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Introduction: Children start to run after they master walking. How running develops,

however, is largely unknown.

Methods: We assessed the maturity of running pattern in two very young, typically

developing children in a longitudinal design spanning about three years. Leg and

trunk 3D kinematics and electromyography collected in six recording sessions, with

more than a hundred strides each, entered our analysis. We recorded walking during

the first session (the session of the first independent steps of the two toddlers at

the age of 11.9 and 10.6 months) and fast walking or running for the subsequent

sessions. More than 100 kinematic and neuromuscular parameters were determined

for each session and stride. The equivalent data of five young adults served to define

mature running. After dimensionality reduction using principal component analysis,

hierarchical cluster analysis based on the average pairwise correlation distance to the

adult running cluster served as a measure for maturity of the running pattern.

Results: Both children developed running. Yet, in one of them the running pattern did

not reach maturity whereas in the other it did. As expected, mature running appeared

in later sessions (>13 months after the onset of independent walking). Interestingly,

mature running alternated with episodes of immature running within sessions. Our

clustering approach separated them.

Discussion: An additional analysis of the accompanying muscle synergies revealed

that the participant who did not reach mature running had more differences in

muscle contraction when compared to adults than the other. One may speculate that

this difference in muscle activity may have caused the difference in running pattern.

KEYWORDS

children, development, running, clustering, muscle synergies, neuromuscular control,
kinematics

1. Introduction

Independent walking is a major developmental milestone for children. In typically
developing children it commonly occurs between 9 and 15 months of age (Piper and Darrah,
1994; Storvold et al., 2013). While most parents can recall at what age their children started
walking independently, almost none of them can put a finger on when the children started
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running. One reason for this might be the difficulty to tell walking and
running apart. This is not so in adults’ locomotion, where even a still
picture may serve to distinguish walking from running. Obviously,
the presence of a phase of flight can do the job, i.e., when no leg
touches the ground. In very young children, discriminating walking
from running is often not that straight-forward. Early running may
appear as fast walking which raises the question on which parameters
these two locomotory states really differ.

In a previous work we studied 5-9-year-old children (Bach et al.,
2021a). There we realized that classical measures for classifying
walking and running mostly fail. Neither the presence of a flight
phase nor the phase relation of energetics was sufficient to distinguish
mature from immature running patterns in these children. We
suggested using a ‘shotgun’ approach involving a large set of kinetic
and kinematic parameters with subsequent principal component
analysis (PCA) and hierarchical clustering that allowed for separating
the degree of maturity of walking and running with great success.

As it turns out, there is no immediate agreement between
the chronological age and the maturity of treadmill walking and
running patterns (Bach et al., 2021a). Yet, the amount of walking
experience clearly influences the walking pattern and that improves
with practice (Sutherland et al., 1980; Forssberg, 1985; Cheron et al.,
2001; Ivanenko et al., 2005). Be it the recovery of mechanical energy,
the external work, or the inter-segmental kinematic coordination, all
these features gradually evolve toward those of adults when walking
experience increases (Ivanenko et al., 2004; Ivanenko et al., 2007a).
Not only do joint kinematics and kinetics improve progressively
(Hallemans et al., 2006), but also the duration of electromyographic
activity of the gastrocnemius medialis muscle is reduced (Cappellini
et al., 2016). We believe that the (gain of) walking experience also
influences the development of running which ultimately tends toward
the mature pattern observed in adults. Very recently, it has been
shown that the motor control of running is influenced by motor
exploration and learning (Bach et al., 2021b). As such, it seems quite
likely that developmental characteristics of walking are also mirrored
in the development of running.

Tackling such commonalities is a challenge, which may fail when
following more traditional routes in studying locomotion, namely
from either a sole neuromuscular (e.g., Ivanenko et al., 2006) or a
sole biomechanics perspective (e.g., Rozumalski et al., 2015; Liu et al.,
2022). We advocate combining both perspectives as several recent
studies suggest their interdependence during infancy (Forssberg,
1985; Dominici et al., 2011; Cappellini et al., 2016; Dewolf et al.,
2020; Bekius et al., 2021). At the onset of independent locomotion,
walking and running may overlap so strongly for their neural and
biomechanical control that some consider walking and running in
infants not as distinct modes of locomotion as they are in adults
(Vasudevan et al., 2016; Dewolf et al., 2020). If walking and running
are intertwined when infants learn to walk, then at which moment
will they “separate” as much as in adults?

Answering the relation between the onset of independent walking
and the development of running requires longitudinal assessments
spanning several years. To quantify the influence of time since onset
of independent walking, one must assess participants at the very
onset of independent walking (in fact assesement have to start even
before that). And recordings must be frequent enough to properly
sample the development of running. We monitored two typically
developing children for about three years after their first independent
walking steps. We conducted seven experimental sessions during
each of which we guaranteed more than 100 running strides when

recording leg and trunk 3D kinematics and electromyography
(EMG). Using the aforementioned shotgun method that encompasses
kinematics and neuromuscular data, we investigated the earliest
development of running. Possible mechanisms underlying the
coordinated locomotion were explored through muscle synergy
analysis and by integrating some of the corresponding outcome
parameters in the shotgun approach. We expected this approach to
allow for determining the degree of maturity also in very young
children who just learned / are learning to run. We expected the
development of running maturity to be similar, if not identical, to the
onset of independent walking when stratifying its time course.

