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Electroencephalography (EEG) correlates of olfaction are of fundamental and

practical interest for many reasons. In the field of neural technologies, olfactory-

based brain-computer interfaces (BCIs) represent an approach that could be

useful for neurorehabilitation of anosmia, dysosmia and hyposmia. While the

idea of a BCI that decodes neural responses to different odors and/or enables

odor-based neurofeedback is appealing, the results of previous EEG investigations

into the olfactory domain are rather inconsistent, particularly when non-primary

processing of olfactory signals is concerned. Here we developed an experimental

paradigm where EEG recordings are conducted while a participant executes

an olfaction-based instructed-delay task. We utilized an olfactory display and a

sensor of respiration to deliver odors in a strictly controlled fashion. We showed

that with this approach spatial and spectral EEG properties could be analyzed to

assess neural processing of olfactory stimuli and their conversion into a motor

response. We conclude that EEG recordings are suitable for detecting active

processing of odors. As such they could be integrated in a BCI that strives to

rehabilitate olfactory disabilities or uses odors for hedonistic purposes.
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1. Introduction

Electroencephalography (EEG) is a well-developed method for non-invasive research
of cortical processing. While the EEG approach has been successfully used in the studies
of motor control, visual and auditory processing, the results of EEG investigations
into the olfactory domain are rather mixed. In a pioneering study, Moncrief (1962)
reported that a wide range of odors (essential oils, synthetic oils, and unpleasant
chemicals) produced a general suppression in alpha activity, except for ylang-ylang
that did not produce any effect. This observation was not fully supported by further
studies, with some researchers reporting an increase in alpha activity (Van Toller
et al., 1993) and others reported no significant change. Increases in theta activity
were also reported (Klemm et al., 1992). Martin (1998) noted that the literature
on EEG correlates of olfactory processing reports a diversity methods and findings,
and the same assortment remains nowadays (Schriever et al., 2017; Gudziol and
Guntinas-Lichius, 2019; Arpaia et al., 2022). Inconsistencies in the application of EEG
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methodology to olfaction impede the development of clinical
markers for diagnosing and monitoring olfactory disorders and
of olfactory-based BCIs that potentially could be useful to treat
olfactory disabilities, such as anosmia, dysosmia and hyposmia.

The prospective BCI for olfaction should contain the following
major components: an olfactory display for delivery of odors
that evoke stable perceptions, an appropriately designed odor
discrimination task, recordings of brain activity (e.g., EEG
recordings in the method proposed here), and the approach for
decoding olfactory information from neural activity.

Many of the previous studies relied on manual delivery of
odors to participants. In this approach, odorants were usually
stored in unlabeled bottles or on scented paper and then manually
brought to the participant’s nose by the experimenter. Such manual
delivery of odorants has many limitations, such as experimenter
bias or uncontrolled amount of odorant (Lorig, 2000). Additionally,
hand movement in direct proximity of the subject’s face can
affect participants’ perception and add additional confounds to the
experimental paradigm. For precise delivery of odors, a special
tool called olfactometer is used. An olfactometer consists of a tube
and/or a facial mask that releases odorants close to the nose. As
far as natural odor delivery of odors and BCI applications are
concerned, systems appear more appropriate that at are currently
used in virtual-reality systems (Washburn et al., 2003; Richard
et al., 2006; Munyan et al., 2016) and movie theaters (Kim et al.,
2006; McGinley and McGinley, 2017) where they improve the
sense of presence and the overall experience. Given this trend for
using near-natural environments that incorporate multiple sensory
modalities, including olfaction, we suggest that such environments
could be complemented with measurements of brain activity and
potentially with BCIs that enable direct communication between
the environment and the brain, with practical applications such as
relaxation (Serrano et al., 2016; Amores et al., 2018) and therapy
(Aiken and Berry, 2015; Herz, 2021).

With respect to neural events related to olfactory processing
that could be utilized for BCI purposes, basing decoding on
EEG rhythms is one option, and the other is using event-related
potentials (ERPs), such as P200 and N200 evoked by olfactory
stimuli. Thus, the P200 component is a positive-going ERP that
typically occurs around 200–300 ms after the onset of a stimulus
(Sur and Sinha, 2009). The P200 is thought to reflect allocation
of attention to the stimulus and processing of its relevance. Such
responses may be evoked by odor stimuli and have become
a topic of significant interest in recent studies (Arpaia et al.,
2022). Additionally, in the studies of multisensory integration,
olfactory stimuli modulate P200 components of the ERPs related
to visual stimuli (Leleu et al., 2015). Several groups explored
chemosensory event-related potentials (CSERPs) and olfactory
event-related potentials (OERPs) in detail (Invitto and Mazzatenta,
2019). Thus, it was found that processing speed decreased with age
for the P200 OERP component (Murphy et al., 2000). Additionally,
OERPs deteriorate in patients with olfactory dysfunctions, which
suggests their use to improve diagnostics of such disorders.

