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1School of Electrical Engineering, University of Belgrade, Belgrade, Serbia, 2Faculty of Medicine,
University of Belgrade, Belgrade, Serbia, 3Clinic for Rehabilitation “Dr. Miroslav Zotović”, Belgrade, Serbia,
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Objective: A brain computer interface (BCI) allows users to control external

devices using non-invasive brain recordings, such as electroencephalography

(EEG). We developed and tested a novel electrotactile BCI prototype based on

somatosensory event-related potentials (sERP) as control signals, paired with a

tactile attention task as a control paradigm.

Approach: A novel electrotactile BCI comprises commercial EEG device,

an electrical stimulator and custom software for EEG recordings, electrical

stimulation control, synchronization between devices, signal processing, feature

extraction, selection, and classification. We tested a novel BCI control paradigm

based on tactile attention on a sensation at a target stimulation location on the

forearm. Tactile stimuli were electrical pulses delivered at two proximal locations

on the user’s forearm for stimulating branches of radial and median nerves,

with equal probability of the target and distractor stimuli occurrence, unlike in

any other ERP-based BCI design. We proposed a compact electrical stimulation

electrodes configuration for delivering electrotactile stimuli (target and distractor)

using 2 stimulation channels and 3 stimulation electrodes. We tested the

feasibility of a single EEG channel BCI control, to determine pseudo-online BCI

performance, in ten healthy subjects. For optimizing the BCI performance we

compared the results for two classifiers, sERP averaging approaches, and novel

dedicated feature extraction/selection methods via cross-validation procedures.

Main results: We achieved a single EEG channel BCI classification accuracy in

the range of 75.1 to 88.1% for all subjects. We have established an optimal

combination of: single trial averaging to obtain sERP, feature extraction/selection

methods and classification approach.

Significance: The obtained results demonstrate that a novel electrotactile BCI

paradigm with equal probability of attended (target) and unattended (distractor)

stimuli and proximal stimulation sites is feasible. This method may be used to drive

restorative BCIs for sensory retraining in stroke or brain injury, or assistive BCIs for

communication in severely disabled users.

KEYWORDS

brain computer interface (BCI), event-related potentials (ERP), electrical stimulation,
somatosensory evoked potential (SEP), tactile attention, tactile BCI, machine learning
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1. Introduction

Brain-computer interfaces (BCIs) enable a direct control of
external device by recognizing changes in user’s brain activity,
and electroencephalography (EEG) as a non-invasive technique
for recording electrical brain activity still remains most frequently
used measurement modality in designing BCI systems (Abiri
et al., 2019). Various EEG-based paradigms and signals have
been attempted in BCI control such as event-related potentials
(ERP), oscillatory brain activity, steady-state evoked potentials
(SSEP), and slow cortical potentials (Ramadan and Vasilakos,
2017). BCI systems with control based on ERP or SSEP are
classified as “reactive BCIs,” because brain activity is modulated
in reaction to an external stimulus generated by the BCI system
(Steinert et al., 2019). More specifically, the user performs selective
attention task, creating a mismatch in event-related/evoked brain
responses associated with attended vs. unattended stimuli (Sellers
et al., 2012). ERP-based BCI control relies on various recording
paradigms and related signal-components such as: P300, N170,
N200, motion visual evoked potential, miniature asymmetric visual
evoked potential, and error-related potential (Xiao et al., 2020).

Depending on the nature of the evoking stimulus, reactive
BCIs can be visual, auditory, and tactile. Tactile BCIs are still
the least studied among all reactive BCIs probably due to a
need for a dedicated stimulation device which requires more
complex hardware than using a simple computer screen, light- or
a sound-source (Brouwer and van Erp, 2010). Tactile BCIs utilize
somatosensory stimuli delivered by vibration devices or electrical
stimulation. Somatosensory stimulation can elicit different
responses measured by EEG, among which are somatosensory
evoked potentials (SEP). Routinely used SEPs in clinical practice
are elicited by electrical stimulation to the peripheral nerves and
consist of a series of waves that reflect sequential activation of
neural structures along the somatosensory pathways (Toleikis,
2005). However, tactile BCIs rely on a somatosensory evoked
electrophysiological responses recorded at cortical level. The
stimulation rate can be set to evoke either transient or periodic
brain responses. Transient stimuli induce cortical SEP waveforms
comprised of series of signal components (signal deflections or
inflexions) usually analyzed in in time domain (Petit et al., 2021).
With a continuous stimulation and shortening of interstimulus
interval, the somatosensory system cannot go back to an idle state
(Namerow et al., 1974) and such signals are referred to as steady-
state somatosensory-evoked potentials (SSSEP), and are usually
analyzed in frequency domain (Tobimatsu et al., 1999). SSSEP-
based control has been previously explored in various studies (Petit
et al., 2021). Usually reported drawbacks of SSSEP BCIs are lower
accuracy for tactile SSEP modality, lower bit-rates and the need for
positioning of the stimulation points on distant body parts (exp.
left vs. right hand) in order to increase classification accuracy.