2. Materials and methods

2.1. Participants

We recruited two children and five adults. The two children (1
male/1 female) were recruited before taking their first independent
steps as part of a larger study (Zandvoort et al., 2022). The adult
participants (4 male/1 female, 30-45 years old) were recruited by
word-of-mouth as part of a previous study (Cappellini et al., 2006).
Both the adults and the legal guardians of both children gave written
informed consent in compliance with the Declaration of Helsinki.
The inclusion of the children was approved by The Scientific and
Ethical Review Board of the Faculty of Behavioural & Movement
Sciences, Vrije Universiteit Amsterdam, Netherlands (File number:
VCWE-2016-082). The inclusion of adults was in accordance with
the procedures of the Ethics Committee of the Santa Lucia Institute,
Rome, Italy (Prot. CE-AG4-PROG.99-155).

The first recording session of each child participant took place
within 9 days of taking at least four consecutive steps without support.
The time of first indpendent steps were relayed by the parents to
the researchers.

2.2. Setup

Seven sessions were recorded from first steps (FS) to∼ 32 months
after onset of independent walking for each of the two children
(P1 and P2). The initial plan was to record each child every three
months from their first independent steps until one year after onset
of independent walking with a follow-up every six months from that
timepoint. As this was not achieved with the first child, we matched
the second child to the spacing of the recordings of the first child. As
sketched in Figure 1, the following sessions were recorded: first steps
session (FS), 2 months after the FS (denoted +2), as well as 6 months
(+6), 9 months (+9), 13 months (+13), 19 months (+19), and finally
32 months after FS (+32).

The experiments consisted of locomoting overground and on
a pediatric treadmill (N-Mill 60 × 150 cm, Motek Medical BV,
Amsterdam, the Netherlands) with either no support or trunk/hand
support. During the first session (FS), only walking was recorded.
During the subsequent sessions, we recorded both walking and fast
walking and/or running. Children were tasked to move from one end
of the lab to the other end. They were instructed to either walk or run,
sometimes enticed with toys or food. When the child was instructed
to run, but the speed was between their normal running and walking
speed, then the trial was noted as “fast walking”. For sessions +6, +9,
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FIGURE 1

Overview of age and walking age (time since onset of walking) for
each session/child. A total of seven sessions were recorded for each
child. At the end, six sessions were analyzed for each child, and these
were matched based on walking age (bottom plot) in months. A few
weeks separate the different sessions between P1 and P2. +2 is
hatched as not analysed due to poor data quality. FS: First steps, +2,
+6, +9, +13, +19, +32 refers to the number of months since first steps,
i.e., time since onset of independent walking.

+13, +19, and +32, only the trials labelled as fast walking or running
were retained for further analysis.

All children sessions, except one, were recorded in the
BabyGaitLab of the Department of Human Movement Sciences at
the Vrije Universiteit Amsterdam, The Netherlands; the remaining
session was recorded at the clinical gait laboratory of the Department
of Rehabilitation Medicine at the Amsterdam UMC (location
VUmc). The adults were recorded in the laboratory of the Santa
Lucia Foundation, Rome, and included in a previous publication
(Cappellini et al., 2006).

The children were barefoot during all recordings and wore only
diapers or underpants. When locomoting overground, they were
encouraged by researchers/parents to walk/run in a straight line.
Sometimes they were supported by handhold. When on the treadmill,
the speed was adjusted to a comfortable speed and type of locomotion
(walk or run). On the treadmill, the children were supported on trunk
or by handhold by the researcher/parent. Adults were running at 7
and 9 km/h on a treadmill (EN-MILL, 3446.527, Bonte Zwolle BV,
Netherlands) wearing shoes.

2.3. Data acquisition

2.3.1. Toddlers
During each session for P1 and P2, bilateral 3D kinematics

was recorded using reflective markers and Vicon motion capture
system (Oxford, UK) with 10 (12 for the session recorded at
VUmc) infrared cameras affixed to the ceiling, sampled at 100 Hz
and one (four for the session recorded at VUmc) video camera
(Vicon camera Oxford, UK) sampled at 100 Hz (50 Hz for the
session recorded at VUmc). Reflective markers (14 mm) were
placed bilaterally on the acromion (SHO), iliac crest (IL), greater
trochanter (GT), lateral femur epicondyle (LE), lateral malleolus

(LM) and fifth metatarsal (VM). For each session, a static trial
was recorded where the participant was standing still to be used
for correction of the joint angles. We recorded electromyography
(EMG) bilaterally from the following 16 muscles: tibialis anterior
(TA), medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus
(SOL), rectus femoris (RF), vastus medialis oblique (VMO), vastus
lateralis oblique (VLO), semitendinosus, biceps femoris (BF), tensor
fascia latae (TFL), gluteus maximus (GLM), erector spinae level L2
(ES), latissimus dorsi, trapezius, deltoid, and biceps brachii. EMG
was recorded using mini-golden reusable surface EMG disc-electrode
pairs (15-mm-diameter electrodes, acquisition area of 4 mm2), placed
at the approximate location of the muscle belly on the cleaned skin,
with interelectrode spacing of ∼1.5 cm. The placement followed
the SENIAM recommendations (Hermens et al., 1999), and were
sampled at 2 kHz. Movement artifacts were minimized by fixating the
electrodes and wireless EMG sensors to the leg using elastic gauzes.
EMG was recorded with a wireless system (Mini wave plus, Zerowire;
Cometa, Bareggio,Italy) and saved in Nexus software as backup. EMG
recordings included an online bandpass filter 10 Hz-1 kHz. For each
session, we also recorded electroencephalogram (EEG) using pre-
gelled caps (ANT neuro, Hengelo, The Netherlands) which could not
be included in the analysis due to too many artefacts.