Regarding decoding algorithms suitable for olfactory-based
BCIs, several research groups reported using neural networks to
classify odors based on EEG data (Saha et al., 2013; Aydemir, 2017;
Abbasi et al., 2019; Ezzatdoost et al., 2020). High decoding accuracy
(from 87.5 to 94.1%) was achieved by applying continuous wavelet
transform to EEG gamma band followed by a K-nearest neighbors

classifier (Aydemir, 2017). Additionally, excellent accuracy (up to
97%) was achieved by the application of Hopfield neural network
to multidimensional wavelet and power spectrum density features
(Saha et al., 2013).

Olfactory task design is important to evoke EEG modulations
that could be decoded by a BCI. In many previous studies, subjects
did not perform any task apart from passively perceiving odors
while their brainwaves were recorded. An active discrimination
“Sniffin’ sticks” test could be performed, but only prior to OERP
recordings during passive perception (Rombaux et al., 2007).

Based on these considerations, here we developed an
experimental paradigm for olfactory perception in human
participants, which paves way toward olfactory-based BCIs. In this
methodology, a participant is comfortably seated in a home theater-
like room while odors are delivered using an odor display mounted
to the ceiling. With this automated odor delivery system, near-
natural olfactory experiences can be created and combined with
sensory stimuli of different modalities. In the behavioral paradigm
that we tested, olfactory stimuli were incorporated in an instructed-
delay task and electrophysiological recordings were conducted. We
followed the methodological recommendations for EEG studies of
olfaction (Lorig, 2000). EEG and respiration data were collected
in 17 healthy participants. Our analysis of spatio-spectral EEG
properties showed that neural patterns can be assessed that are
exhibited during this instructed-delay odor-discrimination task.

2. A materials and equipment

2.1. Controlled delivery of odors

For controlled and near-natural presentation of olfactory
stimuli, we utilized an automated odor delivery system developed
by Sensorylab Inc. The system uses piezoelectric transducers to
release liquid odorants into the stream of air (Figure 1). The
device controls the amount of odorant by regulating stimulus
onset and offset. In this system, an odorant reached the subject
approximately 400 ms after stimulus onset. The automatic odor
delivery system was mounted on the ceiling in a room designed to
serve as a home theater (Figure 2). The room was a cubic enclosure
(2.5 × 2.5 × 2.5 m). A constant airstream descended from the
ceiling, and odors could be added to this airstream under computer
control. The airflow for the olfactory display was 187 m3/hr. The
system’s air circulation capacity was 580 m3/hr. A participant was
seated in a comfortable armchair in the middle of the room.
A screen was mounted in front of the participant for the delivery of
visual stimuli and entertainment, and the projector was mounted
behind the participant. A photograph of the odor delivery system
mounted on the ceiling is shown in Figure 3. A video showing odor
delivery process is available in the Supplementary material.

2.2. Olfactory stimuli

The odorants were dissolved to achieve viscosity necessary for
stable evaporation with piezoelectric transducers. Ethanol-based
solvent was applied to natural coffee, perfume vanilla and citrus
essential oil. Four liquid stimuli were used: vanilla, coffee, citrus,
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FIGURE 1

Schematics of olfactory display operation. The airflow is driven by a
fan whereas liquid odorants are released under the control of
piezoelectric transducers.

and odorless water (control stimuli). These flavors were selected
in a pilot study where we sought for odors that were familiar to
the general public. Besides the odors that were finally selected, we
considered using rose water and mint, but chose to exclude these
stimuli because Russian participants were usually unfamiliar with
rose water and they associated mint with taste rather than smell.

2.3. EEG and respiration registration

Electroencephalography data were collected with a Smart BCI
system (Mitsar, Russia) at 250 Hz sampling rate with impedance
below 10 k�. Similar to the work of Martin (1998), 19 electrodes

FIGURE 2

Schematics of the odor delivery and airflow in the room. Odors
were delivered from the ceiling, and the exit points for the airflow
were located on the floor. The participant’s chair was placed in the
middle of the room.

FIGURE 3

The olfactory display mounted to the ceiling.

were positioned on the scalp according to the International 10–
20 system with A1 + A2 ears reference. Respiration data were
collected with TRSens temperature sensor for nasal-oral breathing
and KARDi2-NP polygraph amplifier (Medical computer system,
Russia). Data sampling was synced with the event markers for the
button presses.

2.4. Joystick and button setup

Participants operated a two-dimensional joystick to report the
perceived odors. We adjusted an Arduino joystick for this purpose.
The joystick was placed in a box that limited its movements to two
dimensions (Figure 4).

The subjects initiated each trial by pressing a button with the
left hand, which started the sequence of task events and synced
the system components. A custom signal multiplier distributed the
signals from the button to three devices: the computer that ran
the experimental sequence and controlled the olfactory display, the
EEG amplifier, and the respiration amplifier (Figure 5).

3. Methods

3.1. Subjects

All subjects signed the informed consent forms prior
to the experiment. The experiments were performed under
the ethical approval from the Higher School of Economics
Institutional Review Board (decision from 15th of February
2021). The participants did not receive any financial reward for
this experiment.

