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Introduction: In brain-computer interfaces (BCI) research, recording data is
time-consuming and expensive, which limits access to big datasets. This may
influence the BCI system performance as machine learning methods depend
strongly on the training dataset size. Important questions arise: taking into account
neuronal signal characteristics (e.g., non-stationarity), can we achieve higher
decoding performance with more data to train decoders? What is the perspective
for further improvement with time in the case of long-term BCI studies? In this
study, we investigated the impact of long-term recordings on motor imagery
decoding from twomain perspectives: model requirements regarding dataset size
and potential for patient adaptation.

Methods: We evaluated the multilinear model and two deep learning (DL) models
on a long-term BCI & Tetraplegia (ClinicalTrials.gov identifier: NCT02550522)
clinical trial dataset containing 43 sessions of ECoG recordings performed with
a tetraplegic patient. In the experiment, a participant executed 3D virtual hand
translation using motor imagery patterns. We designed multiple computational
experiments in which training datasets were increased or translated to investigate
the relationship between models’ performance and di�erent factors influencing
recordings.

Results: Our results showed that DL decoders showed similar requirements
regarding the dataset size compared to themultilinear model while demonstrating
higher decoding performance. Moreover, high decoding performance was
obtainedwith relatively small datasets recorded later in the experiment, suggesting
motor imagery patterns improvement and patient adaptation during the long-
term experiment. Finally, we proposed UMAP embeddings and local intrinsic
dimensionality as a way to visualize the data and potentially evaluate data quality.

Discussion: DL-based decoding is a prospective approach in BCI which may be
e�ciently applied with real-life dataset size. Patient-decoder co-adaptation is an
important factor to consider in long-term clinical BCI.
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1. Introduction

Permanent motor deficits as a result of a spinal cord injury (SCI) affect hundreds of

thousands of people worldwide each year (12,000 people each year just in the United States

Hachem et al., 2017). In this case, the motor cortex is preserved, but neuronal signals can

no longer be transmitted to the muscles. Then, the use of a brain-computer interface (BCI),
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which enables interaction with an effector by thought, could enable

these patients to regain a certain autonomy in everyday life. For

example, motor imagery based BCI has been used for the control

of prostheses or exoskeletons of upper limbs (Hochberg et al.,

2012; Collinger et al., 2013; Wodlinger et al., 2014; Edelman

et al., 2019), lower limbs (López-Larraz et al., 2016; He et al.,

2018) and four limbs (Benabid et al., 2019) in subjects with

paraplegia or tetraplegia following an SCI. In this study, we focus on

electrocorticography (ECoG)-based motor BCIs, promising tools

that may enable continuous 3D hand trajectory decoding for

neuroprosthesis control while reducing the risk of implantation

compared to more invasive approaches (Volkova et al., 2019).

BCIs record neuronal activity and decode it into control

commands for effectors. Decoders are generally trained using

machine learning algorithms in a supervised manner. In the vast

majority of studies, the training dataset is strongly restricted due

to limited access to recordings. At the same time, dataset size

is an important factor in machine learning analysis and can

influence overall system performance drastically. In contrast to

recent computer vision and natural language processing studies

(Kaplan et al., 2020; Rosenfeld et al., 2020; Hoiem et al., 2021),

the optimal quantity of training data, i.e., the quantity at which

decoder’s performance reaches a plateau for a given application,

is rarely studied for BCI (Perdikis and Millan, 2020). Especially,

learning curves, providing insight into the relationship between

model performance and training set size, are rarely presented.

Learning curves can be used for model selection, decreasing the

computational load of model training, or estimating the theoretical

influence of adding more data to training datasets (Viering and

Loog, 2021). The last point is particularly important in BCI,

considering the limited access to datasets recorded with humans.

Without knowing the relationship between system performance

and dataset size, it is hard to determine the strategy to improve

the accuracy of decoders: increase the amount of training data or

increase the capacity of the models. In the case of ECoG-based

motor BCI, most models have a limited capacity. The decoders used

are Kalman filters (Pistohl et al., 2012; Silversmith et al., 2020) and

mostly variants of linear models (Flamary and Rakotomamonjy,

2012; Liang and Bougrain, 2012; Nakanishi et al., 2013, 2017; Chen

et al., 2014; Bundy et al., 2016; Eliseyev et al., 2017). In most of these

studies, decoder optimization has been carried out on databases

containing a few minutes or tens of minutes of the signal. This

results in usable models but does not provide any information

on the performance gain that could be achieved with more data,

nor does it compare the data quantity/performance relationship

between several decoders.

Model characteristics and learning curves are not the only

factors influencing decoders’ performance in the case of BCI.

The human ability to generate distinct brain signal patterns is

crucial for a BCI system. Research in recent years has focused

mainly on the development of increasingly efficient decoders,

for example, deep learning (DL) (Bashivan et al., 2015; Elango

et al., 2017; Schirrmeister et al., 2017; Du et al., 2018; Lawhern

et al., 2018; Pan et al., 2018; Xie et al., 2018; Zhang et al., 2019;

Rashid et al., 2020; Śliwowski et al., 2022) rather than on patient

learning or co-adaptation (Wolpaw et al., 2002; Millan, 2004),

even though several studies have shown the crucial importance of

patient learning (Carmena, 2013; Lotte et al., 2013; Orsborn et al.,

2014; Chavarriaga et al., 2017; Benaroch et al., 2021). Thanks to

recording device developments and clinical trial advances, long-

term studies of chronic BCI enable recording of bigger datasets than

ever before. Current techniques for recording brain activity, such

as the ElectroCorticoGram (ECoG), provide stable recordings for

at least 2 years (Nurse et al., 2017). It offers the possibility to train

and test a decoder over several months. It also enables studying

potential patient learning and provides insight into the optimal

quantity of data necessary to get the best out of a decoder. These

questions have largely been put aside (Perdikis and Millan, 2020).