The pediatric treadmill recorded vertical ground reaction forces
with a sampling frequency of 1 kHz. For each session, the
anthropometrics of the child was measured and recorded, such as
the total length, the weight measured by weighing scales m, the
body weight measured by treadmill bwtreadmill, and the length and
circumference of the main body segments (Schneider and Zernicke,
1992). The segment lengths estimated from the static trials were used
to determine leg length.

When running on the treadmill, children were supported on the
trunk or by handhold by the researcher/parent. The amount of body
weight support (BWS) provided to the children during treadmill trials
were estimated as the percentage reduction of the mean vertical forces
compared to bwtreadmill. More than 30% of BWS may result in altered
foot trajectories and temporal patterns of the muscle synergies in
toddlers walking (Dominici et al., 2007; Kerkman et al., 2022). Thus,
only strides with less than 30% BWS were retained for further analysis
(∼22 and∼28% of strides were removed for P1 and P2, respectively).

2.3.2. Adults
Data acquisition has been described previously in Cappellini

et al. (2006). In brief, we used reflective markers (14 mm) and
Vicon motion capture system (Vicon camera Oxford, UK, sampling
at 100 Hz) with 9 infrared cameras spaced around the treadmill
to record bilateral 3D kinematic. Reflective markers were placed
bilaterally on SHO, IL, GT, LE, LM, heel, and VM; these are the
same anatomical locations as used for P1 and P2 (except for the
heel marker). The following 32 muscles were recorded unilaterally:
TA, flexor digitorum brevis, LG, MG, SOL, peroneus longus, VLO,
VMO, RF, sartorius, BF, semitendinosus, adductor longus, TFL,
GLM, gluteus medius, external oblique, internal oblique, latissimus
dorsi, iliopsoas, rectus abdominis, erector spinae recorded at T1,
T9, and L2 (ES), biceps brachii, triceps brachii, deltoideus (anterior
and posterior portions), trapezius (inferior and superior portions),
sternocleidomastoid, and splenius using Delsys electrodes (model
DE2.1, Delsys, Boston, MA). The signals were amplified, filtered (20-
450 Hz), and sampled at 1 kHz. Height and weight were recorded for
all participants. Leg lengths were not recorded but could be inferred
from the 3D kinematics.
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2.4. Data analysis

2.4.1. Kinematics and gait parameters
Foot contact and foot-off were manually determined for both

sides by visual inspection using digitial video recordings and the
foot marker trajectories from the Nexus software (Vicon, Oxford,
UK) in the children. For the adults, foot contact was defined as
the local minima of the heel marker and foot off as the lift-off of
the VM marker by 2 cm from the minimum detected at stance
(Cappellini et al., 2006). Strides with jumping, dragging etc. were
excluded from further analysis as was gait initiation and termination.
Flight phases and double support phases were determined based
on right and left foot contact and foot off. The Froude number
(Fr) is a dimension-less parameter suitable for the comparison of
locomotion in subjects of different size (Alexander and Jayes, 1983).
The Froude number was computed for all gait cycles based on the
mean velocity of the horizontal IL marker (v), leg length (l), and
the gravitational constant (g) using: Fr = v2/

(
g · l

)
. Kinematic

parameters were calculated based on the 3D kinematics of the lower
legs and trunk. The body was modeled as an interconnected chain
of rigid segments: SHO-IL for the trunk, IL-GT for the pelvis, GT-
LE for the thigh, LE-LM for the shank, and LM-VM for the foot.
The main limb axis was defined as the virtual line connecting GT
and VM. Joint and elevation angles were generated accordingly.
A total of 101 parameters were estimated for each gait cycle using
a custom-written algorithm (Dominici et al., 2012; Bach et al., 2021a)
to provide a comprehensive quantification of locomotor patterns.
They can be functionally split into themes such as temporal features,
limb endpoint trajectory, stability, joint and segment angles, joint
and segment angular velocities, intra- and interlimb coordination,
intersegmental coordination, and pendulum mechanism. Parameters
that were directly influenced by body size were normalized to leg
length. For a detailed list we refer to Supplementary material 1. All
parameters were visually inspected for outliers due to experimental
errors (e.g., partially missing markers) and, if the errors were present,
the stride was removed from further analysis (∼4 and ∼8% of total
recorded strides for P1 and P2, respectively).

2.4.2. Electromyography and muscle synergies
Of the recorded muscles, the following 11 (bilateral for the

children, unilateral for the adults) muscles TA, MG, LG, SOL, RF,
VMO, VLO, BF, TFL, GLM, and ES were retained for further analysis.
EMG data were visually inspected, and artifacts were removed using
a custom-written burst-detection algorithm (Bach et al., 2021b;
Zandvoort et al., 2022). After high-pass (2nd-order bidirectional
Butterworth filter at 20 Hz; De Luca et al., 2010; Willigenburg et al.,
2012; Bach et al., 2021b) and notch filtering (2nd-order bi-directional
Butterworth around k·50 Hz, k = 1,. . .,10, with half-bandwidth of
0.5 Hz), the EMG data were rectified using the modulus of the
analytic signal and finally low-pass filtered (bi-directional 2nd-order
Butterworth filter at 10 Hz) to obtain the corresponding EMG
envelopes (Dominici et al., 2011; Oliveira et al., 2016; Bekius et al.,
2021). These envelopes were time-normalized to 200 samples per gait
cycle computed relative to the ipsilateral foot contact.