We collected data in 17 healthy participants (age 22–44, median
age = 31, females = 7). One subject’s EEG and respiratory data were
excluded because the system malfunctioned during the recordings.
All subjects filled the forms before and after the experiment.
The first form included general sociodemographic information
and some specific questions regarding olfaction. Four participants
stated that they have an olfaction-related hobby (perfumery, winery
etc.). None were professionally employed in fields that require
special olfactory skills. None of the participants reported anosmia.
One participant reported a broken nasal bone, which did not alter
her odor perception.
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FIGURE 4

The two-dimensional joystick used for reporting the perceived smells. The joystick was a modified Arduino joystick which was mounted in a frame
that limited movements to four possible report directions.

FIGURE 5

Schematics of the signal flow from the button to the other devices.

3.2. Experiment task

The task was an instructed-delay task that required subjects
to smell an odor and then transform this perception into a
pointing movement performed with a joystick. By the experiment
design, each odor (including no-smell condition) was associated
with a visual label: a square, circle, triangle, or a star (Figure 6).
Accordingly, the subjects reported their smell assessments by
pointing to the appropriate label. Odor-label pairs were randomly
generated for each participant and remained constant during each
experimental session.

Following the training (40 trials, 10× odor, random order), an
odor discrimination session was run (80 trials, 20× odor, random
order). After starting a trial, participants were instructed to hold
their breath until the fixation cross turned green. Next, they pressed
a button. Odor delivery started immediately after the button was
pressed. Following a 2-s delay, the fixation cross changed color
from red to green and the participant made the first inhale. After
the subject assessed the odor for the subsequent 10 s, four objects
appeared on the screen (at 0, 90, 180, and 270◦ positions); one of

them represented the correct response. With this design, EEG and
respiratory data were collected throughout all four task epochs: (1)
no odor, (2) odor discrimination without any motor preparation,
(3) motor preparation, and (4) peri-movement interval. After the
entire experimental session was completed, participants verbally
described their impressions of the odors delivered and other aspects
of the task (Figure 7).

Participants were instructed to avoid unnecessary movements
during the trial and use time before the next trial if there was a
need to flex the neck or hands or conduct any other movement.
These settings minimized the artifacts in the EEG recordings. The
duration of the experiment varied across participants because they
were allowed to make short breaks between the sessions.

3.3. Respiratory data preprocessing

All participants were instructed to start inhaling when the
fixation cross turned green. An algorithm was developed to detect
the exact moment the subject started to inhale. The algorithm
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FIGURE 6

A photograph showing the participant sitting in front of the screen.
The subject is viewing the stimuli associated with particular odors.
The triangle is located at the bottom of the screen but is not visible
in this picture.

utilized a sliding window (1 s width), and the inhalation start was
determined as the curve deviation from a stationary value. Some
participants failed to hold their breath on some trials and/or the
inhalation onset was not sufficiently abrupt to be detected by the
algorithm. Thus, in an individual with a broken nasal bone, only
58 inhalation onsets could be detected out of 120 algorithmically
or by visual inspection. The oldest female participant (39 years)
had a breathing pattern where we could not detect many of

the inhalation onsets. The algorithm was adjusted to avoid false-
positive detections. The number and percentage of detected inhales
for each subject are provided in the Supplementary material. The
median number of detected inhales was 106.5 out of 120 total trials.

3.4. EEG preprocessing

A low-pass filter with a 45-Hz cutoff, and a high-pass filter
with a 2-Hz were applied to the EEG recordings. Independent
component analysis (ICA) was performed to remove ocular
artifacts. We used FastICA algorithm (Hyvärinen and Oja,
2000) where components were selected based on a high mutual
information coefficient for Fp1 and Fp2 channels and an absence
of the alpha-band peak.

4. Results

4.1. Behavioral results

Each subject performed 120 trials, with 40 training trials and
80 discrimination trials. The majority of participants (12 out of 17)
successfully reported the presented odor in more than 90% of the
trials. The median accuracy was 93.8% with standard deviation of
14.5%. The weakest result was 35 correct reports out of 80 trials
(43.8%) in a male participant (age = 40). His performance accuracy
was still significantly above the chance level of 25%. Performance
accuracy across the participants is provided in the Supplementary
material.

FIGURE 7

Schematics of the experimental sequence. In the beginning of each trial, an instruction (written in Russian) was shown on the screen: “press the
joystick for aroma delivery”. Next, the subject pressed the button to start the sequence of task events. A red cross appeared on the screen for 2 s; the
subject visually fixated the cross and held their breath. An odorant was delivered during this period. The cross then changed color into green, which
instructed the subject to start inhaling. The subject continued breathing with a comfortable pace for 10 s. Finally, a display with four items was
shown on the screen, and the subject pointed with the joystick to the item that corresponded to the perceived odor. If the session was a training
session, the correct item was highlighted with red color. During the discrimination that followed all items were colored black.
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FIGURE 8

The confusion matrix for participants’ responses and actual odors
being delivered. Numbers indicate the counts of responses for
different delivered odors. Each odor was delivered 340 times
(20 trials per odor for 17 subjects). The color scale is from blue
(minimum) to red (maximum). CIT, COF, VAN, and WAT are citrus,
coffee, vanilla and water, respectively.

