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An online hybrid BCI combining
SSVEP and EOG-based eye
movements

Jun Zhang, Shouwei Gao*, Kang Zhou, Yi Cheng and Shujun Mao

School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai, China

Hybrid brain-computer interface (hBCI) refers to a system composed of a

single-modality BCI and another system. In this paper, we propose an online hybrid

BCI combining steady-state visual evoked potential (SSVEP) and eye movements

to improve the performance of BCI systems. Twenty buttons corresponding to

20 characters are evenly distributed in the five regions of the GUI and flash at

the same time to arouse SSVEP. At the end of the flash, the buttons in the four

regionsmove in di�erent directions, and the subject continues to stare at the target

with eyes to generate the corresponding eye movements. The CCA method and

FBCCA method were used to detect SSVEP, and the electrooculography (EOG)

waveform was used to detect eye movements. Based on the EOG features, this

paper proposes a decision-making method based on SSVEP and EOG, which can

further improve the performance of the hybrid BCI system. Ten healthy students

took part in our experiment, and the average accuracy and information transfer

rate of the system were 94.75% and 108.63 bits/min, respectively.

KEYWORDS

hybrid brain-computer interface (hBCI), steady-state visual evoked potential (SSVEP),
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1. Introduction

Brain-computer interface (BCI) technology is a new human-computer interaction

technology that converts neural activities generated by brain activity into control signals, and

uses these signals to control external output devices (McFarland and Wolpaw, 2011). BCI

systems are divided into implantable and non-implantable types according to the acquisition

method of brain signals (Birbaumer et al., 2006). Currently, the most common methods

for extracting brain signals are non-implantable, including electroencephalography (EEG),

functional magnetic resonance imaging (fMRI; Yoo et al., 2004), magnetoencephalography

(MEG;Mellinger et al., 2007), and functional near-infrared spectroscopy (fNIRS; Hong et al.,

2015). Among non-implantable BCIs, EEG is widely used for its high temporal resolution,

ease of acquisition, and cost-effectiveness compared to other brain activity monitoring

modalities. Electrophysiological sources in the non-implanted brain include event-related

synchronization/desynchronization (ERS/ERD; Pfurtscheller, 2001), visual evoked potential

(VEP; Bin et al., 2011), steady-state visual evoked potential (SSVEP), slow cortical potential

(SCP; Mensh et al., 2004), µ and β rhythms (McFarland et al., 2006), and P300 evoked

potentials (Gu et al., 2019).

Compared with other types of BCI systems, the SSVEP-BCI system has unparalleled

advantages in real-time control and practical application. Firstly, the SSVEP-BCI system

requires little or no training, whereas the P300-BCI and MI-BCI systems require a longer

period of training for the individual prior to the experiment. Secondly, SSVEP is a physical

response of the primary visual cortex to visual stimulation, and its signals are mainly
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concentrated in the occipital region of the brain and have a distinct

periodic and rhythmic. Finally, the SSVEP-BCI system has a high

ITR compared to other BCI systems (Li et al., 2021).

Current single-modality brain-computer interfaces face some

challenges (Ma et al., 2017), including poor robustness for long-

time operations, poor human-machine adaptation and system

stability. In addition, the number of tasks achievable by a single-

modality BCI system is limited, which restricts the ability of

external output devices to accomplish complex tasks. The increase

in the number of functional instructions leads to a decrease in

classification accuracy, and it is difficult for single-modality BCI

systems to obtain better results in practical applications. In view

of the above-mentioned problems of single-modality BCI systems,

the concept of hybrid brain-computer interfaces has been proposed

in recent years (Chai et al., 2020; Zhu et al., 2020). A hybrid

BCI is a system that mixes a single-modality BCI with another

system (BCI or non-BCI system; Pfurtscheller et al., 2010; Duan

et al., 2015). Hybrid BCI has multiple input modes, and the input

signals can be processed in parallel or serial (Allison et al., 2011).

SSVEP can form a hybrid BCI with other EEG signals, such as

P300 (Panicker et al., 2011; Yin et al., 2015), electrooculography

(EOG; Saravanakumar and Reddy, 2019; Zhou et al., 2020), and

electromyography (EMG; Lin et al., 2016; Rezeika et al., 2018).