Before applying the muscle synergy analysis, the amplitude of the
EMG activity was normalized to the mean activity for each muscle,
interpolated in case of missing values (for a maximum of 50% of the
stride) within one stride, and finally concatenated for each session in
a [#strides × #samples] × #muscles matrix ([n × 200] × 11). Post-
hoc analysis of the interpolation revealed that the mean interpolation

was 4.5% for P1 (range: 0.5%-19.5%) and 4.6% for P2 (range:
0.5%-34%) in approximately 22% and 22.6% of the total number
of strides, respectively. The gaps were not necessarily consecutive.
No interpolation was done on the adult data. Muscle synergies
were calculated using weighted non-negative matrix factorization
(WNMF) algorithm (with a maximum of 2.106 iterations, and a
completion threshold of 10−6) to account for missing strides (Li and
Ngom, 2013; Goudriaan et al., 2022). There were missing data in few
strides where no EMG was recorded for one or two muscles (Li and
Ngom, 2013; Shuman et al., 2019; Goudriaan et al., 2022). WNMF
decomposes the original EMG matrix into a small set of temporal
activation patterns (C) and weighting coefficients (W):

EMG =
N∑

i = 1

Ci ·Wi + ε, N ≤ #muscles

With ε denoting the residual error. To assess the quality of the
reconstruction, the reconstruction accuracy (Zandvoort et al., 2019;
Kerkman et al., 2020; Bach et al., 2021b; Kerkman et al., 2022) was
determined using the Frobenius norm of the residuals

RA = 1−
||EMG− (W · C)||F
||EMG||F

We determined the number of synergies for further analysis via
the “best linear fit” proposed by Cheung et al. (2005). For this,
one computes the mean squared error for each linear fit of the
reconstruction quality for first 1-10 synergies, then 2-10 until
calculated for 9-10 synergies. When the mean squared error drops
below 10−4 the reconstruction quality is said to plateau defining the
number of synergies to retain. To align the number of synergies across
sessions, the best linear fit method was applied to each session of
the children and the adults, respectively, and the median number
of synergies across these 13 sessions that fulfilled this criterion was
chosen, thus avoiding a bias towards the mean in the case of outliers.

The output of the WNMF is not ranked and as such post-hoc
sorting has to be applied to compare synergies across sessions. To
do so, the weighting coefficients were grouped using hierarchical
clustering during which we ensured that the maximum number of
clusters corresponded to the maximum number of synergies (i.e.,
a maximum of three clusters were allowed with a three-synergy
solution). For the synergy analysis, the grand average of all strides
for each synergy was determined per session.

To quantify differences in the duration of the temporal activation
patterns of the muscle synergies, we estimated the full width at half-
maximum (FWHM) per activation pattern and stride. Here we first
subtracted the minima of the activity patterns – in the case of several
peaks, the FWHM was calculated for the main peak, i.e., the peak with
the highest amplitude and in case of boundary peaks, an assumption
was made that the shape of the peak was symmetric (Cappellini et al.,
2006). Timing differences were determined via the center-of-activity
(CoA) per activation pattern and stride (Yakovenko et al., 2002;
Labini et al., 2011; Sylos-Labini et al., 2014). The CoA is particularly
useful when multiple peaks are present or when low activity does not
allow for identifying a single peak. CoA also makes the comparison
across sessions feasible. Here, we defined it as

CoA = tan−1

[∑200
t = 1 (cos θt · EMGt)∑200
t = 1 (sin θt · EMGt)

]

where, θ denotes an angle that varies between 0-360◦ corresponding
to 0-100% of the gait cycle (t=200 samples). The FWHM and the
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CoA for the extracted synergies were retained and added to the list
of gait parameters for further analysis to have a spatial as well as
temporal measure for the activation patterns of the muscle synergies
(Supplementary material 1).

2.4.3. PCA and clustering
We sought to quantify how running develops over time from the

first independent steps. Strides from trials in which the children were
instructed to run (that were labelled either fast walking or running)
were included. We chose for this ‘blind’ approach as our previous
research revealed that in very young children the presence of a flight
phase is not a solid indicator for the presence of running (Bach
et al., 2021a). We employed principal component analysis (PCA) in
combination with clustering of several parameters extracted from the
kinematics and muscle synergies for all strides (Bach et al., 2021a).
PCA served to reduce covariation between parameters and clustering
to find unbiased classification.

For every participant, parameters were combined in a [(number
of sessions × number of strides) × number of parameters] matrix
[1730 × 107] and z-scored prior to PCA, see Supplementary
material 1 for a full overview of the parameters. The z-scoring was
applied to ensure that all parameters could potentially contribute
to the same degree in the PCA (if the variance differs between
parameters it may cause a bias in the PCA-ranking). We selected the
three leading principal components (PCs) and included them in the
clustering, as this turned out sufficient for our classification purposes
(Courtine et al., 2009; Dominici et al., 2012; Friedli et al., 2015;
Phinyomark et al., 2015; Bach et al., 2021a). The degree to which the
different parameters influence the first three PCs can be given by their
loadings = υ ·

√
λ, where υ denotes the eigenvector of a PC and

λ its eigenvalue. We considered a parameter as a strong contributor
if the corresponding loadings exceeded the 95% confidence interval
CI95 = 1.96/

√
n where n = 107 parameters.