To assess the discrimination performance for different odors,
a confusion matrix was calculated, where the matrix rows
represented odors being presented, the columns represented odors
being reported, and the values were report counts (Figure 8). In this
analysis, each subject performed 20 discrimination trials for each
odor, so there was a total of 340 trials per odor for all 17 subjects.
The confusion matrix showed an overall good performance for all
subjects. The mean success rate was 93.8% with standard deviation
of 14.5%. The best discrimination performance was for citrus odor
and odorless water (310 correct responses out of 340 trials) and
errors occurred most often for coffee (51 errors out of 340 trials).

The statistics of odor discrimination was assessed with a
chi-squared test applied to the confusion matrix (Table 1).
Additionally, pre-whitened Mann–Kendall test for all the correct
responses from each subject per each trial (Figure 9) revealed the
absence of a significant trend (z = −1.5609, p = 0.1186), as well
as the test of the mean response time (z = −0.3302, p = 0.7412,
Figure 10). The statistical testing of individual response times
demonstrated significant decrease in response times for some of the
participants: 1R912 (z = −3.9793, p < 0.001), 5V005 (z = −3.1157,
p < 0.05), 9V6NM (z = −3.6661, p < 0.001), FK7CK (z = −4.7583,
p < 0.001). The only significant increase was found for participant
7PF8Z (z = 2.1251, p < 0.05).

Following the discrimination session, subjects were asked to fill
in the form and provide names for the odors that were delivered.
All participants correctly named odorless water and the majority of
them (10 out of 17) named coffee. Yet only 5 and 3 subjects could
correctly name citrus and vanilla odors, respectively.

4.2. Inhalation-related components

A comprehensive analysis of EEG patterns in all participants
is beyond the scope of this methodological article. We present
several examples of analysis instead. In the analysis of EEG
patterns representing odors, we focused on determining an

TABLE 1 The results of the chi-squared test for the confusion matrix
demonstrating the independent perception of different odors.

Stimulus Power divergence p-value

Citrus 819.509 <0.001

Coffee 732.524 <0.001

Vanilla 651.837 <0.001

Water 707.711 <0.001

independent inhalation-related component. We examined the 7-s
epochs following the inhalation onset (within a 10-s period of odor
processing and prior to symbols being displayed on the screen, thus
prior to any motor activity). The initial attempts of ICA performed
on bandpass-filtered signal between 2 and 40 Hz resulted in
obtaining a great number of components characterized by high-
frequency activity that were not time-locked to the inhalation onset.
Therefore, we chose to analyze only the low-frequency EEG bands.
When an ICA was applied to the low-pass (below 20 Hz) filtered
EEG, we found components that were time-locked to the inhalation
in six subjects. These components were localized around the C4
electrode (C3 for one subject), and their spectra had peaks at the
alpha frequency (10–12 Hz). Figure 11 demonstrates localization
and spectrum analysis of these components.

In several subjects, we observed clear EEG responses to odor
perception onset, which was also inhalation onset by task design.
Since these responses corresponded to both olfactory processing
and the act of inhalation; we cannot claim that those were
purely olfactory-related patterns. Yet, we found differences in
the responses to different odors, which indicated that these EEG
patterns had an olfactory-related component. Non-parametric
pairwise statistical testing of EEG patterns exhibited during
processing of different odors to odorless control stimuli revealed
significant differences in the components’ spectral power for some
pairs (p < 0.05). After Bonferroni correction was applied to adjust
the significance level for multiple comparisons, the significance
level was set at p < 0.008 (0.05/6 tests). With these requirements,
in two subjects significant differences were observed for the
comparison of some of the odors to the odorless control for
participants. The response to water was different from the response
to coffee in subject A4SHD (p = 0.0074) and to vanilla in subject
V1XS8 (p = 0.0043). Marginal significance (i.e., without Bonferroni
correction) was observed for the comparison of water to citrus in
subject V1XS8 (p = 0.04) and to coffee in subject O9ZEA (p = 0.04).
These results are illustrated in Figures 12, 13.

4.3. Olfactory related evoked responses
during the final report

Clear evoked responses were found for the final appearance of
the set of response targets. For this analysis, we examined a 400-ms
epoch following the appearance of the visual labels with baseline
1 s before the onset. The subjects observed the labels and pointed
to one of the labels with the joystick. Those epochs represented the
visual ERP for the labels and did not include movement related. As
evident from the resulting grand average plot combining data for all
subjects from the central channels C3, Cz, and C4 (Figure 14), the
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FIGURE 9

Performance accuracy evaluated as the number of subjects who responded correctly on each trial. No significant trend (from the first trial to the
last) was found.