Contrary, when stimulation rate is set to evoke transient
SEP stimuli at cortical level, and such stimulation is coupled
with cognitive task, the resulting responses can be termed
somatosensory event-related potentials (sERP), even though the
methodology of their induction and recording may be identical
to scalp measurements of classical SEPs (Josiassen et al., 1990).
Tactile BCI control using transient stimuli that induce sERP (such
as somatosensory P300) have previously been attempted, but in

a very limited number of studies. Brouwer and van Erp (2010)
used vibrotactile stimuli with 7 tactors positioned around the
subjects’ trunk. In this study the target stimuli were delivered
to only one out of 7 tactors which creates a P300 response due
to lower probability of target stimuli. Kaufmann et al. (2014)
proposed BCI wheelchair control based on tactually-evoked ERPs.
They employed vibrotactile stimulation at 4 locations: left thigh,
right thigh, abdomen and lower neck, while the target tactor was
one of the 4 positions. Guger et al. (2017) employed vibrotactile
stimulation at left/right wrists in healthy controls and ALS patients
to elicit P300 responses, while Spataro et al. (2018) used the same
approach to assess somatosensory discrimination in unresponsive
wakefulness syndrome. Chu et al. (2021) proposed tactile oddball
paradigm employing vibrotactile and electrical stimuli, at left- and
right-hand fingers with lower probability of the target stimulus
(one target in six stimuli) and used oscillatory EEG (event-related
spectral perturbations) for classification.

Therefore, tactile BCI control using sERP was explored in
much smaller scope and less systematically compared to SSSEP
BCI work, but this type of control using transient stimuli may
introduce multiple benefits over the continuous stimulation and
SSSEP control. Some drawbacks of SSSEP BCIs are the need for
screening for subject specific resonant frequencies of the steady-
state responses (Breitwieser et al., 2012), the difficulty of the
tactile attention task with parallel streams of continuous stimuli,
BCI illiteracy related generally to steady-state responses, lower
classification accuracies for SSSEP, while higher accuracies are
achieved only for stimulation of distant body regions (right vs. left
hand), (Ahn et al., 2016; Petit et al., 2021).

ERP-based control can be employed for overcoming some of
these drawbacks. The first benefit of ERP-based control is the
possibility of using more proximate stimulation hotspots since
the stimulation pulses are delivered in sequential manner to
each location, so counting the number of stimuli per location is
possible as mental strategy for attentional focus toward a target
hotspot. Lower performance in some subjects can be addressed
with averaging techniques for increasing the sERP signal to
noise ratio. Moreover, SEPs are known to correlate with sensory
cortex excitability (Höffken et al., 2007) and have been previously
used for its assessment. Therefore, sERP-based BCI provide an
opportunity for designing a neurofeedback paradigm to modulate
sERP components solely with mental attention strategies, which
may have a direct impact in the fields sensory training, plasticity
and neurorehabilitation.

This study aimed to explore the feasibility of a novel BCI
prototype based on sERP in healthy users. Here we introduce
and describe a dedicated hardware setup with electrotactile
stimuli and tests of different feature extraction/selection methods
and classification approaches for optimizing novel sERP-based
BCI performance.

The main novelties introduced within our BCI prototype are:

• compact stimulation hardware setup employing 2 stimulation
channels formed by 3 stimulation electrodes placed at the
proximal locations over the user’s forearm muscles;
• novel BCI control signal, somatosensory ERP, elicited by

stimulating the mixed nerves of the forearm (instead of
sensory nerve branches used for classical SEP recordings);
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• novel tactile BCI paradigm employing equal probability of
target and distractor stimuli instead of a classical oddball
paradigm with rare and frequent stimulus;
• dedicated feature extraction and selection methods for sERP-

based control.