Finally, we applied hierarchical clustering with correlation
distance (Bach et al., 2021a). We first built a dendrogram (Milligan,
1980; Xu and Wunsch, 2005; Murtagh and Contreras, 2011) using
average links (unweighted pair group method with arithmetic mean).
The cophenetic correlation coefficient was determined (CCC; Sokal
and Rohlf, 1962) to establish the degree of fit of the clustering
technique. The Calinzki-Harabasz stopping rule (Milligan and
Cooper, 1985) and visual inspection were utilized in unison to
determine the optimal number of clusters, with the inspection
focusing on categorization of first steps walking and running and
the classification of mature and immature running. We distinguished
mature from immature locomotion by computing the average
pairwise correlation distance from every stride belonging to a distinct
cluster to the adults running. Put differently, the average pairwise
correlation distance served as a measure for gait maturity with the
adult gait pattern as reference.

2.5. Statistics

Means and standard deviations are provided unless otherwise
specified. To investigate whether the dimensionless speed Fr and
the FWHM of the muscle activation patterns were different between
sessions for each participant and comparable to the adults, we used
a non-parametric test, the Kruskal-Wallis test, as the data were
not normally distributed, confirmed using a Kolmogorov-Smirnov

goodness-of-fit hypothesis test. If a statistically significant effect was
found, a Bonferroni correction was applied to account for multiple
comparisons. With 7 mixed within-between participants (6 sessions
for the toddlers and 1 session for the adults), the used significance
threshold was α = 0.05/7 = 0.007.

3. Results

Our child participants were comparable in terms of age as well
as time in months since first independent steps. P2 started walking
at 10.6 months whereas P1 started walking at 11.9 months. Both
children were relatively early walkers. The median age of independent
walking lies between 11.4 months (Piper and Darrah, 1994) and
13.0 months (Storvold et al., 2013). The different sessions were
comparable and within a few weeks of each other in terms of walking
age. All results were ordered based on the walking age to investigate
the influence of walking age.

The first sessions, the FS sessions, were recorded within 9 days
of when the children performed at least four independent strides,
and for these sessions only walking was recorded. In the subsequent
sessions, the children were instructed to either walk or run, but only
strides from trials when instructed to run (that were labelled as fast
walking or running during the experiment, see 2.2 Setup for further
details) were analyzed.

Six out of the seven sessions for each child were retained for
further analysis with the first session being the session containing the
first independent steps (FS). The +2 months sessions were excluded
due to insufficient data quality or an insufficient amount of data
recorded. See Figure 1 for an overview of all included sessions and
respective ages and walking ages for P1 and P2.

The mean number of strides included per session was (mean
± std) 133 ± 73 strides for the toddlers’ sessions and a total of
105 strides for the adults (range 14-24 per participant). The FS
session for P1 had an exceptionally large number of strides that
could be included. To make the number of strides more balanced
across sessions, only overground strides with a velocity of more than
0.5 km/h were retained, reducing the total number of strides from 729
to 254 strides for this specific session. Several strides with a Froude
number exceeding 1.5 were excluded from the sessions +19 and +32
for both P1 (∼25 strides in total) and P2 (∼60 strides in total) as
they were deemed to be sprinting and as such were not comparable
to the other data.

The FS sessions had only strides with double support phases
whereas the remaining sessions had a mixture of strides with double
support and flight phase. The double support and flight phases were
expressed as a percentage of the gait cycle. Double support phases
were present in all sessions (after the FS sessions) of P1 and P2, with
a tendency towards an increased amount of flight phase in the last
sessions. The flight phase was shorter than in the adults. The linear
regression of the double support phase revealed a significant effect of
session, no effect on participant, and only a small interaction effect
between session and participant (cf., Figure 2 and Supplementary
material 2). The linear regression of the flight phase revealed a
significant effect of both session and participant and an interaction
effect as well. The normalized speed (Froude number) of the two FS
sessions was significantly different from all other sessions for that
participant and to that of the adults (p < 1 × 10−14 for all sessions
for both participants). The normalized speeds ranged between 0.34
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A B

FIGURE 2

Temporal gait parameters. (A) Flight phase and double support phase as a percentage of the gait cycle (mean ± std). Double support phases are on the
top with flight phases being the negative percentages below. (B) The normalized speed expressed as the Froude number (v2/g · l) for each session and
participant (mean ± std). †Denotes a significant difference between current session and all other sessions for that participant as well as adults
(p < 0.007). Horizontal lines denote significant differences between the Froude numbers for the sessions. A: adults, FS: first steps, %GC: percentage gait
cycle, +6, +9, +13, +19, +32 refers to the number of months since onset of independent walking.

A B C

FIGURE 3

Principal component analysis (PCA). In the two left panels, each dot represents one stride. (A) PCA results in PC1-PC2 space. (B) The outcome of the PCA
in PC2-PC3 space. (C) The weightings of all sessions ordered based on walking age, so not ordered per participant. PC1 distinguishes the FS sessions
from the other sessions with PC2 distinguishing “mature” from “immature” running. A: adults, PC: principal component, FS: first steps, +6, +9, +13, +19,
+32 refers to the number of months since onset of independent walking.

and 0.69 for the running sessions and three sessions of P1 (+6, +13,
and +19, p < 2 × 10−9) and two sessions of P2 (+13 and +19,
p < 2 × 10−7) were significantly different from the adults, cf.
Figure 2.