Closed-loop learning allows for short-term patient-model co-

adaptation through the visual feedback received by the patient.

This feedback leads to a modification of the brain activity and has

shown capabilities for improving the control of neuroprostheses

(Cunningham et al., 2011; Jarosiewicz et al., 2013; Orsborn et al.,

2014; Shanechi et al., 2017; Sitaram et al., 2017). Nevertheless,

motor learning is a process that takes place in the short term and

in the long term (Dayan and Cohen, 2011; Krakauer et al., 2019).

This long-term learning is little studied in BCI, and most studies

in humans are limited to a few sessions (<15) (Holz et al., 2013;

Höhne et al., 2014; Leeb et al., 2015; Meng et al., 2016) to show

that a fast and efficient calibration of the proposed decoders is

possible. Several studies with a larger number of sessions (>20)

were nevertheless carried out: Neuper et al. (2003), Wolpaw and

McFarland (2004), Hochberg et al. (2006), McFarland et al. (2010),

Collinger et al. (2013), Wodlinger et al. (2014), Ajiboye et al.

(2017), Perdikis et al. (2018), Benaroch et al. (2021), and Moly

et al. (2022). Some have focused on patient learning (Neuper et al.,

2003; McFarland et al., 2010; Collinger et al., 2013; Leeb et al.,

2015; Perdikis et al., 2018; Benaroch et al., 2021) by seeking an

improvement in performance coming from changes in the signal

or the characteristics extracted from it. The last point is required

to distinguish between performance improvement due to patient

learning, increased data available for decoder optimization, or

changes in the experimental environment (Lotte and Jeunet, 2018;

Perdikis and Millan, 2020).

As dataset size is an important limitation influencing BCI

research, we investigated the relationship between BCI decoders’

(predicting 3D upper-limb movements from ECoG signals)

performance and the training dataset size used to optimize

model parameters. Learning curves obtained in different offline

computational experiments showed that DL models could provide

similar or better performance without requiring more training

data than a multilinear model. Moreover, learning curves revealed

characteristics that were unlikely caused by just the dataset

increase. Extended analysis using unsupervised ML methods

showed dataset characteristic (e.g., intrinsic dimensionality, states

separability) changes with time, suggesting that long-term patient

learning may play an important role in achieving higher BCI

performance. This kind of analysis was possible thanks to

the access to a rare database of ECoG signals (Moly et al.,

2022) containing imagined hand movements performed by a

tetraplegic patient to control upper-limb 3D translation in a

virtual environment. However, our study was limited to only

one patient and a specific task. Despite that, our results may

be a reference for other BCI researchers showing that deep
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learning could be advantageous also in the case of limited

clinical datasets.

2. Materials and methods

2.1. Clinical trial and patient

The data was recorded and analyzed as a part of the “BCI and

Tetraplegia” (ClinicalTrials.gov identifier: NCT02550522) clinical

trial, which was approved by the Agency for the Safety of Medicines

and Health Products (Agence nationale de sécurité du médicament

et des produits de santé—ANSM) with the registration number:

2015-A00650-49 and the ethical Committee for the Protection of

Individuals (Comité de Protection des Personnes—CPP) with the

registration number: 15-CHUG-19.

The participant was a 28-year-old right-handed man following

tetraplegia after a C4-C5 spinal cord injury. He had residual

control over upper limbs with American Spinal Injury Association

Impairment (ASIA) scores of 4 (right hand), 5 (left hand) at

the level of the elbow, and 0 (right hand), 3 (left hand) at the

extensors of the wrist. All motor functions below were completely

lost (ASIA score of 0) (Benabid et al., 2019). Two WIMAGINE

implants (Mestais et al., 2015), recording ECoG signal at 586 Hz

sampling rate, were implanted above the left and right primary

motor and sensory cortex responsible for upper limb movements.

The implants consisted of an 8× 8 electrodes grid. Due to the data

transfer limit, only 32 electrodes organized on a chessboard-like

grid were used for recording at each implant, totaling 64 electrodes.

The data recordings used in this study started after 463 days

post-implantation. The subject was already experienced in the

BCI setup as the clinical trial experiments began shortly after the

surgery. During the clinical trial, the participant gradually learned

how to control the BCI, starting by using discrete/1D effectors

and finally achieving control of up to 8D movements in one

experimental session.