Our main hypothesis was that a mismatch in sERP when
attending the stimuli delivered at one of the two spatially proximal
locations on the user’s forearm, with equal probability of stimuli
occurrence, can result in single EEG channel BCI with accuracy
over 75% in all subjects.

2. Materials and methods

2.1. Subjects

Ten healthy right-handed subjects (9 male and 1 female,
aged between 22 and 32) participated in this study. Participants
volunteered for the tests, and were recruited among the students
and employees of the University of Belgrade. Participants were
without a history of neurological disorders or somatosensory
deficits, and with normal or corrected to normal vision. Subjects
had no previous experience with EEG measurements or BCI
experiments. This study is in accordance with ethical guidelines as
defined by the Declaration of Helsinki. Study was approved by local
ethical committee (no. 03-1514/1). All participants gave written
informed consent.

2.2. Instrumentation and experimental
setup

The EEG signals were recorded with the combination
of g.USBamp electrophysiological signal amplifier and active
electrodes with preamplification (g.GAMMAcap2, g.tec GmbH,
Austria). Signals were acquired from six EEG recording sites
positioned according to the 10–20 system: C3, Cz, C4, CP3, Pz,
and Fp1. The reference electrode was placed on the left earlobe
and the ground location was AFz. Signal from Fp1 location was
used to register ocular artifacts. This subset of EEG channels have
been selected based on the review of topography of sERP responses
and the main sources of EEG activity which are expected in the
contralateral somatosensory cortex (Josiassen et al., 1990; Li et al.,
2019; Grigoryan et al., 2020; Chu et al., 2021). The signals were
digitized with a 1,200 Hz sampling rate and the amplifier was
configured to use embedded notch filter at 50 Hz.

Electrical stimulation (ES) device used was an eight-channel
electrical stimulator, MOTIMOVE (3F–Fit Fabricando Faber,
Serbia), while 2 channels were employed for stimuli delivery in our
study. Three electrodes for ES were positioned on the right forearm
of the subjects in order to obtain 2 stimulation channels. Two active
(stimulating) electrodes of 1 cm diameter were used on the dorsal
and volar surface the right forearm. A single common indifferent
electrode of 2.5 cm diameter for both ES channels was located at
volar aspect of the right wrist. All ES electrodes were of round
shape (Axelgaard Manufacturing Co., Ltd.). Stimuli used in this
study were single, constant current, compensated biphasic pulses

with exponential discharge. Current pulse duration was 0.25 ms in
the active phase while the inter-pulse interval was set to 700 ms.

2.3. Experimental protocol

The participants were comfortably seated in a chair with
a computer screen in front of them at approximate 1 m
distance. At the start of the experiment, all EEG and ES
electrodes were positioned, quality of EEG signals was checked,
and individual stimulation amplitudes for both ES channels
were set. Experimenter operated the BCI system (EEG amplifier
and ES) via custom graphical user interface developed for this
purpose in MATLAB R2020a (MathWorks Inc., Natick, MA, USA).
The software included EEG acquisition, stimulation control and
synchronization between the events. Subjects were instructed to
limit the body movements (arms, legs, face, and eyes), and to
avoid excessive and systematic blinking during EEG recordings.
Fixation cross displayed on the screen was introduced to limit the
ocular movements.

Two active (stimulating) electrodes were placed on the dorsal
and volar surface of the right forearm. A single common indifferent
electrode for both ES channels was placed on the volar aspect of
the right wrist. Dorsal active ES electrode was placed over the
extensor carpi radialis muscle (location D) while the volar active ES
electrode was placed over the flexor carpi radialis longus (location
V). Location D was first identified at proximal 20% of the line
length from the lateral humeral epicondyle to the radial styloid
with the forearm in pronation (Liu et al., 1997). Location V was
first identified at proximal 33% of the line connecting the medial
epicondyle and the base of the second metacarpal bone with the
forearm in supination (Song et al., 2014). Positions were confirmed
by palpation during wrist extension and flexion. Determination
of locations D and V and electrode placement was conducted by
an experienced clinician and researcher, specialized in physical
medicine and rehabilitation. Schematics of electrode site locations
for both D and V locations is presented in Figure 1.