FIGURE 10

Mean response time across all participants for each trial. No significant time trend was found.

P200 response was suppressed in cases when no odor was perceived
(condition “water”). This goes in line with previously reported data
(Leleu et al., 2015).

The pairwise t-test performed on the individual evoked
responses and the mean amplitude around the peak of P200
demonstrated statistically significant differences between each of

the odors and the control condition: t = 2.78, p < 0.01 for citrus;
t = 2.149, p < 0.05 for coffee; t = 2.114, p < 0.05 for vanilla.

An additional analysis of the peak-to-peak amplitude between
P200 and N200 components revealed significant difference between
the “citrus” and “water” conditions: t = 2.679, p < 0.05, while the
differences between “vanilla” and “water” were at the margin of
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FIGURE 11

Location of the olfactory related component for six participants. The 7-s epochs after the inhale onset were analyzed, which preceded motor
activity. ICA with the low-path filtering below 20 Hz allowed to extract an olfactory related component localized around the C4 lead (C3 for one
participant).

FIGURE 12

Evoked responses (A), respiratory data (B) and spectral properties (C). Evoked responses and respiratory data for coffee and water for participant
A4SHD. The analysis was conducted for the 7-s epochs after the inhale onset, prior to hand movements. ICA with the low-path filtering below 20 Hz
(U = 3200, p < 0.008 for a peak around 10 Hz in “coffee” and “water” conditions is significant at Bonferroni collected level).

statistical significance: t = 1.754, p = 0.086. The differences between
“coffee” and “water” conditions were insignificant: t = 1.338,
p = 0.18.

5. Discussion

The main motivation of this work was the development
of a home theater-like environment where visual, auditory and
olfactory stimuli could be integrated. While controlling visual
and auditory components of the environment is relatively easy,
the delivery of odorants is more challenging, particularly when
a near-natural olfactory environment is sought for. In our

implementation, odors were delivered from the room ceiling and
remained in the room for several seconds until they were removed
using the ventilation system.

The behavioral paradigm that we used was an instructed-
delay task where olfactory stimuli were injected in the room in
the beginning of a trial followed by a period of odor assessment
and the final report made with a joystick. With this approach,
we were able to achieve stable perception of odors in healthy
subjects without adaptation and deterioration in discrimination
performance. This was clear from the mean performance accuracy
for all participants (93.8%). In principle, similar results could be
achieved with olfactory of a different design, provided that the
subjects performed the same task. Yet, the settings proposed here
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FIGURE 13

Evoked responses (A), respiratory data (B) and spectral properties (C). Evoked responses and respiratory data for coffee and water for participant
V1XS8. The analysis was conducted for the 7-s epochs after the inhale onset, prior to hand movements. ICA with the low-path filtering below 20 Hz
(U = 1883, p < 0.008 for a peak around 10 Hz in “vanilla” and “water” conditions is significant at Bonferroni corrected level).

FIGURE 14

Evoked response to the presentation of final response targets, averaged across all subjects and channels C3, C4, Cz.

are more natural, comfortable and controlled compared to both
manual delivery of odors (Saha et al., 2013; Aydemir, 2017; Abbasi
et al., 2019; Zhang et al., 2021; Ezzatdoost et al., 2020) and using an
olfactometer attached to the nostrils (Murphy et al., 2000; Rombaux
et al., 2006; Invitto and Mazzatenta, 2019). While the field has been

growing of olfactory displays that achieve the stable perception of
odors in a naturalistic setup (Nakamoto et al., 2012; Wen et al.,
2018, 2019), only a few EEG studies employed such displays.
Amores et al. (2018) conducted a study with a wearable olfactory
display (an olfactory necklace) and recorded EEG data with a
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low-cost EEG headband. Fujiwara et al. (2021) and Morozova
et al. (2022) used Aromajoin olfactory display in their studies
with professional EEG recording. Our study extends this work by
developing a natural environment where an olfactory display can be
coupled with visual stimuli as well as stimuli of different modalities.
As such, it can be used for a wide range of experiments employing
EEG recordings an different behavioral tasks.

Overall, the proposed methodology is suitable for running a
variety of olfactory-related tasks where clear perception of odors
by the subjects is needed. The capacity of subjects to discriminate
odors for a long time (up to 1.5 h or 120 trials) could be particularly
useful in future research. Apparantly, olfactory adaptation (Dalton,
2000) was not an issue in our study, presumably because of different
odors presented on different trials and attentional demands to
the active discrimination task. We conclude that, with proper
settings of the task, human subjects are capable of perceiving and
discriminating odors for a long period of time.

The ICA analysis of the EEG recordings revealed clear
olfactory-related neural patterns in one third of the subjects. Thus,
olfactory-related responses were detected over the C4 electrode;
these responses peaked at the frequency around 12 Hz. We suggest
that these responses represent a mixture of a motor component
related to the act of respiration and an odor-related component.
The presence of the odor-related component was evident from
the analysis that showed that different odors evoked different EEG
patterns. As such, this component should be further explored in
order to develop a robust olfactory-based BCI system.