Yin et al. proposed a hybrid BCI speller by superimposing SSVEP

stimulus on P300 stimulus to increase the difference between

targets in the same row or column, and then recogniz the target by

a fusion method with maximum-probability estimation (MPE; Yin

et al., 2015). Lin et al. proposed a hybrid BCI speller based on EMG

and SSVEP, with a total of 60 targets composed by four identical

sets of frequencies (Lin et al., 2016). EMG is used to identify the

group, and SSVEP is used to select the targets within the group

based on the flash frequency. This paradigm improves accuracy and

ITR with the addition of a second selection task. A hybrid paradigm

based on EOG and SSVEP was proposed by Saravanakumar et

al. In such paradigms, EOG is used for selecting regions or

groups by blinking, while SSVEP is used for recognizing targets

(Saravanakumar and Reddy, 2019). This SSVEP-EOG paradigm

requires mental resources for the blink selection of groups, which

is prone to fatigue, and the eye-movement features in EOG are not

fully utilized.

This paper proposes a new method to improve the hybrid BCI

performance by combining SSVEP and EOG-based eye movement.

A total of 20 characters are distributed in five regions of the

GUI and start flashing at different frequencies and initial phases

simultaneously. At the end of the flashing, the characters in four

regions move in different directions, and the user continues to

follow the target through eye movements. In this paper, both

the CCA and FBCCA methods were used to detect SSVEP, and

it was found that the FBCCA method has more performance.

The eye movements are judged by analyzing the EOG waveform

features, and the 20 target grouping situations are decided based

on the eye movement. Based on the online hybrid BCI system

based on SSVEP and EOG-based eye movement proposed in this

paper, ten healthy school students participated in our experiments.

This system has satisfactory performance in the experiment with

an average ITR of 108.63 bits/min and an average accuracy of

94.75%.

2. Materials and methods

2.1. Data acquisition

Based on the ADS1299 chip from Texas Instruments, we

designed an eight-channel high-precision signal amplifier with a

sampling rate of 250 Hz. The frequency passband of the amplifier

is from 0.15 Hz to 200 Hz for simultaneous acquisition of EEG

and EOG. Based on the standard position in the 10–20 system,

the forehead (Fpz) and left mastoid electrode (A1) were selected

as the reference electrode and right leg drive electrode (Figure 1A),

respectively, and five channels (PO3, PO4, Oz, O1, and O2) in the

occipital region were selected to acquire EEG data. In this paper,

a bipolar lead was used to acquire EOG data, and the acquisition

electrodes were placed as shown in Figure 1B, with four electrodes

placed on the vertical and horizontal axes of the eye for measuring

eye movements. The ground electrode for EEG signal acquisition

was used as the positive electrode for the vertical EOG signals.

2.2. Stimulation paradigm

Sinusoidal stimulation can not only effectively solve the

problem of screen refresh rate limitation but also alleviate

the problem of experimental fatigue in SSVEP (Jia et al.,

2010). Furthermore, the phase information can enhance the

discrimination of SSVEP at similar frequencies. Based on the

above advantages, this paper adopts a periodic sinusoidal visual

stimulation paradigm combining frequency and phase information

to induce SSVEP (Chen et al., 2014, 2015b). As shown in

Figure 2, the interface has a total of 20 buttons, and the

interface is divided into five regions (up, down, left, right,

and middle), and four buttons are evenly distributed in each

region. Each button flashes at a different frequency (8–15.8Hz

in 0.4 Hz intervals) and phase (0–1.5π in 0.5π intervals). The

sinusoidal stimulus sequence Sti(n) used to induce SSVEP is as

follows:

Sti(n) = 1
2 (1+ sin(2π f(m,k)(n/FPS)+ θ(m,k)))

f(m,k) = [f0 + (m− 1)1f1+(k− 1)1f2],m = 1, 2, 3, 4, 5

θ(m,k) = [θ0 + (k− 1)1θ], k = 1, 2, 3, 4

(1)

The stimulus sequence Sti(n) is from 0 to 1 (0 is black and 1 is

white), which is modulated by frequency and phase, and FPS is the

screen refresh rate. Where m is the index of the interface region,

and 1f1 (0.5 Hz) is the frequency interval of different regions; k

is the index of the target in the same region; 1f2 (2 Hz) is the

frequency interval, and 1θ (0.5 π) is the phase interval of the

same region.