2.2. Data and experimental paradigm

The dataset analyzed in this study contains 43 experimental

sessions recorded over more than 200 days. In the experiments,

the tetraplegic patient was asked to perform motor imagery tasks

in order to move virtual exoskeleton effectors (see the virtual

environment in Figure 1). In particular, the patient used an MI

strategy in which he repeatedly imagined/attempted fingers, hands,

and arm movements to control 8 dimensions (3D left and right

hand translation and 1D left and right wrist rotation). In every

trial, the patient’s goal was to reach the target displayed on the

screen, one after another, without returning to the center position

(Moly et al., 2022). The dataset consisted of 300 and 284 min

of the recorded signal, comprising 19 and 18 trials per session

on average, 811 and 756 trials in common, for the left hand and

right hand, respectively. During the experiment, target localization

was defined by the experimenter and was recorded together with

the hand position. Based on these data points, the desired hand

direction, i.e., the direct path connecting hand and target, was

estimated. The resulting vector was used to train and evaluate all the

FIGURE 1

Screenshot from the virtual environment. The patient was asked to
reach the blue sphere with his right hand.

models. For evaluation, we used cosine similarity (CS), measuring

the cosine of the angle between two vectors, which is equal to 1

for perfect prediction, 0 for orthogonal vectors, and –1 in case of

opposite direction. For cosine similarity equal to 1, the target reach

would be as fast as possible (direct path) according to exoskeleton

parameters. Unfortunately, we could not use the time to reach the

target as evaluation criteria directly. It may better reflect the target

reach performance, however, it would require online experiments

that we could not perform due to experimental constraints.

During the experimental sessions, 1 out of 5 states (idle state,

left hand translation, right hand translation, left wrist rotation, right

wrist rotation) was decoded from the recorded ECoG signal with

a multilinear gate model. Accordingly to the gate predictions, an

appropriate multilinear expert was selected to provide a trajectory

of hand movement or direction of wrist rotation. For further

analysis, we selected only left and right hand translation datasets.

Multilinear model parameters were optimized online during

the recordings using recursive exponentially weighted n-way partial

least squares (REW-NPLS) (Eliseyev et al., 2017). Models were

trained on the first six sessions, further referred to as the calibration

dataset. For the next 37 sessions, models’ weights were fixed

and used for the performance evaluation. In our computational

experiments, we concatenated calibration and test sessions to

perform offline simulations in different scenarios, studying the

dataset and model characteristics in-depth.

2.3. Preprocessing and feature extraction

EcoG signal was referenced to 5 electrodes (on the edge of

recording grids) and on-chip filtered with a high pass (0.5 Hz) and

low pass (300 Hz) analog filters, followed by a digital low pass FIR

filter with a cutoff frequency of 292.8 Hz (Moly et al., 2022). After

the recording, no additional reference or filtering methods were

applied. Raw ECoG signal was processed with feature extraction

pipeline creating time-frequency representation that is a popular

way of describing motor imagery brain signals (Lotte et al., 2018).

Continuous complex wavelet transform was used with 15 Morlet

wavelets with central frequencies in the range of 10-150 Hz (10 Hz

interval). Wavelet parameters were selected according to previous
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analysis (Chao et al., 2010; Chen et al., 2013; Benabid et al., 2019)

to match the informative frequency range of ECoG signal. Every

100 ms, 1 s of signal (90% overlap) was selected and convolved

with the set of wavelets coefficients. Thenmodulus of the convolved

complex signal was averaged over 0.1 s fragments. Finally, every

i-th window of the signal was represented with time-frequency

representation in the form of a tensor Xi ∈ R
64×15×10 with

dimensions corresponding to ECoG channels, frequency bands,

and time steps.

In this study, samples for which predicted and desired states

did not match each other were removed. By removing the gate

errors, we minimize the influence of low gate model performance

on the visual feedback and thus on the patient imagination patterns.

In addition, one session was removed from the dataset as during

the online experiment patient reached a highly negative cosine

similarity (outliers compared to other sessions) which may as well

influence recorded signals by providing erroneous visual feedback

to the patient.

2.4. UMAP embeddings and artifacts
identification

High-dimensional datasets are almost not possible to visualize

without any dimensionality reduction before. What can be trivial

to observe in low-dimensional space may easily stay hidden in

the noise in high-dimensional representations. Due to the curse

of dimensionality, understanding the topology of distributions

or even noticing outliers is challenging. The main goal of

the visualization was to see the evolution of data distributions

between sessions. To map time-frequency representation into

lower-dimensional space, an unsupervised learning algorithm,

namely UniformManifold Approximation and Projection (UMAP)

(McInnes et al., 2018) was used. We decided to apply UMAP

as it preserves the global manifold structure similarly to t-SNE

(Kobak and Linderman, 2021) but has a lower computational load

according to McInnes et al. (2018) and UMAP (2018). Thanks

to that, we could avoid additional dimensionality reduction (e.g.,

PCA), which is usually done before feeding high-dimensional

datasets into t-SNE (van der Maaten and Hinton, 2008). We used

flattened time-frequency features Xi ∈ R
64×15×10

→ R
9600 (the

same as for motor imagery decoding) as the input to UMAP.

Every tenth observation from the dataset was selected for UMAP

to avoid redundancy in the data (90% overlap between samples)

and decrease the computational load. UMAP was fitted on three

datasets to all the sessions together, i.e., one UMAP for both hands

optimized together and one per hand trained individually. The

first scenario lets us better see the data distributions within the

state classification framework, with samples being colored due to

the state they belong to. This gave us a global overview of the

dataset. In the per hand scenario, we focused more locally on the

structure of each dataset. This may have a bigger influence on the

decoding performance while being harder to analyze due to the lack

of explicit labels for visualization (like states in the previous case).