Curiously, even during the final stage of the task when motor
reports were generated, the visual P200 EEG component produced
in response to the presentation of the report targets was modulated
depending on the odor being perceived. Specifically, the amplitude
of the P200 response was lower for the no-odor condition. This
is significant because the P200 component is known to be crucial
for primary categorization and attention-related processes (Luck
and Hillyard, 1994). Here, the subjects could have categorized
the presence of an odor versus its absence into two different
categories. Thus, this P200 could provide odor discrimination-
related information for an olfactory-based BCI.

Overall, the incorporation of the odor delivery system into
a home theater-like environment and running an instruction-
delay odor-discrimination task while EEG and respiration are
being recorded allowed us to analyze neural processing of
odors in healthy humans. The experimental setup can be
upgraded in the future to incorporate additional cross-modal
interactions and more sophisticated cognitive tasks. Furthermore,
the same setup can be used for constructing BCI paradigms,
where olfactory-related decisions are decoded and transmitted
to the computer, and neurofeedback systems, where odors are
used as indicators of activity changes in various brain areas.
Using such BCIs and neurofeedback systems is particularly
appealing as rehabilitation tools for people suffering from
neural disabilities.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by the Higher School of Economics Institutional Review
Board. The patients/participants provided their written informed
consent to participate in this study.

Author contributions

IN, NB, and ML designed the study. IN and NB performed the
experiments. IN and DK analyzed the data. IN, DK, and ML wrote
the manuscript. All authors contributed to the article and approved
the submitted version.

Funding

This work was supported by the Russian Science Foundation
under grant no. 21-75-30024.

Acknowledgments

We thank Grigory Gritsenko, Alexey Ossadtchi, and Ruslan
Krashenkov for their helpful suggestions regarding study design,
experimental design, and data analysis. An early version of this
manuscript has been shared on Biorxiv.org.

Conflict of interest

NB is the CEO of SensoryLab, Inc., the company that developed
the olfactory display. He contributed only to constructing the
experimental setup and writing the software but did not conduct
the experiments and data analysis, which assured that he and his
company had no influence on the reported results.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2023.1117801/full#supplementary-material

Frontiers in Human Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1117801
https://www.Biorxiv.org
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1117801/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1117801/full#supplementary-material
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1117801 May 20, 2023 Time: 14:20 # 11

Ninenko et al. 10.3389/fnhum.2023.1117801

References

Abbasi, N. I., Bose, R., Bezerianos, A., Thakor, N. V., and Dragomir, A. (2019).
“EEG-based classification of olfactory response to pleasant stimuli”, in Proceedings 41st
annual international conference of the IEEE engineering in medicine and biology society
(EMBC), 5160–5163.

Aiken, M. P., and Berry, M. J. (2015). Posttraumatic stress disorder: Possibilities for
olfaction and virtual reality exposure therapy. Virtual Real. 19, 95–109. doi: 10.1007/
s10055-015-0260-x

Amores, J., Richer, R., Zhao, N., Maes, P., and Eskofier, B. M. (2018). “Promoting
relaxation using virtual reality, olfactory interfaces and wearable EEG,” in Proceedings
of the 2018 IEEE 15th international conference on wearable and implantable body sensor
networks (BSN), (Piscataway, NJ: IEEE), 98–101. doi: 10.1109/BSN.2018.8329668

Arpaia, P., Cataldo, A., Criscuolo, S., De Benedetto, E., Masciullo, A., and Schiavoni,
R. (2022). Assessment and scientific progresses in the analysis of olfactory evoked
potentials. Bioengineering 9:252. doi: 10.3390/bioengineering9060252

Aydemir, O. (2017). Olfactory recognition based on EEG gamma-band activity.
Neural Comp. 29, 1667–1680. doi: 10.1162/NECO_a_00966

Dalton, P. (2000). Psychophysical and behavioral characteristics of olfactory
adaptation. Chem. Senses 25, 487–492. doi: 10.1093/chemse/25.4.487

Ezzatdoost, K., Hojjati, H., and Aghajan, H. (2020). Decoding olfactory stimuli in
EEG data using nonlinear features: A pilot study. J. Neurosci. Methods 341:108780.
doi: 10.1016/j.jneumeth.2020.108780

Fujiwara, S., Sasakura, M., Oita, H., Uemae, M., Yoshida, H., Matsuoka, T., et al.
(2021). Central nervous system responses to comfortable thermal stimuli to the soles
of the feet with simultaneous presentation of other sensory stimuli. Int. J. Affect. Eng.
20, 11–20. doi: 10.5057/ijae.TJSKE-D-20-00021

Gudziol, H., and Guntinas-Lichius, O. (2019). Electrophysiologic assessment of
olfactory and gustatory function. Handb. Clin. Neurol. 164, 247–262. doi: 10.1016/
B978-0-444-63855-7.00016-2