Specifically, the designed paradigm of this paper includes two

stages: the SSVEP stimulus stage and the eye movement stimulus

stage. In the first stage of the SSVEP stimulus, 20 buttons start

flashing simultaneously (for 1.1 s), and the subject stares at the

button of his/her choice. The second stage is the eye movement

stimulus. When the 1.1S sinusoidal stimulation ended, 16 buttons

in four regions (top left, bottom left, top right, and bottom right)
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FIGURE 1

(A) Location of electrodes for EEG signals acquisition. (B) Location of electrodes for EOG signals acquisition.

FIGURE 2

Schematic diagram of the button and changes layout displayed on the GUI. The blue arrows indicate the direction of movement of the regions, and

the frequency and initial phase of each target flicker used for SSVEP are also shown in the diagram. The frequency interval in the same region is 2 Hz

and the phase interval is 0.5π .

in the GUI will move in different directions. When the button

starts moving, the subject continues to follow the target with his/her

eyes, and the corresponding eye movement occurs. As shown in

Figure 2, the left GUI shows the initial position at the beginning

of the button movement, and the right GUI shows the position

at the end of the button movement. The blue arrow indicates the

direction of button movement. Each button moves at a constant

speed, gradually moving from the initial position to the target

position, with a total time of 0.3 s. The button stays for 0.2 s after

reaching the target position. When the eye movement stimulus

stage is completed, the position of each button is suddenly reset

back to its initial position, which ensures that the initial position of

each button remains the same. At the end of a single experiment the

border color change of the characters analyzed by the system turns

red for 1S. The method of using 20 buttons divided into five regions

evenly distributed so that the frequency gap between two buttons

in the same region is 2 Hz, and the phases are not the same. The

design of button movement in the GUI can induce eye movements

and group the buttons by analyzing the EOG signals.

Figure 3 illustrates the stimulus process during a representative

trial of the online experiment, as well as an example of EEG and

EOG signals processing and final decision method. Considering

that the visual system has a response delay, the EEG data

for the first 130 ms are discarded during SSVEP analysis (Di

Russo and Spinelli, 1999). The eye movement signals will have

obvious peaks or valleys when the eye movement is stimulated.

Experiments have found that some peaks or valleys disappearing

tails may occur during rest periods. In order to improve the
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FIGURE 3

The online experiment process of the hybrid BCI system proposed in this paper. Firstly, 1.1 s of EEG data is acquired for SSVEP detection, and then 1s

of EOG data (including 0.5 s of rest time EOG signals) is acquired for eye movement direction detection. A decision is made based on the results of

the two detections, and the final output is obtained.

FIGURE 4

Waveforms of horizontal and vertical channels during eye movements (left). Blue line indicates horizontal channels and orange line indicates

horizontal channels.

accuracy of eye movement analysis, we collect EOG signals

during stimulation time and rest time to analyze eye movement

direction comprehensively. Specifically, each trial consisted of a

1.6 s stimulus and a 0.5 s rest period (the time from the end of

a trial stimulus to the start of the next trial). The following paper

will describe the signal processing and decision-making process

in detail.

2.3. EEG signal processing

CCA is a multivariate statistical method that is used to analyze

the correlation that exists between two sets of multidimensional

variables. The CCA method can be used for SSVEP detection in

multichannel EEG signals (Lin et al., 2006). Compared with the

CCA method, the FBCCA method uses harmonic information
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FIGURE 5

The waveform of the corresponding channel of eye movement, d is the distance between the peak and the valley, and t is the time di�erence

between the peak and the valley.

more effectively when detecting SSVEP (Chen et al., 2015a). The

FBCCAmethod consists of three main steps. Firstly, the input EEG

data is decomposed into N sub-band components by a band-pass

filter set. Then the CCAmethod is performed on each of theN sub-

band components. Finally, the correlation coefficients of theN sub-

band components are weighted and averaged to obtain the overall

correlation coefficient value of each stimulus frequency, and the

largest correlation coefficient value corresponding to the frequency

is selected as the final recognition result. In this study, this paper

evaluates the performance of both CCA and FBCCA methods for

SSVEP identification. In this study, the performance of CCA and

FBCCA methods for SSVEP recognition in online experiments

is first compared, and then the offline analysis compares the

classification results of FBCCA and CCA methods with different

window lengths. In this paper, harmonic components of N sub-

bands (N = 3 in this study) are extracted from the EEG signals X

using Butterworth infinite impulse response (IIR) bandpass filters.

These sub-band filters have the same upper bound frequency (77

Hz) but different lower bound frequencies. For the nth sub-band

component Xn, the lower bound frequency is n× 7 Hz.