In the case of UMAP optimized together for both hands,

we proposed an indirect indicator of data quality reflecting the

separability of the left and right hand clusters. This was assessed

using a linear support-vector machine (SVM). SVM was fitted

to every session separately. Then every sample in the session

was classified into two categories, i.e., left hand or right hand

movement. The accuracy of the state classification was further

used as a state separability indicator. We did not perform any

cross-validation as we focused on the separability of the clusters

and not on the state classification performance itself. On the

UMAP embeddings, we also visualized the SVM decision boundary

dividing the space between categories of movements.

UMAP as a dataset visualization method may also be used for

an overall sanity check of the dataset, especially for artifacts that

are easy to spot when the dataset is small, but it is impossible

to review every sample individually when analyzing thousands of

observations. In our case, UMAP helped us to observe artifacts

coming from connection loss resulting in singular outliers samples

that were not caught during recording. Those, on the UMAP

plots, created suspicious clusters of observations (Figure 2). The

clusters of artifacts after recognition on theUMAPplots and further

manual review were fixed by interpolation of points in the raw

signal domain.

2.5. Evaluated models

A multilinear model optimized with REW-NPLS algorithm

(Eliseyev et al., 2017) was used as a “traditional” ML benchmark

to predict 3D hand translation. The same algorithm was also used

for providing online control to the patient during recordings. PLS

models embed both high-dimensional input features and output

variables into lower-dimensional latent space, aiming to extract

latent variables with the highest correlation between input and

output. REW-NPLS model can be updated online thanks to low-

computational cost, recursive validation of the number of latent

factors, and model parameters being updated with only chunks of

the dataset. Online training eases performing the experiments and

makes it possible to use ECoG decoders almost from the beginning

of the first recording session. Even if decoders may show unstable

performance at the beginning of the experiment due to the small

amount of data used for training, it provides visual feedback to

the patient. For our offline computational experiments, multilinear

models were trained in pseudo-online mode, simulating real-life

experiments with updates based on 15 s-long chunks of data.

The second group of models used deep learning to predict

the desired hand translation. In particular, methods proposed and

described in detail in Śliwowski et al. (2022) were evaluated—

i.e., multilayer perceptron (MLP—simple approach) and mix of

CNN and LSTM [with multiple trajectories (MT) modification,

explained in detail in Śliwowski et al., 2022] (CNN+LSTM+MT)

providing the best performance for a given dataset (Śliwowski

et al., 2022). MLP was built from two fully-connected layers with

50 neurons with dropout and batch normalization in-between

(see Table 1). CNN-based method exploited the spatial correlation

between electrodes by analyzing data organized on a grid reflecting

the electrodes’ arrangement with convolutional layers. As the CNN-

based method utilizes data structure, it has fewer parameters while

maintaining similar capabilities to MLP. In CNN+LSTM+MT,

LSTMs were used to aggregate temporal information extracted
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FIGURE 2

Per hand embeddings before (top row) and after (bottom row) artifacts removal.

TABLE 1 MLP architecture from Śliwowski et al. (2022).

Layer Kernel shape Output shape

Flatten - [200, 9,600]

Fully connected [9,600, 50] [200, 50]

BatchNorm [50] [200, 50]

ReLU - [200, 50]

Dropout - [200, 50]

Fully connected [50, 50] [200, 50]

BatchNorm [50] [200, 50]

ReLU - [200, 50]

Dropout - [200, 50]

Fully connected [50, 3] [200, 3]

by convolutional layers into desired translation trajectory (see

Table 2). The DLmodels were trained tomaximize cosine similarity

(CS) between predicted and optimal trajectories. We used early

stopping to limit the overfitting with a validation dataset consisting

of the last 10% of the calibration dataset. The best model on the

validation dataset was used for further evaluations. The procedure

was repeated five times for every scenario and model to limit the

influence of the stochasticity of the training process on our results.

To train DL models, we used a fixed set of hyperparameters, i.e.,

learning rate equals 0.001, weight decay (L2 regularization) equals

0.01, and batch size equals 200.

2.6. Computational experiments

Multiple offline computational experiments were performed

on the prerecorded ECoG BCI dataset to assess the impact

of training dataset size on decoding performance. The

results computed on a real-life dataset may be impacted by

multiple factors that cannot be observed directly. Thus, we

TABLE 2 CNN+LSTM+MT architecture from Śliwowski et al. (2022).

Layer Kernel shape Output shape

Input [200, 15, 8, 8, 10]

Input per implant [200, 15, 8, 4, 10]

Conv space [15, 32, 3, 3, 1] [200, 32, 6, 4, 10]

ReLU - [200, 32, 6, 4, 10]

BatchNorm [32] [200, 32, 6, 4, 10]

Dropout - [200, 32, 6, 4, 10]

Conv space [32, 64, 3, 3, 1] [200, 64, 4, 2, 10]

ReLU - [200, 64, 4, 2, 10]

Dropout - [200, 64, 4, 2, 10]

LSTM - [200, 10, 50]

LSTM - [200, 10, 3]

proposed several ways of increasing the training dataset as

well as iterating over it. By modifying the training datasets in

different manners, we aimed to isolate different factors that

can potentially influence learning curves. In every scenario,

all the models were trained on a different subset of the

database and then evaluated on test datasets accordingly to

the experiment.