Herz, R. S. (2021). Olfactory virtual reality: A new frontier in the treatment
and prevention of posttraumatic stress disorder. Brain Sci. 11:1070. doi: 10.3390/
brainsci11081070

Hyvärinen, A., and Oja, E. (2000). Independent component analysis: Algorithms
and applications. Neural Netw. 13, 411–430. doi: 10.1016/S0893-6080(00)00026-5

Invitto, S., and Mazzatenta, A. (2019). Olfactory event-related potentials and exhaled
organic volatile compounds: The slow link between olfactory perception and breath
metabolic response. A pilot study on phenylethyl alcohol and vaseline oil. Brain Sci.
9:84. doi: 10.3390/brainsci9040084

Kim, D. W., Nishimoto, K., and Kunifuji, S. (2006). “An editing and displaying
system of olfactory information for the home video,” in Proceedings of the international
conference on knowledge-based and intelligent information and engineering systems,
(Berlin: Springer), 859–866. doi: 10.1007/11893011_109

Klemm, W. R., Lutes, S. D., Hendrix, D. V., and Warrenburg, S. (1992).
Topographical EEG maps of human responses to odors. Chem. Senses 17, 347–361.
doi: 10.1093/chemse/17.3.347

Leleu, A., Godard, O., Dollion, N., Durand, K., Schaal, B., and Baudouin, J. Y. (2015).
Contextual odors modulate the visual processing of emotional facial expressions:
An ERP study. Neuropsychologia 77, 366–379. doi:10.1016/j.neuropsychologia.2015.0
9.014

Lorig, T. S. (2000). The application of electroencephalographic techniques to the
study of human olfaction: A review and tutorial. Int. J. Psychophysiol. 36, 91–104.
doi: 10.1016/S0167-8760(99)00104-X

Luck, S. J., and Hillyard, S. A. (1994). Electrophysiological correlates of feature
analysis during visual search. Psychophysiology 31, 291–308. doi: 10.1111/j.1469-8986.
1994.tb02218.x

Martin, G. N. (1998). Human electroencephalographic (EEG) response to olfactory
stimulation: Two experiments using the aroma of food. Int. J. Psychophysiol. 30,
287–302. doi: 10.1016/S0167-8760(98)00025-7

McGinley, M., and McGinley, C. (2017). “Olfactory design elements in theater: The
practical considerations,” in Designing with smell, eds V. Henshaw, K. McLean, D.
Medway, C. Perkins, and G. Warnaby (England: Routledge), 219–226. doi: 10.4324/
9781315666273-22

Moncrief, R. W. (1962). Effect of odours on EEG records. Perfum. Essent. Oil Rec 53,
757–760.

Morozova, M., Bikbavova, A., Bulanov, V., and Lebedev, M. (2022). EEG changes
during odor perception and discrimination. bioRxiv [Preprint]. doi: 10.1101/2022.12.
12.520035

Munyan, B. G. III, Neer, S. M., Beidel, D. C., and Jentsch, F. (2016). Olfactory
stimuli increase presence in virtual environments. PLoS One 11:e0157568. doi: 10.
1371/journal.pone.0157568

Murphy, C., Morgan, C. D., Geisler, M. W., Wetter, S., Covington, J. W., Madowitz,
M. D., et al. (2000). Olfactory event-related potentials and aging: Normative data. Int.
J. Psychophysiol. 36, 133–145. doi: 10.1016/S0167-8760(99)00107-5

Nakamoto, T., Ishida, H., and Matsukura, H. (2012). “Olfactory display using
solenoid valves and fluid dynamics simulation,” in Multiple sensorial media advances
and applications: new developments in MulSeMedia, (Pennsylvania, PA: IGI global),
140–163. doi: 10.4018/978-1-60960-821-7.ch007

Richard, E., Tijou, A., Richard, P., and Ferrier, J. L. (2006). Multi-modal virtual
environments for education with haptic and olfactory feedback. Virtual Real. 10,
207–225. doi: 10.1007/s10055-006-0040-8

Rombaux, P., Bertrand, B., Keller, T., and Mouraux, A. (2007). Clinical
significance of olfactory event-related potentials related to orthonasal and retronasal
olfactory testing. Laryngoscope 117, 1096–1101. doi:10.1097/MLG.0b013e3180
4d1d0d

Rombaux, P., Mouraux, A., Bertrand, B., Guerit, J. M. and Hummel, T., (2006).
Assessment of olfactory and trigeminal function using chemosensory event-related
potentials. Neurophysiol. Clin. 36, 53–62. doi: 10.1016/j.neucli.2006.03.005

Saha, A., Konar, A., Rakshit, P., Ralescu, A. L., and Nagar, A. K. (2013).
“Olfaction recognition by EEG analysis using differential evolution induced
hopfield neural net,” in Proceedings of the 2013 international joint conference on
neural networks (IJCNN), (Dallas, TX: IEEE), 1–8. doi: 10.1109/IJCNN.2013.670
6874