2.4. EOG signals processing

At the end of the SSVEP stimulus, the buttons in the four

regions will move, and the subjects continue to follow the selected

target with their eyes, and the corresponding eye movements occur.

The EOG signals were recorded for 1S (250 sampling points)

segments after the end of the SSVEP stimulus, and the EOG signals

were filtered to the 1–10 Hz range using a 3rd-order Butterworth

bandpass filter. As shown in Figure 4, the amplitude change of the

channel signal corresponding to eye movement is greater than the

amplitude variation of the channel signal corresponding to no eye

movement (Barea et al., 2012). The root mean square (RMS) of

the EOG vertical channel and horizontal channel was calculated

by the following formula to determine which channel has eye

movement:

Hrms =

√

√

√

√

√

N
∑

i=1
xi2

N
,Vrms =

√

√

√

√

√

N
∑

i=1
xi2

N
(2)

Hrms is the RMS of the EOG horizontal channel; Vrms is the

RMS of the EOG vertical channel; xi is the amplitude of the EOG

signals at the i-th sampling point of the corresponding channel;

N are the number of sampling points. As shown in Figure 5, the

EOG signals in the channel corresponding to the eye movement

signal has obvious time-domain waveform features. The waveform

features of EOG are calculated by the following formula:

Hd = ap − av,Ht = tp − tv
Vd = ap − av,Vt = tp − tv

(3)

Hd andVd is the peak-to-peak values of the channels.Ht andVt

is the time of the peak minus the time of the trough of the channel.

The following three Criterions were used to make decisions

about eye movement direction (Figure 6).

Criterion I: Hd <= thresholdv and Vd <= thresholdv,

thresholdv is the threshold value of the peak-to-peak value.

Criterion II: Hrms
Vrms

>= thresholdd or Vrms
Hrms >=

thresholdd, thresholdd is the threshold value of the channel

RMS difference.

As shown in Figure 6, if Criterion I is satisfied, no eye

movement occurs, and the subject stares at the middle four buttons

(the value of the indexm of the interface region is 5). If Criterion I is

not satisfied, continue to analyze the direction of eye movement by

Criterion II. If Criterion II is satisfied, continue to judge the specific
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FIGURE 6

Flow chart of eye movement recognition.

eye movement direction through Ht or Vt . If both Criterion I and

Criterion II are not satisfied, the eye state cannot be determined.

2.5. Decision-making method based on
SSVEP and EOG

This paper evaluates the online performance of SSVEP through

CCA and FBCCAmethods, and analyzes whether the eye move and

the direction of movement through waveform analysis. Decisions

on the final output were made using the following methods

(Figure 7).

Case 1: When the eye movement features satisfy Criterion I or

Criterion II, the eye state is effectively analyzed. The 20 stimulus

targets were grouped and selected according to the results of no eye

movement or the direction of specific eye movement. The template

signal of CCA was composed of four stimulus frequencies of the

grouped results.

Case 2: None of the eye movement features satisfies

Criterion I or Criterion II, indicating that the eye state is not

effectively analyzed. The template signals composed of all stimulus

frequencies were directly selected for CCA analysis and FBCCA

analysis.

3. Experiments and results

We recruited 10 students (seven boys and three girls) from

the school to participate in the experiment. The following online

spelling experiment was conducted in a quiet environment, and the

results were analyzed after completion of the experiment.

3.1. Spelling test experiment

The spelling system designed in this paper consisted of a

laptop computer with an extended display, and the designed visual

stimulation was presented on the extended display with a screen

refresh rate of 60 Hz. Subjects were asked to sit in front of the laptop

display, with the distance between the display and the subject kept

at about 40 cm.

In this experiment, we need to test the online performance

of the hybrid BCI system based on SSVEP and EOG-base eye

movement proposed in this paper. Before each stimulus, the

background color of the character to be selected changes to red at

break time (0.5 s), which is the symbol to indicate which button is

the target button. The order of selection is from the character "1"

to "j." Each experiment contains six sets of stimuli, each requiring

the subject to select each character in a specified order. He/she was

required to gaze at the flashing character and then complete the

specified eye-movement actions according to the GUI cues. In a

complete trial, each character on the screen was selected six times

(120 pre-specified characters).

3.2. Analysis of results

We choose to use accuracy, ITR (bits/min) to evaluate the

performance of the system. The ITR represents the amount of

information output by the system per unit time and is calculated

as follows:

ITR =
60(log2 M + Plog2P + (1− P)log2(

1−P
M−1 ))

T
(4)
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FIGURE 7

Flow chart of decision-making methods.