2.6.1. Forward increase
The forward increase (FI) scenario measured the change

of cosine similarity when adding more recording sessions to

the dataset. This experiment corresponds to a real-life situation

where more data is collected during the experiment. The

sessions were incrementally added (session by session) to the

training dataset. After every step, all the decoders were trained

from scratch and evaluated on the following 22 sessions (see

Figure 3).
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FIGURE 3

Visualization of forward and backward increase and translation over the dataset. For clarity, we ignored di�erences in session length.

2.6.2. Backward increase
An important factor influencing model training may be the

nonstationarity of signal in time originating from the plasticity

of the brain as well as the patient’s adaptation. To assess the

influence of this factor, an inverse of forward increase was

performed, further referred to as backward increase (BI). Similar

to the FI simulation, the training dataset was increased session

by session. However, the increase was started from the 21st

session and the previous sessions were added until including

the first calibration session. After every training, models were

evaluated on a fixed test set consisting of 22 last recordings

(see Figure 3).

2.6.3. Random increase
An alternative way of assessing the influence of training

dataset size on the decoder performance is random dataset

increase (RI). Instead of maintaining the temporal order of

recorded samples, we artificially removed the connection

between neighboring observations, i.e., for every dataset size, a

respective number of observations was selected from the first

22 sessions, and then the model was trained. This may reduce

the effects of neuronal signal nonstationarity and/or patient

adaptation and provide results closer to theoretical learning

curves when assumptions about the stationarity of observations

are fulfilled. Evaluations were performed on the same test set as

in BI.

2.6.4. Dataset translation
As data may change over time, we trained models on

approximately the same amount of data but recorded in different

periods of the experiment. This enabled us to rule out the effect of

the increased dataset and focus on data shift and potential patient

adaptation that may modify the data representation and influence

the performance of trained decoders. The training dataset was

translated over the whole dataset and evaluated on the test dataset

consisting of the following six sessions (see Figure 3).

2.7. Learning curve

The learning curve 1 describes the relationship between model

performance and the training dataset size l (Cortes et al., 1993).

It can be used, for example, to infer a potential change in the

performance from adding more data to the system. This can be

particularly efficient in application to BCI because we can estimate

the hypothetical performance of decoders when recording more

data without actually performing the experiments. Learning curves

can also be used to select an appropriate model for a specific

dataset size. For example, Strang et al. (2018) showed that non-

linear models are more likely to outperform linear models for

1 In this context, the learning curve does not refer to the relationship

between the number of training epochs and model performance which the

name learning curve is also commonly used for.
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bigger datasets. On the other hand, Hoiem et al. (2021) showed that

models with more parameters can be more efficient in the case of

small datasets despite the higher potential for overfitting.

The learning curve may be formulated with power law (Cortes

et al., 1993; Gu et al., 2001). In our case, the relationship between

cosine similarity and training dataset size lmay be expressed as:

CS(l; a, b, c) = a− b · l−c (1)

Where b and c can be interpreted as learning rate and decay rate,

respectively. a corresponds to theoretical asymptotic performance

when l → ∞. Parameters a, b, and c were fitted to the results

obtained in RI experiment with non-linear least squares using Trust

Region Reflective algorithm with bounds a ∈ [−1, 1], b > 0, and

c > 0.

2.8. Intrinsic dimensionality estimation

The idea of patient adaptation and improving BCI skills using

visual feedback is based on the assumption that the patient can

modify/adjust motor imagery patterns to solve the task better. As

a result, the data distribution and the shape of the data manifold

may change. To estimate the data distribution changes, intrinsic

dimensionality (ID) estimation methods may be used. ID reflects

the minimum number of variables needed to represent the dataset

without a significant information loss. Thus, the ID indicator is

strictly connected to a dataset’s true dimensionality, which is an

important factor in data analysis, influencing the performance

and changing the number of samples needed to train models.

Intuitively, in a typical case, higher-dimensional manifolds are

harder to learn due to the ’curse of dimensionality.’ ID is better

studied for images that, although have thousands of pixels, lie

on a lower-dimensional manifold (e.g., less than 50 for ImageNet

Pope et al., 2021). We use ID as a potential data quality indicator,

which may vary with different recording sessions. ID estimates

were computed for every session, and values from the respective

sessions were averaged to obtain training dataset estimates for the

dataset translation experiment. To compute ID, we used current

state-of-the-art methods, namely expected simplex skewness (ESS)

(Johnsson et al., 2015) estimating local ID in data neighborhoods

(in our case 100 points) and TwoNN (Facco et al., 2017) estimating

global dataset ID. ESS, according to Tempczyk et al. (2022) provides

better estimates for high ID values, while most of the methods

tend to underestimate the ID (e.g., TwoNN Facco et al., 2017). It

is especially important because our preliminary analysis showed

that ECoG data is high dimensional, with ECoG features’ mean

local ID being significantly higher than the mean local ID for

images (around 300 for ECoG, below 15 for MNIST, EMNIST, and

FMNIST Bac and Zinovyev, 2020). For ID computations we used

scikit-dimensions package (Bac et al., 2021).