Like the presence of a flight phase, the Froude number might also
not be a good indicator of whether a child is running. The Froude
number, the normalized speed, is useful to determine the optimal
speed at which to transition from walking to running or vice versa,
and in adults this transition occurs at a Froude value of 0.5 (Kram
et al., 1997; Gatesy and Biewener, 2009) which the adults exceeded
in this study. The mean of the Froude numbers of the toddlers also
exceeded 0.5 (P1: 0.58 ± 0.18, 0.55 ± 0.31, 0.53 ± 0.19 for sessions
+9, +19, +32 and P2: 0.63 ± 0.21, 0.59 ± 0.25, 0.69 ± 0.10 for
sessions +6, +9, +32, respectively) except for +6 (0.34 ± 0.20) and
+13 (0.38± 0.15) for P1 and +13 (0.42± 0.21) and +19 (0.49± 0.24)
for P2. See above and Figure 2 for statistics. However, it is possible to
walk at a Froude value higher than 0.5, it is just not as energetically
efficient.

3.1. PCA and clustering

The first three principal components (PCs) accounted for > 45%
of the total variance of the data. The scatterplots in Figure 3, detail
the spread of data in the 3 PC spaces. We observed that PC1 can
distinguish between the FS sessions and the remaining sessions,
whereas PC2 seemed to distinguish adult running and later sessions
from the early sessions. The loadings associated with these three PCs
(Supplementary material 1, 3) were all within the CI95 except for
three. The three parameters not contributing were parameters 74,
79, and 88, i.e., the phase relationship between the two limbs (a
measure for interlimb coordination), projection of 1st eigenvector
on the shank axis (a measure intersegmental coordination; Borghese
et al., 1996; Bianchi et al., 1998; Ivanenko et al., 2007b; Dominici et al.,
2010; Bekius et al., 2021), and ratio of left to right leg cycle duration
(a measure for intersegmental coordination).

We found three clusters, see Supplementary material 3 for
details. The clustering results are depicted in Figure 4A. Every node
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A B

FIGURE 4

Clustering output. (A) Output of clustering ordered based on walking age (time since onset of walking in months) with the youngest session on the right
and increasing in walking age in anticlockwise direction. The size of the clusters depends on the number of strides they contain (the larger the node the
more strides they contain), similarly are the lines from each node to a cluster a representation of the number of strides (thicker lines equals more strides)
from that session that belongs to each cluster larger than 10%. (B) Average pairwise correlation distance from each session to those of the adults as a
function of walking age (months) for P1 and P2, respectively. Sizing of dots follow the sizing of lines in panel. A: adults, FS: first steps, +6, +9, +13, +19,
+32 refers to the number of months since onset of independent walking.

represents strides from a certain session ordered from lowest to
highest walking age from left to right. The lines connecting the
sessions to the clusters represent the number of strides larger than
ten percent that is present in a certain cluster. The cluster nodes
are sized based on the number of strides in each cluster. The three-
cluster solution resulted in one cluster that included the adults (“A”
on the lower far right of the circle) which could be interpreted as the
mature running cluster (C1 cluster), one containing the immature
running strides (C2 cluster) and one that included the “walking”
strides (C3 cluster). The “walking” cluster contained all strides of
the two FS sessions as well as a percentage of strides each from
the following sessions (session [% strides]): +6 P1 (81%), +6 P2
(99%), +9 P1 (31%), +9 P2 (52%), +13 P2 (51%). The “immature
running” cluster contained some strides from all sessions, except the
two FS sessions, +6 P2 and the adults running. Finally, the “mature
running” cluster contained all strides from the adults, 32% from
+32 P1, 40% from +19 P1, and 16% of the strides from +13 P1. At
first glance, P1 and P2 had similar developmental trajectories but a
closer look revealed clear differences in that, in contrast to P2, P1 did
reach mature running while immature running occurred intermintly
within sessions from 9/13 months from onset of independent walking
onwards (cf., Figure 4B).

3.2. Muscle synergies

The differences in the developmental trajectories shown in
Figure 4B may appear quantitatively subtle but – in fact – they

are of qualitative nature. P2 shows an improvement in the running
maturity which evolves gradually but does not reach full maturity
over the observation period. On the other hand, P1 did reach a
mature running pattern over the last few recording sessions, but
apparently the immature pattern coexisted even once mature running
could be accomplished. In searching for the causes underlying these
difference, we here dwell more on the result of the analysis of the
accompanying muscle synergies. Before going into detail, we would
like to note that lateral gastrocnemius (LG) was not analyzed for the
FS and +6 sessions of P1 and erector spinae (ES) for +6 of P1. This
was due to poor data quality.