Schriever, V. A., Han, P., Weise, S., Hösel, F., Pellegrino, R., and Hummel, T.
(2017). Time frequency analysis of olfactory induced EEG-power change. PLoS One
12:e0185596. doi: 10.1371/journal.pone.0185596

Serrano, B., Baños, R. M., and Botella, C. (2016). Virtual reality and stimulation of
touch and smell for inducing relaxation: A randomized controlled trial. Comp. Hum.
Behav. 55, 1–8. doi: 10.1016/j.chb.2015.08.007

Sur, S., and Sinha, V. K. (2009). Event-related potential: An overview. Indust.
Psychiatry J. 18:70. doi: 10.4103/0972-6748.57865

Van Toller, S., Behan, J., Howells, P., Kendal-Reed, M., Richardson, A., and
Warwick Human Chemoreception Research Group (WHCRG). (1993). An analysis
of spontaneous human cortical EEG activity to odours. Chem. Senses 18, 1–16. doi:
10.1093/chemse/18.1.1

Washburn, D. A., Jones, L. M., Satya, R. V., Bowers, C. A., and Cortes,
A. (2003). Olfactory use in virtual environment training. Model. Simul. 2,
19–25.

Wen, T., Luo, D., He, J., and Mei, K. (2018). The odor characterizations and
reproductions in machine olfactions: A review. Sensors 18, 2329. doi: 10.3390/
s18072329

Wen, T., Luo, D., Ji, Y., and Zhong, P. (2019). Development of a piezoelectric-based
odor reproduction system. Electronics 8:870. doi: 10.3390/electronics8080870

Zhang, X. N., Meng, Q. H., Zeng, M., and Hou, H. R. (2021). Decoding olfactory
EEG signals for different odor stimuli identification using wavelet-spatial domain
feature. J. Neurosci. Methods 363:109355. doi: 10.1016/j.jneumeth.2021.109355

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1117801
https://doi.org/10.1007/s10055-015-0260-x
https://doi.org/10.1007/s10055-015-0260-x
https://doi.org/10.1109/BSN.2018.8329668
https://doi.org/10.3390/bioengineering9060252
https://doi.org/10.1162/NECO_a_00966
https://doi.org/10.1093/chemse/25.4.487
https://doi.org/10.1016/j.jneumeth.2020.108780
https://doi.org/10.5057/ijae.TJSKE-D-20-00021
https://doi.org/10.1016/B978-0-444-63855-7.00016-2
https://doi.org/10.1016/B978-0-444-63855-7.00016-2
https://doi.org/10.3390/brainsci11081070
https://doi.org/10.3390/brainsci11081070
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.3390/brainsci9040084
https://doi.org/10.1007/11893011_109
https://doi.org/10.1093/chemse/17.3.347
https://doi.org/10.1016/j.neuropsychologia.2015.09.014
https://doi.org/10.1016/j.neuropsychologia.2015.09.014
https://doi.org/10.1016/S0167-8760(99)00104-X
https://doi.org/10.1111/j.1469-8986.1994.tb02218.x
https://doi.org/10.1111/j.1469-8986.1994.tb02218.x
https://doi.org/10.1016/S0167-8760(98)00025-7
https://doi.org/10.4324/9781315666273-22
https://doi.org/10.4324/9781315666273-22
https://doi.org/10.1101/2022.12.12.520035
https://doi.org/10.1101/2022.12.12.520035
https://doi.org/10.1371/journal.pone.0157568
https://doi.org/10.1371/journal.pone.0157568
https://doi.org/10.1016/S0167-8760(99)00107-5
https://doi.org/10.4018/978-1-60960-821-7.ch007
https://doi.org/10.1007/s10055-006-0040-8
https://doi.org/10.1097/MLG.0b013e31804d1d0d
https://doi.org/10.1097/MLG.0b013e31804d1d0d
https://doi.org/10.1016/j.neucli.2006.03.005
https://doi.org/10.1109/IJCNN.2013.6706874
https://doi.org/10.1109/IJCNN.2013.6706874
https://doi.org/10.1371/journal.pone.0185596
https://doi.org/10.1016/j.chb.2015.08.007
https://doi.org/10.4103/0972-6748.57865
https://doi.org/10.1093/chemse/18.1.1
https://doi.org/10.1093/chemse/18.1.1
https://doi.org/10.3390/s18072329
https://doi.org/10.3390/s18072329
https://doi.org/10.3390/electronics8080870
https://doi.org/10.1016/j.jneumeth.2021.109355
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/

	An experimental paradigm for studying EEG correlates of olfactory discrimination
	1. Introduction
	2. A materials and equipment
	2.1. Controlled delivery of odors
	2.2. Olfactory stimuli
	2.3. EEG and respiration registration
	2.4. Joystick and button setup

	3. Methods
	3.1. Subjects
	3.2. Experiment task
	3.3. Respiratory data preprocessing
	3.4. EEG preprocessing

	4. Results
	4.1. Behavioral results
	4.2. Inhalation-related components
	4.3. Olfactory related evoked responses during the final report

	5. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


