
Shmuelof et al., 2012; Telgen et al., 2014; Sternad, 2018; Vassiliadis
et al., 2021; Du et al., 2022). In contrast, motor adaptation
involves modification of motor output to account for the effects of

FIGURE 1

Difference between motor adaptation and motor skill learning.
(A) In motor adaptation pre-perturbed behavior is re-established
and therefore, no net change in the motor performance per se as
compared to the baseline/starting level. (B) During skill acquisition,
there are performance improvements (requiring longer time period)
beyond baseline levels leading to a net change in motor behavior
(pre-vs. post-learning). Adapted from Chapter 8, Sternad et al.
(2014).

externally induced perturbations and restoration of performance to
pre-perturbation levels (Krakauer and Mazzoni, 2011; Morehead
et al., 2017; Kumar et al., 2020). Figure 1 (Adapted from Chapter
8, Sternad et al., 2014) shows clear distinction between motor
adaptation and motor skill learning. As evident from the figure, the
goal during motor adaptation is to return to baseline performance
(low motor error) by reducing the errors arising from external
perturbations. On the other hand, skill learning involves gradual
reduction of errors that are high in the beginning of the session
because of the novel nature of the movements and the need to
acquire a new control policy. Skill acquisition involves de novo
learning in contrast to adaptation (Sternad, 2018; Krakauer et al.,
2019).

In addition to these behavioral differences, adaptation and
skill learning are also thought to be dependent on distinct neural
systems. For instance, motor skill learning appears to be primarily
mediated via primary motor cortex and basal ganglia circuits
(Floyer-Lea and Matthews, 2005; Halsband and Lange, 2006;
Doyon et al., 2009; Dayan and Cohen, 2011; Cantarero et al.,
2013; Spampinato and Celnik, 2018) while adaptation seems to
requires an intact cerebellum and posterior parietal cortex (Tseng
et al., 2007; Mutha et al., 2011a,b; Morehead et al., 2017; Kumar
et al., 2020). It is therefore critical to keep these differences
between motor skill learning and adaptation in mind while
formulating research questions on the nature of human motor
behavior to avoid any ambiguity and over-generalization across
paradigms (Ranganathan et al., 2021). Further, understanding these
distinctions also help exercise caution during data interpretation.

In this paper, we focus on motor skill learning to unravel the
characteristic features of skill. With this goal in mind, we review
the prevailing ideas of what is meant by “skill” in this field of
study. We are specifically interested in skill learning because it
holds tremendous implications for motor rehabilitation- complex
motor skill behavior in humans and its rehabilitation following
neurological damage are critically dependent on the ability to
learn and regain lost motor skills. We therefore believe that it
is very crucial to have some consensus and clarity on what we
mean by “skill.” Adopting clear working definition(s) of motor
skills is important when our collective goal is to better understand
human skill behavior.
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3. What are motor skills?

The ability to execute and learn a variety of skilled movements
is an astonishing human feat. Skill emerges as a consequence
of learning/training/extensive practice. Azim (2014) said- “Few
of our limb movements will ever gain immortality like Willie
Mays, but what we accomplish every day is remarkable.” Study
of human motor skills is of tremendous neuroscientific interest,
and several attempts have been made to define motor skills over
these years. Pear (1927) loosely defined skill as well-adjusted and
integrated motor performance, which is dependent on learning and
optimal motor output, and therefore distinct from a mere capacity
to perform a given motor task. Later in 1952, Guthrie stated
that motor skill is an ability to perform with high certainty that
require minimum energy and time. Willingham (1998) proposed
a neurophysiological theory of motor skill learning in which
he describes that skill learning emerges out of motor control
processes. While motor control involves planning and execution
of movements (Hommel, 2009; Krakauer et al., 2019; Merel et al.,
2019), motor skill learning, in addition to involving movement
selection and execution, is the process through which movement
quality is improved with practice (Adams, 1987; Willingham, 1998;
Dayan and Cohen, 2011; Chen et al., 2018; Sternad, 2018).