FIGURE 8

Eye movement classification accuracy of dual-lead channel EOG electrodes.

Where M is the number of characters. P is the accuracy, and

T is the average response time. Each experiment included 1.6 s

stimulation and 0.5 s rest time, so T was fixed at 2.1 s.

The single-modality part is first analyzed, including the results

of the EOG-based eye movement classification accuracy and the

SSVEP classification accuracy for each experiment. In EOG eye

movement recognition, the thresholdv is used to determine whether

eye movements occur. We analyze the relationship between the

number of incorrect judgments and the thresholdv. As shown in

Figure 9A, the number of misjudgments first decreases and then

increases as thresholdv increases. The role of the thresholdd is

to determine the direction of eye movements. When the value

of thresholdd is 1, corresponding to a simple hybrid system,

the EOG signal must analyze the direction of eye movements

to determine the region of the button. Figure 8 shows the

recognition accuracy of EOG eye movements at this time, with

results of 97.42, 97.33, 98.00, 92.00, and 96.67% (mean 96.28%).

When the value of thresholdd is >1, the hybrid system uses the
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FIGURE 9

(A) Relationship between the number of misjudgments and the thresholdv. (B) Relationship between the classification accuracy of the hybrid system

and the thresholdd.

decision-making method based on SSVEP and EOG proposed

in the previous section (Figure 7). The region of the button is

only confirmed when the eye state is effectively analyzed. We

analyze the relationship between the classification accuracy of

the hybrid system and the thresholdd. As shown in Figure 9B,

the classification accuracy of system first increases and then

decrease as thresholdd increases. Based on the results of the

above analysis, the value of thresholdv chosen in this paper is

84 and the value of thresholdd is 1.56. Figure 10 shows the

SSVEP classification accuracy based on different methods.The

above results show that each eye movement direction of the

EOG and each frequency of the SSVEP can be well-identified,

confirming the validity of the single modality identification

parameter selection.

After EEG combined with EOG to form a hybrid BCI,

compared with the single-modality BCI, the classification accuracy

of each group was greatly improved (Figure 10). For those subjects

with relatively low eye movement classification accuracy (<94%),

the classification accuracy can be further improved by using the

decision-making method based on SSVEP and EOG proposed

in this paper (Figure 11). The hybrid BCI system corresponds

to the case where the value of thresholdd is 1. The hybrid BCI

system using decision-making method based on SSVEP and EOG

corresponds to the case where the value of thresholdd is 1.56. On

average, all subjects performed satisfactorily with high accuracy of

94.75 ± 3.92% and relatively high ITR of 108.63 ± 8.91 bits/min.

4. Discussion

A hybrid BCI system combining SSVEP and EOG signals is

proposed in this paper. SSVEP is induced by JFPM [16], where the

phase encoding is merged into the frequency encoding. Specifically,

by modulating the initial brightness of these flashing buttons,

different initial phases are exhibited in the sinusoidal stimulation,

which can increase the differences between targets within the same

region of the GUI. The traditional hybrid BCI method needs to

consume mental resources and use the signal of another system

to actively group or select targets. The GUI designed in this

paper solves this drawback by making the buttons move, so the

user can unconsciously make eye movements just by staring at

the target without consuming mental resources. The results of

eye movements were determined by waveform analysis of the

acquired EOG signals. Firstly, according to the paradigm proposed

in this paper, SSVEP and EOG do not overlap during signal

analysis due to eye movements after SSVEP stimulus. Secondly,

EOG components are concentrated in prefrontal regions, which

are located away from the SSVEP, whereas SSVEP components

are mainly concentrated in the occipital regions of the brain (Bin

et al., 2009). Finally, according to the frequency bands characterized

in this study, the EOG signals appear in the low frequency (1–

5 HZ), while the SSVEP appears in the middle frequency band

(8–16 HZ).

Although the number of parts of EOG-based eye movement

direction recognition can be increased, the increase in the number

means that the accuracy of eye movement recognition decreases.

The number of SSVEP stimulus is limited by the limited screen

resolution, and increasing the number also reduces accuracy.