Motor threshold for was obtained for each ES channel by
increasing the pulse amplitude starting from 5 mA, in 1 mA steps.
Stimulation was increased over the motor threshold to inspect
the muscle activation associated with each stimulation location
(D and V). If the stimulation didn’t selectively activate the target
muscles, stimulation electrodes were manually repositioned until
selective activation of flexor carpi radialis longus and extensor
carpi radialis inspected by an experienced clinician was successfully
obtained. When the expected muscle twitch responses were
observed at each location, the stimulation amplitude was reduced
by 1 mA in order to avoid any visible motor response while
preserving the pronounced sensation. The next step was balancing
the sensation intensities over two channels by decreasing the
stimulation amplitude at the channel which induced the stronger
sensory response (reported by the subject) in order to ensure the
most similar subjective feeling of electrical stimulation intensity at
both sites. The final stimulation intensities for both sites were noted
by the experimenter.

The experiment comprised six blocks. In each block, 300
stimuli were delivered in pseudo randomized order to locations
D and V. Randomization was performed in such manner that
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FIGURE 1

Schematics of D and V location positions on the user’s forearm, and indifferent electrode. Location D is identified at proximal 20% of the line length
from the lateral humeral epicondyle to the radial styloid (blue dotted line) with the forearm in pronation. Location V is identified at proximal 33% of
the line connecting the medial epicondyle and the base of the second metacarpal bone with the forearm in supination. Locations D and V are
marked with blue and red colored circles on the dotted lines of the same color, respectively. The anatomical markers for determining the reference
lines are marked with black circles and labeled accordingly. The indifferent electrode position over the volar aspect of the wrist is marked with gray
full circle.

prevented more than 3 consecutive stimuli delivery at the same
location. The subjects were instructed to perform a tactile attention
task by attending the stimuli delivered to only one location
(targets) while attempting to ignore the stimuli delivered to the
other location (distractors). We instructed the subject to silently
count the number of stimuli delivered to target location. The
target/distractor locations switched between the blocks, so blocks
1, 3, 5 and blocks 2, 4, 6 were associated with different target
locations, while the staring target location was randomized over
subjects. In order to facilitate the counting task and avoid high
stimuli counts per block we have divided each block in which
a single stimulation site was attended to 5 sub-blocks of 25–
35 stimuli (60 in total) pseudo-randomized per stimulation site
followed by 10-s pause in which subject reported the counted
number of attended stimuli. In this manner we aimed to ensure
that the subjects were attending the correct target location and
that the counting task was successful. Also, by randomizing the
number of stimuli delivered at both locations within a sub-block,
we aimed to decrease the habituation effect which may arise from
subject’s expectation of the same number of stimuli per sub-block.
However, the probability of stimuli over all blocks was balanced.
Timeline of the test is shown in Figure 2. The total number

of stimuli in one subject was 1,800, with 900 stimuli delivered
per location (ES channel). During electrotactile stimulation, the
subject’s gaze was directed toward a fixation cross in the middle
of the monitor. During the 10-s pauses between the sub-blocks the
message “say number of stimuli” appeared on the screen instructing
the subjects to report the counted number of stimuli followed by
a countdown from 3 to 0 which indicated the start of the next
block.

2.4. Data preprocessing

EEG was processed offline in order to obtain somatosensory
event-related potential (sERP) responses elicited by electrical
stimuli at each location. For easier explanation, individual
responses to each sensory stimulus (or single response trials) are
termed SEP, and averaged single-trial SEPs are termed sERP.

Recorded EEG data from all channels was first bandpass filtered
using a 2nd order Butterworth filter with cut-off frequencies of 0.1
and 25 Hz and segmented to 500 ms epochs with 100 ms pre-
stimulus baseline and 400 ms post-stimulus window. All epochs
were baseline corrected by subtracting from the 400 ms window
the mean value of the 100 ms baseline for each channel. Epochs
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FIGURE 2

Timeline of the test depicting the durations of experimental phases (blocks). Colored shapes (light blue and light green) represent the 6 experimental
blocks in which the subjects attended the stimuli delivered at D and V locations, respectively. One example of division of a single D block into 5
sub-blocks is presented also.

containing ocular and other high amplitude artifacts were rejected
by applying the threshold of 50 µV on an absolute value on all EEG
channels and threshold of 80 µV on Fp1 channel for identifying
blink artifacts. If an absolute value on either of the EEG epochs
crossed the EEG amplitude threshold or the absolute value of the
Fp1 channel crossed the EOG threshold, the epoch was rejected
from further analysis.