3. Results

3.1. UMAP

Data distributions for every session were shown in Figure 4

with colors indicating left and right hand states. With time, clusters

of states get better separated from each other. We quantified the

separability of different states with SVM classification accuracy

(Figure 5). A statistically significant (slope = 0.175, intercept =

83.37, R = 0.539, p = 0.0002) increase in accuracy can be observed

for sessions recorded later in the experiment, with a maximum

accuracy of 95% for session 37. Note that UMAP, similarly to t-SNE,

does not preserve the density of points when mapping to the lower

dimensional space and may, in some cases, create sub-clusters that

originally may not exist in the input space.

3.2. Forward and backward increase

Forward increase results (Figure 6) show learning curves in a

situation close to a real-life scenario when more recordings are

performed in the experiment. For all the models, a sharp increase

in performance can be observed for small datasets. After 30–40min

of data, the curves become flat, reaching 70-80% of maximum FI

performance (except 100% for the multilinear right-hand model)

until 100–120 min of the signal. For datasets with more data

than 100–120 min, a slow performance increase can be noticed.

In the case of the left hand dataset, it starts earlier and is also

visible for the multilinear model, while for the right hand, REW-

NPLS performance stays stable. Overall, multilinear andDLmodels

have similar learning curves and reach a performance plateau after

including the same amount of data. However, multilinear models

usually perform worse than DL models for the same amount

of data.

Extending the dataset backward, starting from the middle of

the recorded dataset, does not correspond to any real-life scenario.

However, by doing this, we were able to assess the potential

influence of data quality change on the results computed in the

FI computational experiment. In the case of backward increase

(Figure 7), high performance can be observed for relatively small

datasets—with just 3 (left hand) and 2 (right hand) sessions. For

bigger datasets, the performance stabilizes or decreases slightly.

The curves for all the models behave similarly. Performance of DL

models starts to increase for >130 min of signal for the right hand

and achieves the best cosine similarity. When comparing FI and BI,

in the case of the left hand, the best performance can be observed

for BI and only 3 sessions of data in the training dataset. In the

case of the right hand, the highest performance is achieved for the

biggest dataset, suggesting that recording more data may improve

the cosine similarity. The small amount of data needed to achieve

high performance (2–3 sessions) in the BI experiment may suggest

brain activity improvement resulting in dataset quality increase (the

amount of data required to reach a given performance).

3.3. Random increase

In the RI experiment, the influence of patient adaptation

and signal nonstationarity is reduced as all the links between

neighboring samples are destroyed when selecting data for the

training dataset. Results for RI are more similar to theoretical

learning curves of DLmodels, with a sharp increase in performance

in the beginning and saturation when the model’s maximum
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FIGURE 4

Visualization of 2D embedding of left and right hand data obtained using UMAP. Green dashed line showes SVM decision boundary.

capacity is achieved. The performance is saturated after adding

approximately 60–90 min of data to the training dataset at

95% of maximum cosine similarity for RI experiment. Only

a small improvement can be observed from using more data.

For the multilinear model, we can observe that saturated best

performance is lower than in the case of DL models. DL

methods are able to learn more complex functions and thus

can reach higher performance. Fitted learning curves show the

relationship between cosine similarity and dataset size within

a theoretical framework, emphasizing the bigger capabilities of

DL methods. The best models trained in the RI experiment

showed lower performance compared to the best models from

other experiments (dataset translation for both hands and BI

for the left hand). However, in every experiment except BI

and RI, models were evaluated on different test datasets (see

Figure 3).

3.4. Dataset translation

The dataset translation experiment shows the change in

performance while maintaining approximately the same amount

of data (six sessions) in the training dataset. Generally, all
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FIGURE 5

Accuracy of left vs. right hand state classification using SVM
classifier. The orange line indicates a linear trend fitted to the points.

models show similar trends (see Figure 8). For the left hand,

we can observe an increase in cosine similarity for datasets

recorded later in the experiment suggesting an improvement

in data quality. The increase is less visible for the right

hand dataset. This is confirmed by the slope of the linear

trend fitted to the average performance of all the models

(Table 3). Expected cosine similarity improvement from training

a model on the dataset recorded later was equal to 0.0069

per session and 0.0044 per session for left and right hand

datasets, respectively. For both datasets, the most significant

performance increase between the first and last evaluation can

be observed for the multilinear model (Table 4). It may suggest

that the patient, to some extent, adapted specifically to the linear

model family. The multilinear model does not follow the same

fluctuations as the DL methods. The difference could be caused

by the way of validating models (10% validation set for DL,

FIGURE 6

Cosine similarity computed in forward increase experiment, i.e., di�erent training dataset sizes when starting from the first session (left, right).

FIGURE 7

Cosine similarity for backward increase experiment, i.e., di�erent training dataset sizes when starting from the 21st session and going backward (left,
right).
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FIGURE 8

Cosine similarity for dataset translation, i.e., di�erent training datasets (always 6 sessions for training and following 6 sessions for testing) translated
over the dataset. The orange line indicates a linear trend line fitted to the models’ average (left, right).

FIGURE 9

Relationship between cosine similarity and local ID of the training dataset computed with ESS for dataset translation experiment. In the plot titles,
Pearson correlation coe�cient r and p-value (the probability of two uncorrelated inputs obtaining r at least as extreme as obtained in this case) are
presented. Cosine similarity of 3D translation decoding for the left and the right hands is shown by blue and orange respectively.

recursive validation on the last 15 s of data at every step for

pseudo-online REW-NPLS).