The reconstruction accuracy (RA) revealed different numbers
of muscle synergies between sessions with median of three muscle
synergies (IQR: 3:4.5) across all sessions. The RA was 64.2 ± 1.8,
64.1 ± 2.6, and 66.3 for P1, P2, and the adults, respectively, for three
synergies. The temporal activation patterns of the first of the three
synergies had the most activity at foot contact, the weight acceptance
phase, with the knee extender muscles (RF, VM, VL, and RF muscles)
being the predominant influencers both for toddlers and adults with
some contribution also of the TFL and GLM muscles (cf. Figure 5).
The second components were related to end of stance, the propulsion
phase, with the largest contributions of MG, LG, and SOL. The third
synergy was more variable with activity from TA and ES with most
activity at swing. Synergies were comparable across sessions for P1
and P2. For P1, the most notable development in the muscle synergies
in time after onset of independent walking, was the increase in
amplitude, especially in synergy 1. This increase in amplitude across
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FIGURE 5

Muscle synergies for P1, P2, and adults. The top graphs are the grand average temporal activation patterns for each session as a function of the gait cycle
and the three synergies. Amplitude is in arbitrary units. The lower bar graphs are the weighting coefficients for the muscle synergies. The naming of the
muscles can be seen below. TA: tibialis anterior, GM: gastrocnemius medialis, GL: gastrocnemius lateralis, SOL: soleus, RF: rectus femoris, VM: vastus
medialis, VL: vastus lateralis, BF: biceps femoris, TFL: tensor fascia latae, GLM: gluteus maximus, ES: erector spinae, +6, +9, +13, +19, +32 refers to the
number of months since onset of independent walking.

A B

FIGURE 6

Full-width half-maximum and center-of-activity of muscle synergies. Color notation as to the right. (A) The full-width half-maximum (FWHM) was
calculated for the main peak of each stride for each muscle synergy. It is represented as a percentage of the gait cycle. (B) The center-of-activity (CoA)
were was expressed as the percentage of the gait cycle. The horizontal lines represent a significant difference, p < 0.007 within a participant and the
adults. The dagger (†) represents a significant difference between session and all other sessions. A hash (#) represents a significant difference between
session and all later sessions and adults. GC: gait cycle, FWHM: full-width at half-maximum, A: adults, FS: first steps, +6, +9, +13, +19, +32 refers to the
number of months since onset of independent walking.

age/time since onset of independent was not clear to the same extent
in P2.

FWHM and CoA mark the ability to quickly contract a muscle
and the timing of the muscle contraction, respectively. The FWHM

of the temporal patterns of the three synergies was comparable across
sessions with a large variance between strides (cf. Figure 6). The
most pronounced differences were found between the FWHM of the
sessions of P2 and the adults (e.g., FS, +6, +13, +19, and +32 all had a
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p < 0.0001 for synergy 1, +6, +13, +32 were all p < 0.001 for synergy
2) with some in-between significant differences between the sessions
within P1 and P2. Synergy 3 of P2 had a characteristic pattern of a
reduction of the FWHM from the first running session (+6) to the
last running session (+32) with significant p-values of p < 0.0001 for
the +6 session compared to +19, +32, and adults and p = 0.0067 for
the +6 session compared to the +13 session.

The CoA of the synergies were way more variable in the children
than in the adults. In the latter the CoAs were within the same 25%
of the gait cycle across strides (between 0 and 25% of the gait cycle
for synergy 1 and 2, and within 63 and 83% of the gait cycle for
synergy 3). For the first and third pattern, the range of the CoA for P1
and P2 covered all percentages of the gait cycle for all sessions. Most
noteworthy is the mean CoA for the second temporal pattern which
occurred later in the FS sessions (31.6%± 18.5% and 56.3%± 18.7%
of the gait cycle) for P1 and P2, respectively, compared to the mean
over the other sessions, which ranged from 13.8% to 16.0% for P1
and 13.6% to 20.2% for P2 (p < 6 × 10−4 and p < 2 × 10−16,
respectively). Here, the adult patterns were similar with a mean of
13.3%± 3.6% of the gait cycle for the second component.

4. Discussion

4.1. PCA and clustering – Classifying
running maturity

We succeeded to classify the development of running maturity
over the span of six recording sessions of almost three years in two
toddlers matched on walking age. That is, our shotgun approach
combining PCA and hierarchical clustering enabled us to estimate
the maturity of very early development of running.1 After walking
the first independent steps, our participants developed the capacity
of running, though to different degrees of maturity. It appears that
mature running patterns can coexist next to immature ones, which
occur earlier in the course of developement.

As said, in particular in P1, several sessions had strides in two
different clusters. Since the data were collected not only during
overground running but also on the treadmill it might have been
that the more mature strides were recorded overground and the
more immature ones on the treadmill. A lack of treadmill experience
may hence have cause the ‘return’ to the immature mode of
locomotion. However, analysis of the strides falling into the more
mature or immature clusters did not reveal such a pattern, see
Supplementary material 3.

1 While this – in principle – supports the combination of kinetic, kinematic,
and electromyographic data in a single ‘shotgun’ approach, it leaves the
question of which factors or parameters are causing the (differences in)
development open. However, the parameters dominating the PCA can be
readily determined. We briefly illustrate this by investigating whether a reduced
number of parameters may lead to results similar to the ones reported in
the body text. For this sake we retained only loadings contributing > 0.6
and repeated the cluster analysis. In total 46 parameters were included in
the second analysis (see Supplementary material 4). These cluster results
differed from our main ones in that more sessions/strides were considered
“mature” running and more strides/sessions were considered “immature”
running instead of walking. Thus, clustering seems less sensitive to individual
differences in the strides with a reduced number of parameters. Put differently,
parameters not contributing more than 60% to the PCA are still relevant
when clustering.

Remarkably, the FS session of P1 was relatively close to mature
running in terms of the average pairwise distance to the adults. While
this might hint at shortcomings of our clustering approach (see also
below), already in PC1-PC2 space the first step session (very dark
blue) was indeed close to the adults. In a future study we will compare
new walkers to very experienced runners. There we will also include
adult walking, i.e., experienced walking, and expect that the FS strides
will becloser to this cluster than to adult running.