Remaining epochs were divided into four SEP waveform
clusters derived from 2 stimulation locations (D or V location)
and 2 experimental conditions (attended D or attended V stimuli).
Consequently, four SEP waveform clusters were extracted: attended
D location with stimulus delivered to D (ADSD); attended D,
stimulated V (ADSV); attended V, stimulated V (AVSV); and
attended V, stimulated D (AVSD). In each subject, each SEP cluster
contained more than 400 individual SEP waveforms after the
artifact rejection (450 before the rejection).

In order to extract relevant features for classification of users’
tactile attention toward one of the 2 stimulated locations we
employed averaging of single-trial SEPs in order to increase signal-
noise ratio. Since the speed of the BCI operation directly depends
on the number of trials to be averaged we have tested 3 options,
average of 3, 5, and 10 single-trial SEPs per location (SEP3, SEP5,
and SEP10, respectively).

The averages were formed from consecutive preprocessed,
noise-free single-trial SEPs of each of the four waveform clusters
for a single subject in order to form average sERPs for each
cluster. Since after trial rejection the number of remaining
single-trials may have been unbalanced, we rejected the last
trials of larger clusters in order to obtain an equal number of
average SEPs per cluster. Each averaged sERP waveform included
400 ms post-stimulus interval (480 samples), and those were
downsampled by factor 8, resulting in 60 samples for the post-
stimulus interval (equivalent to a new sampling frequency of
150 Hz), used in the next steps in forming the feature vectors
for classification.

Difference sERP waveforms for each experimental condition
[diffsERP(AD) and diffsERP(AV)] were formed by subtracting
sERP obtained for location V from sERP obtained for location D,

within the same condition (attended location) described by the
following expressions:

diffsERP (AD) = sERP (ADSD)−sERP(ADSV)

diffsERP (AV) = sERP (AVSD)−sERP(AVSV)

Since a novel sERP paradigm was tested in this study, it was
important to rigorously control the data quality for any sources
of noise. Three experts have been involved in validating the
recorded EEG and processed SEP/sERP data. One expert in EEG
signal processing, SEP and ERP has processed and validated the
dataset, confirming the obtained sERP waveforms are indeed of
neurophysiological origin. In order to decrease the risk of bias, two
independent ERP experts not involved in this study were asked to
assess the EEG data quality, single trial SEPs and averaged sERP
waveforms (of all conditions) for each subject/channel.

2.5. Feature extraction and selection
approaches

In this study we explored 2 feature extraction approaches and
one feature selection approach on average sERPs from 4 waveform
clusters. Feature extraction/selection was performed on each EEG
channel separately, since in this study we aimed to explore the
feasibility of a single EEG channel electrotactile BCI control.
Therefore, combination of features from different channels was
out of the scope of this study. The feature extraction and selection
methods applied in this study are novel and dedicated for particular
BCI setup and sERP control scenario.

In the first feature extraction approach (F1), 2 feature vectors
were formed by creating a single feature array of sERP amplitude
values (for a single channel) by joining the consecutive pairs of
averaged and downsampled sERP waveforms from clusters ADSD,
ADSV for class AD; and AVSD, AVSV for class AV. Consequently,
each feature vector consisted of 120 samples where the first 60
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samples were sERP responses elicited by stimulation of D location
while the second 60 were averaged sERP responses elicited by
stimulation of V location.

In the second feature extraction approach (F2), feature vectors
were formed from 2 difference sERP waveforms, associated
with two experimental conditions/classes, i.e., diffsERP(AD) and
diffsERP(AV). Each feature vector for this approach consisted of 60
samples, which is the length of each diffsERP waveform extracted
from averaged downsampled sERPs.

Finally, we tested a fine-tuning method of feature selection for
each EEG channel by employing an iterative approach. Feature
selection was performed on both feature extraction methods
(F1 and F2) resulting in reduced number of final features for
each method (FS1 and FS2, respectively). Firstly, for each EEG
channel we calculated the difference-wave between 2 conditions
[diffsERP(ADAV)] as follows:

diffsERP (ADAV) = diffsERP (AD)−diffsERP(AV)

To select relevant sERP features for further classification we
employed an amplitude threshold in µV starting from 0, with an
increment of 0.1 applied on the rectified diffsERP(ADAV) signal.
For each threshold value, the indexes of signal samples which are
equal or exceed the current threshold value are identified. We
formed a feature vector of selected features for current channel
and iteration (threshold value) in the same manner as previously
explained. In case of FS1 the feature vector for each threshold value
was formed by creating a single array of mean sERP amplitude
values at selected indexes by joining (ADSD, ADSV) and (AVSD,
AVSV), for classes AD and AV, respectively. In case of FS2 the
feature vector for each threshold value was formed by extracting
the sERP amplitudes of diffsERP(AD) and diffsERP(AV), for classes
AD and AV, respectively.