3.1. Control based learning theory of
motor skills

According to Willingham (1998), there are three motor control
processes underlying motor skills- (i) perceptual-motor integration
which involves selection of spatial targets for movement,
(ii) processing target features, and (iii) transforming these
target features into desired muscle/motor commands (dynamic
processing) to execute the skilled movement. These control
processes are fine-tuned depending on the task specificity and
requirements and these operate in an unconscious manner to
improve motor performance. In addition, Willingham also added
a fourth component (iv) which involves using strategies (operating
in “conscious” manner) to further enhance performance outcomes
on a motor task, an idea that is now being supported by several
authors (Wulf et al., 2001, 2010; Fridland, 2014; Christensen, 2019;
Yadav and Mutha, 2020).

Willingham (1998) attempted to present a comprehensive
framework of motor skill learning by including all these processes
in the form of COBALT, i.e., Control Based Learning Theory.
COBALT comprises of three key principles. First principle
is “neural separability principle” according to which each
component of motor skill processing is mediated by distinct neural
areas. For instance, strategic-conscious processes are mediated
by Dorsolateral Prefrontal Cortex (DLPFC), perceptual-motor
integration is mediated by posterior parietal and pre-motor cortical
regions, target processing and planning by supplementary motor
area and basal ganglia, and dynamic processing by spinal cord
(spinal interneurons). Several studies support such a view of an
engagement of multiple brain areas in mediating human motor
skill behavior (Poldrack et al., 1998, 2005; Van Horn et al., 1998;
Poldrack and Gabrieli, 2001; Penhune and Doyon, 2002; Reis et al.,
2009; Dayan and Cohen, 2011). The second principle of COBALT

framework is “disparate representation principle.” According to
this, each of the four motor control processes (mentioned in
the previous paragraph) utilize distinct forms of representations.
Willingham (1998) proposed that strategic-conscious processes
are represented in allocentric (extrinsic world or object-centered)
space. The other three, i.e., perceptual-motor integration, target
processing and dynamic processing rely on egocentric (intrinsic
body-centered) space. This notion again finds support in numerous
studies of motor learning (Hikosaka et al., 1999; Criscimagna-
Hemminger et al., 2003; Lange et al., 2004). It is also believed that
these two forms of representations, viz., object-centered and body-
centered, have important implications for motor skill learning-
the former mediates more effector-independent representations
whereas the latter mediates effector-dependent representations
(Colby and Goldberg, 1999; Hikosaka et al., 1999; Krakauer et al.,
1999; Lange et al., 2004; Boutin et al., 2012). In other words,
skill can have both effector-dependent and effector-independent
components. Finally, the third principle of COBALT is “dual
mode principle,” which proposes two modes for operation for
these four motor control processes- conscious and unconscious
modes. The strategic and target processing are mediated by the
conscious mode whereas the other two factors, namely perceptual-
motor integration and dynamic processing are mediated by the
unconscious mode.

Willingham (1998) COBALT theory is, therefore, an all-
encompassing attempt to explain skilled motor behavior through
motor control processes. However, this theory is mostly centered
around target information, which is mostly about spatial accuracy,
and therefore lacks any account of temporal aspects of skill, which
we now know as a key component of motor skill experiments in the
lab (Kantak et al., 2010; Shmuelof et al., 2012; Yadav and Mutha,
2016, 2020; Vassiliadis et al., 2021, 2022). Including temporal
accuracy as one of the key components of motor skill (in addition
to spatial accuracy as already elaborated by Willingham, 1998) is
needed while investigating and assessing human skill performance.
Such components (for instance, spatial accuracy and temporal
accuracy) will serve to optimize skill behavior (by inducing task
constrains) and will help us better understand what constitutes a
highly skilled performance.