For these reasons, the hybrid paradigm designed in this paper

contains four eye movement directions, each direction and no eye

movement contains four buttons (20 buttons in total) flashing at

different frequencies. The EOG is used to group the SSVEP in

the hybrid system, and the SSVEP grouping error will obviously

reduce the performance of the hybrid BCI system. In order to

improve the accuracy of EOG signals grouping, the decision-

making method proposed in this paper judges whether the eye state

is effectively analyzed through the set threshold. The EOG only

acts as a group when the eye state is effectively analyzed, otherwise

the SSVEP is analyzed by selecting a template signal consisting of

all stimulus frequencies. Table 1 shows the experimental results of

EOG-based eye movement system, SSVEP single-modality system,
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FIGURE 10

Classification accuracy of single-modality SSVEP and hybrid BCI system based on CCA and FBCCA.

FIGURE 11

Classification accuracy of single-modality SSVEP BCI system, hybrid BCI system, and hybrid BCI system using decision-making method based on

SSVEP and EOG.

and hybrid BCI system. It can be found that compared with

the single-modality system, the ITR of the hybrid BCI system

increases and the accurate classification rate improves, while the

decision-making method based on SSVEP and EOG proposed in

this paper can further improve the performance of the hybrid BCI

system (Figure 11).

Our offline analysis compares the classification results of

FBCCA and CCA methods at different window lengths, as shown

in Figure 12. The statistical results show that the classification

accuracy of FBCCA is significantly better than the results of

CCA in most experiments. In recent studies, TRCA and eCCA

methods are used in the analysis of SSVEP (Wang et al., 2014;
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TABLE 1 Experimental results of online systems: accurate classification rate and ITR for EOG-only, SSVEP-only and hybrid systems.

EOG SSVEP (based CCA) Hybrid (EEG-EOG)

Subject ID Accurate classification
rate (%)/ITR (bits/min)

Accurate classification
rate (%)/ITR (bits/min)

Accurate classification
rate (%)/ITR (bits/min)

S1 90.00/47.23 57.50/43.80 95.83/111.29

S2 95.00/55.30 71.67/64.53 91.67/101.55

S3 100.00/66.34 67.50/58.05 97.50/115.63

S4 95.00/55.30 86.67/91.12 95.00/109.23

S5 98.33/61.89 60.83/48.35 95.83/111.29

S6 98.33/61.89 50.83/35.24 94.17/107.24

S7 93.33/52.44 69.17/60.60 93.33/105.30

S8 96.67/55.30 85.00/87.85 97.50/115.63

S9 95.00/46.70 65.00/54.32 95.83/111.29

S10 91.67/49.76 67.50/58.05 90.83/99.73

Mean 93.70/53.05 68.17/59.07 94.75/108.63

FIGURE 12

O	ine classification accuracy of CCA and FBCCA methods at di�erent window lengths. Three bars in each experiment indicated three window

length from 0.8 s (left) to 1.2 s (right) at a step of 0.2 s. The blue and yellow bars show the results of the CCA and FBCCA, respectively.

Nakanishi et al., 2015, 2017), but the work of these methods

to collect SSVEP training data increases the difficulty of the

system. In contrast, the FBCCA method does not require data

for training, and the performance of online analysis is also

high, with an average accuracy of 94.75% and an ITR of

108.63 bits/min.

Table 2 compares the performance between the hybrid BCI

system proposed in this paper and the traditional hybrid

BCI systems. Therefore, the ITR of the system proposed

in this paper are higher than those of traditional hybrid

BCI systems.

5. Conclusion

In this study, an online hybrid BCI system based on

SSVEP and EOG-based eye movements was designed.

According to the eye movement direction, 20 characters
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TABLE 2 Comparison between our system and several other hybrid BCI systems.

References Paradigm RT(s) Number of
commands

Accuracy (%) ITR (bits/min)

Xu et al. (2014) SSVEP + P300 ≥ 4 36 87.80 54.00

Yin et al. (2015) SSVEP + P300 ≥ 5 64 95.18 50.41

Lin et al. (2016) SSVEP + EMG 5 60 85.80 90.90

Rezeika et al. (2018) SSVEP + EMG ≥ 5 30 93.75 31.05

Saravanakumar and Reddy

(2019)

SSVEP + EOG ≥ 4 36 98.33 69.21

Proposed in this paper SSVEP + EOG 2.1 20 94.75 108.63

are divided into five parts. EOG is used to classify a target

in which part, and SSVEP is used to classify the target.

The average accuracy and ITR were 94.75% and 108.63

bits/min, respectively, and higher than either of the two

single-modality systems.
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