2.6. Classification approaches

In this study we aimed to compare different classification
approaches in order to explore the possibility of novel online
BCI control using electrotactile sERP mismatches induced with
tactile attention task. Two most popularly used classifiers in BCI
applications have been tested: support vector machine (SVM) and
linear discriminant analysis (LDA) (Lotte et al., 2018). The SVM
classifier was implemented with a Gaussian kernel. Kernel scale
parameter was optimized using a heuristic procedure, while the
median of the Euclidean distance between a subsample of the
data was used to update the kernel scale. The Box-constraint
was set to default value. The LDA classifier was implement with
solver singular value decomposition, as recommended for data
with a large number of features. Each classifier performance
was tested using leave-one-out cross-validation procedure while
adopted performance measure was classification accuracy.

It is important to note that feature extraction/selection was
performed for each iteration of the leave-one-out procedure for the
training set and test set separately. More specifically, calculation
of diffsERP(ADAV) and feature fine-tuning was performed on
the test set in each leave-one-out iteration so that the training
set and test set in each iteration are independent. Therefore,
the testing procedure of the classifier is fully translatable to
online BCI approach.

2.7. Data analysis

The overall aim of the data analysis was to test the effects of
the following factors on the BCI performance (tactile attention task
classification accuracy):

• classifier type (LDA, SVM).
• number of trials for averaging (SEP3, SEP5, SEP10),
• A total of 4 different feature vector generation methods

from 2 feature extraction approaches with and without
feature selection (F1, F2, FS1, and FS2).

The two-step iterative analysis was adopted, with a final aim
to identify the optimal combination of classifier, number of trials
for averaging, and feature vector generation. Two-way repeated
measures ANOVA were used to assess the differences in accuracy
between classifiers (LDA and SVM) and number of averaged trials
(SEP3, SEP5, and SEP10) with significance threshold p < 0.05.
Post-hoc analysis of trial averaging effect was conducted with
Wilcoxon signed-rank test by comparing SEP3, SEP5 and SEP10.
Significance threshold was p < 0.017, with Bonferroni correction
applied (0.05/3). In this step the combination of classifier and sERP
averaging approach, resulting in significantly higher accuracies
than the other combinations, was selected for further analysis.
Four combinations of feature extraction/selection methods (F1,
F2, FS1, and FS2) were compared using 1-way repeated measures
ANOVA (significance threshold: p < 0.05). Post-hoc analysis of
feature extraction/selection methods was conducted with Wilcoxon
signed-rank test. Significance threshold was p < 0.0083, with
Bonferroni correction applied (0.05/6).

3. Results

Figure 3 shows the grand-average sERPs over all blocks of one
subject tested (ID: 2) for locations D and V and the AD and AV
conditions.

Detailed analysis of obtained sERP morphology and
topography was out of the scope of this study, and displaying
the waveforms in Figure 3 is for exemplary purpose. However, it
is important to note that the data of all subjects follow the similar
pattern, i.e., overall increase of absolute signal amplitude for
attended compared to unattended condition in both stimulation
sites. Also, presence of typical ERP components such as P1, N1, P3,
and their latency alignment between conditions is also visible on
Figure 3, further validating that the obtained responses are indeed
of neurophysiological nature.

The BCI performance results for all combinations of input
variables, over all EEG channels are presented in Figure 4.