In Figure 9, the relationship between the local ID of the training

dataset computed with ESS and the cosine similarity of different

models for the translation experiment is presented. A statistically

significant (α < 0.05) correlation between local ID and models’

performance was observed for all the methods, reaching up to 0.66

of the r correlation coefficient for the multilinear model. An overall

trend of achieving higher cosine similarity can be observed for

training datasets with a higher ID. ID for the analyzed datasets

varies between 250 and 330, which is much more compared to <15

reported for MNIST, EMNIST, and FMNIST (Bac and Zinovyev,

2020).

4. Discussion

Our results showed that DL-based methods provide similar

or higher performance in almost all cases, enabling achieving

higher performance than the multilinear model while using the

same amount of data. Given the limited evaluation possibilities,

including more data in the training dataset for this patient and

task may not be immediately visible on the performance metrics

if already having access to 40 min of the signal. Indeed, a

drastic increase in performance can be noticed for datasets smaller

TABLE 3 Parameters of trend lines fitted to the dataset translation results.

Slope Intercept R p-value

Left hand 0.0069 0.2612 0.8816 0.0003∗

Right hand 0.0044 0.2744 0.6999 0.0165∗

Statistically significant p-values for the correlation coefficient are marked with asterisks.

TABLE 4 Di�erences between models trained on sessions 0–6 and 30–36
in the dataset translation experiment.

Left hand Right hand

CNN+LSTM+MT 0.203 0.157

MLP 0.175 0.167

Multilinear model 0.274 0.239

than 40 min. This justifies the current experimental paradigms

in which 40–50 min of the signal is collected (corresponding

to achieving approximately 70–80% of maximum performance

achieved with datasets up to 160 min of data) for training 3D hand

translation models.

Theoretically, models with bigger capacity can benefit stronger

from having access to more data. One of the indicators of model

capacity can be the number of trainable parameters. In our
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FIGURE 10

Cosine similarity for random increase experiment, i.e., di�erent training dataset sizes when randomly selecting a subset of observations from the first
22 sessions. Every evaluation was performed 10 times (left, right).

case, MLP had the biggest number of trainable parameters (482

953), followed by CNN+LSTM+MT (238 772) and the multilinear

model (28 800). The difference in potential performance gains can

be visible in Figure 10. For small datasets, a multilinear model

outperforms DL-based approaches (Figure 10 left) or provides

approximately the same cosine similarity. However, the multilinear

model saturates at a lower level of cosine similarity, resulting in

a performance gap that could be explained by the difference in

model capacity. Multilinear models are more likely to provide

high performance compared to DL for small datasets, which is

consistent with the ML theory of less complex functions being less

prone to overfitting. RI results and fitted theoretical learning curves

revealed the models’ characteristics while limiting the influence of

other factors like distribution shifts or patient adaptation on the

decoding performance. Finally, all models saturate for relatively

small training datasets (50–90 min for RI, 50 min for FI, 30 min for

BI) with only slight improvement from adding more data (∼ 5%).

This amount of data is similar to the usual amount of data used in

BCI studies.

While this result validates previously developed data processing

and experimental pipelines, a question arises whether it is an

actual property/characteristic of brain signals or the shape of the

curve is influenced by the previous years of research in which

a relatively small amount of data was usually used to develop

pipelines. There are hundreds of hyperparameters influencing

data processing characteristics, starting from recording devices

(e.g., number of electrodes, mental task design), signal processing

pipelines (e.g., electrodes montage, filtering, standardization),

ending on hyperparameters of machine learning models of all

kinds (e.g., models’ capacity, regularization weight, the architecture

of models). The lack of huge improvement from increasing the

dataset may be caused just because we reached the level of decoding

close to maximum due to a lack of information in the data

needed for prediction. However, from another perspective, one

can hypothesize that the observed lack of huge improvement from

increasing the dataset is an effect of researchers overfitting to the

specific conditions observed so far, especially years of analysis of

small datasets.

4.1. Models optimization for big datasets

All offline experiments were performed with a fixed set

of hyperparameters. At the same time, different dataset sizes

may require a change in the hyperparameters. For example,

regularization limits overfitting, which should be less severe when

the training dataset is big. Similar logic applies to dropout, which

limits overfitting but on the other hand, it decreases models’

capacity by introducing redundancy in the network representation.

In the BI experiment, we observed a decrease in performance

when adding more data for the left hand dataset. Hypothetically,

increasing models’ capacity may solve this problem (assuming it

is caused by adding samples from different distributions to the

dataset) because models with bigger capacity might not have to

“choose” on which motor imagery patterns they should focus.
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However, hyperparameters search is time and resource-consuming,

so performing hyperparameters search for every dataset size may

not be reasonable. In the future, DL architectures with bigger

capacities in terms of the number of layers, number of neurons, etc.,

should be evaluated.

Datasets can also be artificially extended by using data

augmentation methods. A variety of beneficial data augmentation

methods exist for brain signals, especially EEG (Rommel et al.,

2022b), that might improve decoding accuracy for the 3D hand

movement control. Hoiem et al. (2021) showed, for computer

vision datasets, that data augmentation may act as a multiplier of

the number of examples used for training. In the light of recent

advancements in EEG data augmentation, i.e., class-wise automatic

differentiable data augmentation (Rommel et al., 2022a), it can be

interesting to investigate how the reported results generalize to

ECoG signals and influence, presented here, learning curves.