3.2. Skill as a reflection of a change in
speed-accuracy relationships

Task success on a novel motor skill is highly constrained by
difficulty levels which can arise from trying to optimize various task
parameters during initial stages of learning. Hence, the main goal in
performing and learning a skilled movement involves an ability to
make fast and accurate movements simultaneously. This requires
overcoming the trade-off between speed and accuracy which are
inherently constraint inducing factors in a motor skill task (Reis
et al., 2009; Shmuelof et al., 2012; Yadav and Mutha, 2016, 2020;
Chen et al., 2018; Vassiliadis et al., 2021, 2022). Speed-accuracy
relationship has thus emerged as a key feature of skill learning in
humans.

Changes in speed-accuracy relationship is, therefore, a global
feature of motor skill learning mediated by kinematic level changes
such as reduced variability, increased movement smoothness and
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speed that overall results in performance improvements and task
success (Shmuelof et al., 2012; Telgen et al., 2014). Even though
there is no formal definition of skill learning, across all major
research studies it is mainly characterized by improved movement
quality, reduction in trial-to-trial variability, increased movement
smoothness, changes in speed-accuracy relationships (Shmuelof
et al., 2012; Telgen et al., 2014), offline gains/improvements
(Walker et al., 2002; Dayan and Cohen, 2011) and acquisition
of new control policies or strategies (Telgen et al., 2014; Yadav
and Mutha, 2020) to improve task success (Shmuelof et al., 2012).
Out of all these, change in speed-accuracy relationship is probably
a global process that underlies motor skill learning in humans
because a highly accurate but slow movement or a fast but less
accurate movement will not yield a skilled movement that we
observe in humans (dance, sports, playing musical instrument and
so on). This is in line with Guthrie’s idea (Guthrie, 1952) we
stated earlier relating skill to time and energy efficient performance.
Skill behavior, we believe, is therefore a result of performance
optimization involving overcoming performance limiting variables
such as speed, accuracy and motor variability (noise).

3.3. Skill as performance optimization

During acquisition of novel motor skills, one of the main goals
is to reduce the movement error and the variability in the error
(Deutsch and Newell, 2004; Müller and Sternad, 2004; Shmuelof
et al., 2012; Telgen et al., 2014); while also increasing movement
speed, accuracy and efficiency (Willingham, 1998; Schmidt and Lee,
2005). Sternad (2018) argues that although mastering a new skill
involves diminishing variability or noise in motor performance,
variability plays an important role in exploring successful action(s)
in the initial stages of learning a novel skill task. Given the
redundancy at the level of movement outcome, variability in that
context may help a learner to find stable solutions that reduce
performance errors. For instance, Pekny et al. (2015) showed in
their study that healthy individuals increase trial-to-trial variability
to make corrections while making fast reaching movements in
the absence of any reward. It is important to note that such
movement variability may also exist at the level of movement
execution without covertly affecting movement outcome (Todorov
and Jordan, 2002; Müller and Sternad, 2009). Thus, high movement
variability in the early stages of learning can be beneficial for
skill acquisition (exploration of task space for finding optimal
movement), while the goal of the nervous system may still be to
actively minimize it as learning progresses (Fitts, 1954; Telgen et al.,
2014).

Another challenge during skill acquisition is that there is no
predetermined performance limit to aim for and, therefore the
ideal performance cannot be planned or predicted in advance, yet
the features of the acquired skill are somewhat constrained by
the external environment and in the context of the lab setups, by
the experimental designs and data collection/analysis procedures.
In other words, even if constrained by the environment, each
individual has to “figure out” the ideal skill performance during
the course of practice/training. Moreover, there is a redundancy
at the level of motor execution which adds additional burden of
choosing the optimal movement from a wide repertoire of feasible
movements. This ability to choose the most optimal movement

FIGURE 2

Key features of skill in human motor skill learning-(i) Optimal
movement selection and execution, (ii) Improved movement speed
and accuracy, and (iii) Reduced movement error and variability. The
first feature may be mediated by conscious/strategic motor control
processes, whereas the other two by unconscious motor control
processes.