Statistical analysis of BCI performance based on classifier type
(LDA vs. SVM) and number of SEP trials used for averaging
showed that SVM classifier significantly outperformed LDA
classifier [F(1,9) = 32.1, p = 0.0003], over all channels, sERP
averaging methods, and feature extraction/selection methods. Also,
statistically significant differences were obtained for comparison of
sERP averaging options [SEP3 vs. SEP5 vs. SEP10, F(2,18) = 45.8,
p = 0.0000008] with higher accuracies obtained for higher number
of averaged trials (Figure 4), since single trial averaging increases
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Savić et al. 10.3389/fnhum.2023.1096814

FIGURE 3

Grand-average sERP waveforms of subject 2 for 5 EEG channels. Blue lines represent the sERPs associated with stimulation of the radial nerve
(D location), while the red lines represent the sERPs associated with stimulation of the median nerve (V location). The solid line represents the
attended condition while the dashed line represents the unattended condition. Channel labels are given within each subplot. Zero marks the
stimulus onset.

SEP3 SEP5 SEP10

FIGURE 4

Boxplots of the BCI performance (accuracy) results over all channels. The left graph shows results for all tested combinations of classifiers (LDA and
SVM) and feature extraction/selection methods (F1, F2, FS1, and FS2). Left graph is divided into 3 groups of boxplots (SEP3, SEP5, and SEP10 results),
from left to right, respectively. Combination of SVM, SEP10 and 4 feature extraction methods selected for further analysis (last 4 boxplots) are filled
with blue color. The right graph shows grouped result over 3 trial-averaging options (SEP3, SEP5, and SEP10). The horizontal line denotes median,
boxes are interquartile ranges, whiskers show minimum and maximum values, and outliers are marked with red crosses.

sERP signal to noise ratio. The main effects of 2-way repeated
measures ANOVA were significant but the interaction between
factors was not significant [classifier type vs. number of trial for
averaging, F(2,18) = 3.13, p = 0.068].

For the next analysis step, we narrowed our choice of methods
to SVM classifier and SEP10 averaging, since those options
resulted in better BCI performance (over 70%). Consequently,
the combination of SVM-SEP10 and 4 different feature vector
generation methods from 2 feature extraction approaches, with
and without feature selection (F1, F2, FS1, and FS2), were
tested with significant differences identified [F(1.63, 14.7) = 9.04,
p = 0.004]. Results of the post-hoc comparison are given in
Table 1. The results show significant increase in performance
for both feature extraction approaches when feature selection
is included.

Finally, the Table 2 summarizes the results for all subjects and
EEG channels, for the optimal method, previously identified based
on the best median performance: SVM classifier, SEP10 averaging,
and feature extraction/selection–FS1. Table 3 shows classification
accuracies separated for different target conditions presented by
confusion matrices (for previously identified best channel of each
subject).

4. Discussion

We developed and tested a novel electrotactile BCI prototype
with control paradigm based on tactile attention task and sERP
as BCI control-signal. Electrotactile BCI system comprises a
commercial EEG amplifier, electrical stimulation device and a
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Savić et al. 10.3389/fnhum.2023.1096814

TABLE 1 Results of the post-hoc comparison of BCI performance
achieved with four feature extraction and selection methods for SVM
classifier and SEP10 averaging option.

Comparison of BCI
performance between
methods

Test
statistics

P-value

F1 vs. F2 1.22 0.252

FS1 vs. F2 4.42 0.001

F1 vs. FS1 −4.58 0.0013

F2 vs. FS2 −6.28 0.0001

F1 vs. FS2 −1.23 0.251

FS1 vs. FS2 2.07 0.06

Statistically significant differences are presented with p-value bolded.

custom MATLAB based software for signal acquisition and
device control. We tested a feasibility of single-channel EEG
control, selected among 5 EEG channels. Our design also includes
ES electrodes configuration comprising common indifferent
stimulation electrode on the wrist and two spatially proximal
locations of active stimulation electrodes positioned on the
forearm, for stimulating the muscles innervated with mixed
branches of radial and median nerves.

Our analysis comprised 3 sERP averaging approaches (3, 5
and 10 consecutive SEP trials), 2 feature extraction methods (F1,
F2), effect of feature selection/fine-tuning, and 2 commonly used
classifiers in BCI systems. Due to multiple factors, we have adopted
a stepwise approach in our analysis. First step was to select a
sERP averaging approach and classifier type. Analysis showed
that SVM significantly outperformed LDA classifier and that only
SEP10 averaging increased BCI performance over 70%. Moreover,
our results showed statistically significant increase in classification
accuracy with the increase of number of averaged SEPs (Figure 4).
This result was expected since single-trial SEP averaging increases
signal to noise ratio which is reflected in BCI performance.
Moreover, this result further confirms the neurophysiological

origin of the classified signals, since increase of accuracy with the
increase of averaged single trials is expected in physiologically
relevant data, contrary to the noisy signals. However, SEP5 and
SEP3 approaches resulted in median classification accuracies below
70%, and therefore we used SEP10 averaging in the next analysis
steps. Finally, the results show significant increase in performance
for both feature extraction methods (F1 and F2) when feature
selection is included (in combination with SVM classifier), and that
FS1 approach achieved highest median accuracy.