In the current two children we cannot pinpoint a moment when
the running pattern differs from the walking pattern and becomes
like the adult running pattern. This is mostly due to a substantial
variability between and within sessions in the majority of outcome
variables. We would like to stress anyway that we were able to
show that the two toddlers seemingly display different paths towards
running maturity.

4.2. Muscle synergies – What underlies
running maturity?

We determined three muscle synergies. This number is smaller
than in many other studies on running where the number is
usually four or more (Cappellini et al., 2006; Santuz et al., 2018b;
Cheung et al., 2020; Bach et al., 2021b). We chose to determine
the number of muscle synergies based on finding the plateau of the
reconstruction accuracy (RA) using the linear-fit method introduced
by Cheung et al. (2005). Whether or not this explains this discrepancy
with the literature is unclear. A recently method proposed by
Ballarini et al. (2021) where the consistency and similarity of both
activation patterns and weighting coefficients were determined may
shed light on this. However, most methods of determining the
number of synergies require setting some threshold which leaves
this an open issue for future research (Sylos-Labini et al., 2022); see
Supplementary material 5 for an alternative to the reconstruction
accuracy (RA) used here.

Synergy 2 shows a phase shift as evidenced in the CoA from
30-50% of the gait cycle for the FS session to around ∼15% of the
gait cycle for the later sessions. The phase shift occurs from the +6
session and is stable across the running sessions, which indicates that
a contraction of the foot flexors matching the shorter stance phase is
important for even early running patterns.

The analysis of FWHM of the temporal activation patterns of the
muscle synergies allowed us to quantify the duration of activity of
the muscles contributing to this particular synergy. FWHM of motor
primitives or muscle synergies has previously been hypothesised to be
a measure for robustness of the motor control (Martino et al., 2014;
Martino et al., 2015; Santuz et al., 2018a; Mileti et al., 2020; Santuz
et al., 2020). For both synergy 1 and 2, we found the most differences
from the adult patterns to the patterns of P2 and not P1, which
indicates similar widening between P1 and the adult pattern already
from an early running pattern. It is likely that this trend was indeed an
underlying reason for why the running patterns of this participant has
been considered to mature earlier than P2. It is likely that this trend
was indeed an underlying reason for why the running patterns of this
participant has been considered to mature earlier than P2. We also
observed that for both synergy 1 and 2 that there was first an increase
followed by a reduction in the FWHM from the +13 session. This
is the same timepoint at which the very mature strides appeared. In
P2, the +6 and +32 sessions for synergy 1 both differed from most of
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the other sessions with a decrease in the FWHM from the +6 session
to the +19 session with the +6 and +32 sessions being similar. The
decrease from 6 months since onset of independent walking until +19
months could be due to an improved ability to narrow the duration of
the activation pattern and reduce the overlap of the muscle synergies
at the weight acceptance phase, where the increase in the FWHM at
32 months could be explained by a possible altered running pattern
that is not yet finetuned.

4.3. Methodological choices and
limitations

The EMG was processed by normalizing the amplitude to
the mean of the data across strides. According to Besomi et al.
(2020), a normalization to the mean can lead to a reduction in the
inter-individual variation in amplitude. Obtaining a more optimal
normalization via maximal voluntary contraction may, however, not
be feasible, especially in young children. Yet, we must admit that
normalization to the mean might have resulted in some unwarranted
high weighting for some muscles (Besomi et al., 2020).

The main limitation of this study is the lack of power by only
having two participants. Without a doubt this limits the ability to
generalize our results. Despite the lack of generalizability, we consider
it a valuable starting point, first in methods and – more importantly,
in clarifying that time since onset of independent walking does not
appear to be a solid indicator of the maturity of running patterns in
very young children.

The two clusters, C3 “walking” and C2 “immature running” were
so close to each other that they are just overlapping in terms of our
measure of maturity, the mean pairwise correlation distance to that
of the adults. This may suggest that a cluster solution with three
clusters may not have been optimal. However, the mean pairwise
distance to the adults did not change with an altered number of
clusters. We are hence convinced that our measure can be used
for determining the “order of maturity”. On the other hand, the
FS session of P1 can be considered more mature than +6 and +9,
two sessions containing running strides. Apparently, the distance
measure and linkage method used to create the dendrogram was less
optimal than in our previous study (Bach et al., 2021a). However,
a combination of other distance measures and linkage methods
did not yield better cophenetic correlation coefficients (CCC). The
only a Euclidian distance measure with either average (CCC: 0.83)
or centroid algorithms (CCC: 0.84) showed comparable results but
cause problems, e.g., dendrogram with non-monotonic links.

Future research should be focused on investigating larger number
of children. When doing so, we advocate combining many kinematic
and neuromuscular parameters to fully investigate the development
of the running patterns in very young children.

5. Conclusion

Our study is unique in that the development of running
was monitored longitudinally over a three-years span with highly
frequent assessments of kinetics, kinematics, and electromyography.
It provides a first view on the effect of time since onset of independent
walking on the development of running. Running development
followed different trajectories that we quantified ‘blindly’ via a

shotgun approach after combining various biomechanical and
neuromuscular parameters. Evidently, the development of running
can take different trajectories including the co-existence of immature
and mature running within the same session in a child. Muscle
synergy analysis may help explaining why the development can differ
between children, though there is a long way to clarifying this with
statistical robustness.
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