from a vast set of movements forms an integral part of skilled
motor behavior. Thorndike and and Columbia University, Institute
of Educational Research, Division of Psychology (1932) proposed
that the goal for an individual is to choose the action that gives
maximum reward over the ones that result in errors. This requires
exploring the optimal solution during learning probably through
trial-and-error, and for that extensive practice is very beneficial.
Müller and Sternad (2004) used a virtual skittles task to study
skill acquisition and demonstrated that individuals are able to
learn the optimal solution that maximizes task accuracy after a
substantial amount of practice. Similarly, Shmuelof et al. (2012)
studied skill acquisition on a motor task that involved wrist
flexion-extension and pronation-supination in an arc channel, and
examined changes in speed-accuracy tradeoff with practice and
the underlying kinematic improvements in performance. After
5 days of training the authors noted that participants demonstrated
large reduction in movement variability, increase in movement
smoothness and a shift in speed-accuracy tradeoff. This ability to
improve performance by changing speed-accuracy tradeoff, which
was later termed “motor acuity” by Shmuelof et al. (2012, 2014),
is now considered a key feature of motor skill behavior (Krakauer
et al., 2019; Du et al., 2022). To sum up, skill is a state of optimized
performance that rely on extensive practice/training/learning to be
able to select and execute a movement with high speed and accuracy
thus resulting in low errors and variability on a given motor task.

4. Conclusion

A key form of human motor behavior is skill learning, which
is distinct from another popular task paradigm known as motor
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adaptation. Characterizing key features of motor skills, we believe,
is the first critical step toward understanding how humans acquire
this quintessential ability through training. Based on prior work
by other researchers outlined in this paper, it appears that motor
skill can be broadly characterized by three key features (Figure 2)-
(i) optimal movement selection and execution, (ii) improved
movement speed and accuracy, and (iii) reduced movement
variability and error, as a consequence of extensive practice. Here,
the first feature may rely on external cues such as target information
and thus primarily involve strategic/conscious motor control
processes in the early stages of skill acquisition. The latter two, on
the other hand, may mainly be driven by unconscious processes
that help overcome task constraints resulting in a performance state
beyond baseline level. A culmination of these aspects, we believe,
finally results in a seamless automatic skill behavior that we observe
in humans, which may further evolve as expert-level performances
(with extensive practice/training) in the form of dancing, painting,
playing musical instruments, sports, and so on.

The three key features mentioned above, therefore, should
be included in any task designed to capture and study motor
skills. For example, lab based experimental procedures of skill
learning (wherein extensive practice spanning months and/or
years is not possible) can exclusively assess individuals on motor
tasks with a given speed-accuracy condition that requires them
to acquire optimal movement (from a repertoire of possible
movements) leading to low error/variability. Skill tasks that very
well capture these aspects are, for instance, those that involve
tracing movements within a given speed-accuracy criterion and
pinch-based movements requiring optimal force production to
make an accurate goal-directed movement. In addition to these,
even point-to-point reaching movements that involve moving the
effector end-points as well as the joints (elbow and shoulder
for instance) in a manner that reduces movement-related errors
toward a target (in the absence of any external perturbation)
could be a simple skill task to use in the lab (especially for
patient populations with motor disability). Such task setups and
assessments can capture the most fundamental aspect of human
motor skill behavior which involves selection and execution of
movements that optimize time and energy (internally) while
yielding successful purposeful outcomes (externally). Hence,

systematic use of such tasks would ensure homogeneity at the
methodological level, help build more comprehensive theoretical
framework and speed up cumulative progress of human motor skill
research. Further, the resultant clarity would help curb replication
crisis in human motor behavior research and benefit translation of
fundamental knowledge to clinical settings- both relying primarily
on agreed upon measures and definitions for scientific knowledge
enhancement and knowledge transfer.
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