4.2. Patient training

UMAP embeddings may reveal interesting data manifold

structures. In our case, we observed signs of distribution change

on the embedding visualization and the separability of left/right

hand observations. Points start to be distributed denser in some

regions of the plots and align along lines (see for examples sessions

35, 42, 43 for the left hand in Supplementary Figure 1 or sessions

31, 41, 42 in Supplementary Figure 2). Additionally, in the dataset

translation experiment, we can see an increase in cosine similarity,

stronger for the left hand. Moreover, the overall best performance

for the left hand was achieved with only 3 sessions (∼25 min of

signal), outperforming models trained on much bigger datasets.

This suggests improvements in patient BCI skills by adapting

motor imagery patterns to the ML pipeline used in the study but

non-specific to the multilinear model because trends are visible

for all the evaluated approaches. At the same time, adding more

data with noisy and changing patterns may not be profitable for

the predictions. Thus, more focus should be placed on obtaining

high-quality and well-separable motor imagery patterns in the

signal. Patient adaptation is possible thanks to the visual feedback

provided to the participant during recordings. The potential for

patient adaptation creates a perspective for further improvements

of BCI performance with the experience gained by the patient in

long-term usage of the system. However, the reason adaptation is

visible only for the left hand remains unknown. We hypothesize

that the motor imagery patterns are easier to adapt for the left

hand thanks to the remaining residual control resulting in better

cortex preservation. Differences between hands in residual control

level can also affect the shape of presented learning curves and

be the reason why we observed significantly similar but distinct

characteristics. It is only a hypothesis that would require extended

experiments and analysis.

Our results showed a correlation between the local ID

of the training dataset and the models’ performance. This

may indicate that models achieve better results when trained

on more complicated manifolds. However, this hypothesis is

counterintuitive and contradictory to research in computer vision.

Thus, we hypothesize that higher IDmay also indicate more diverse

motor imagery patterns, better representing those found in the

test set. Diversity of patterns may be harmful to models with a

too-small capacity to learn them all. However, to some extent,

it may be helpful as it creates a more diverse dataset that better

reflects/covers the real manifold of all motor imagery patterns.

Finally, we hypothesize that another hidden factor affects both the

local ID and the amount of information needed for prediction, like

the diversity of motor imagery patterns, so a change in local IDmay

not cause an increase in the performance itself. For example, local

ID can also be increased by adding Gaussian noise to the signal,

decreasing cosine similarity instead. Investigation of this kind of

relationship is especially challenging in the case of brain signals

due to a lack of data understanding with "the naked eye," which

would significantly ease finding a correct interpretation of observed

phenomena. As a next step, more ID estimation methods could

be evaluated as statistically significant correlations for DL models

were observed only for local ID computed with ESS. In the case of

TwoNN, global ID did not show a significant correlation for DL

approaches (see Supplementary Figure 3). This could be caused by

worse TwoNN precision for high ID values as well as a lack of local

per-sample ID information in the global ID dataset estimate. The

relationship between local ID and performance should be further

analyzed on different brain signal datasets.

4.3. Interpretation limitations

All the computational experiments analyzed in this study were

obtained offline using data recorded with only one patient. Thus,

the learning curves and potential of patient adaptation should be

further investigated in a bigger population with online experiments

verifying our conclusions. Specifically, an online experimental

protocol aiming to isolate patient training (with or without visual

feedback) and the decoder’s update influence on performance

should be designed. Despite the limitations of the analysis, our

study could be a reference point for future work. It may also

influence experimental paradigm design and model selection,

especially considering difficult access to datasets allowing for this

kind of analysis.

Our results were computed on a real-life dataset recorded

with a tetraplegic patient. Analyzing this kind of dataset allows

us to draw conclusions about the population in real need of

assistive technology. However, interpretation of results is even

more challenging than in the case of healthy subjects because we

do not have access to solid ground-truth labels to train ML models.

This increases the already long list of factors that can affect the

performance of the decoders and may not be easily noticed when

analyzing ECoG signals. For example, in the ideal ML world, one

could analyze the learning curve and draw conclusions about the

required dataset size to effectively train ML models. In our case,

other factors like the nonstationarity of the signal play an important

role in the process. In some cases, we may add more data to the

dataset (e.g., BI experiment) and decrease the performance. Part of

the aforementioned issues limiting our interpretation capabilities

might be addressed with generative models (Goodfellow et al.,

2014) that are a popular tool in computer vision. In the case of brain

signals, the ability to produce signals with the given parameters and

characteristics may be used to verify and understand phenomena

observed in real-life experiments. First attempts to train GANs
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for EEG (Hartmann et al., 2018) data analysis were made, but a

significant amount of work still has to be done to create a consistent

framework for easier hypothesis evaluation.

4.4. Conclusions

Deep learning models performed better than a multilinear

model for almost all dataset sizes without requiring extended

training datasets, indicating DL models’ compatibility with BCI

dataset size restrictions. Furthermore, we showed the importance

of patient adaptation in the human-in-the-loop system that enabled

obtaining high-performance models with relatively small training

datasets. Finally, we propose UMAP embeddings and local intrinsic

dimensionality as a way to visualize the data and potentially

evaluate data quality. While our analysis was limited to only one

patient and a specific experimental paradigm, considering difficult

access to clinical data and the lack of similar studies for this

problem, computed results can be a reference for future ECoG

BCI research.
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