Single-channel analysis summarized in Table 2 shows that BCI
performance based on SVM, SEP10, and FS1 exceeded 75% in all
subjects for at least one EEG channel while six subjects achieved
accuracies over 80%. However, the EEG channel giving highest
accuracy varied between subjects. On average, highest performance
was achieved with C3, followed by Cz, CP3, Pz, and C4. The results
show considerable variability among channel locations yielding the
highest classification accuracy. Channel C3 with highest median
accuracy was identified as the optimal in 3 subjects, CP3 in 2
subjects, Cz in 4 subjects, Pz in 1 subject and C4 was not selected.

Table 3 shows classification accuracies separated for different
target conditions. The results are presented as confusion matrices
including: percentages of correctly classified D targets, percentages
of correctly classified V targets, percentages of D targets
misclassified as V, and percentages of V targets misclassified as D.
The results show that accuracies are balanced over conditions with
the median value of correctly classified D targets is 41%, while the
median value of correctly classified V targets is 40%, out of 50%
stimuli delivered per each condition.

The results of this study are an important step toward an
optimized online electrotactile BCI control where the cross-
validation based approach is implemented for calibration of the
device, selection of the optimal feature set, classifier training and
control-channel selector. It is important to note that the achieved
results were obtained in completely naive subjects without any
training of the selective tactile attention task and without any
feedback on their performance. Therefore, it might be expected that
the performance could further increase with training of the subject
and feedback inclusion during online BCI control. Regarding the

TABLE 2 The BCI performance for all subjects and EEG channels obtained by the optimal feature extraction/selection and classification approach (SVM
classifier, SEP10 averaging, and feature extraction/selection–FS1).

ID Amp. D/V (mA) C3 CP3 Cz Pz C4

1 17/12 80.9 88.1 84.6 65.3 63.8

2 13/12 82.6 81.4 73.4 72.0 72.2

3 17/12 80.9 75.0 82.1 78.5 78.6

4 11/11 80.3 73.3 77.9 73.3 67.5

5 10/7 71.6 71.6 75.9 71.6 60.1

6 11/8 77.9 73.3 81.3 77.9 80.2

7 12/12 64.8 75.1 52.2 75.0 50.1

8 11/10 70.9 73.3 77.8 70.8 67.8

9 17/12 80.4 82.3 80.3 84.3 80.3

10 17/17 80.4 74.2 71.7 71.8 74.0

Median
{Q1-Q3}

12.5 {11–17}
/12 {10–12}

80.35
{71.6–80.9}

74.6
{73.3–81.4}

77.85
{73.4–81.3}

72.65
{71.6–77.9}

70
{63.8–78.6}

Columns include subject ID, stimulation amplitude values at both D and V locations, and accuracies for 5 EEG channels. Highest accuracy per subject is presented in bolded number.
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Savić et al. 10.3389/fnhum.2023.1096814

TABLE 3 Best BCI channel-performance per subject (SVM classifier,
SEP10 averaging, and feature extraction/selection–FS1) and confusion
matrices.

ID Channel Acc (%) Confusion matrices
(%)

TP(D) FP(D)

FP(V) TP(V)

1 CP3 88.1 47.1 3.9

8 41

2 C3 82.6 45.4 4.6

12.8 37.2

3 Cz 82.1 42.5 8.2

9.7 39.6

4 C3 80.3 41.2 8.8

10.9 39.1

5 Cz 75.9 36.9 12.6

11.5 39.1

6 Cz 81.3 40.7 9.2

9.5 40.6

7 CP3 75.1 38.8 10.5

14.4 36.3

8 Cz 77.8 37.6 11.8

10.4 40.2

9 Pz 84.3 42.3 7.7

8 42

10 C3 80.4 41 8.9

10.7 39.4

Median
{Q1–Q3}

80.85
{77.8–82.6}

41.1
{38.8–42.5}

8.85
{7.7–10.5}

10.55
{9.5–11.5}

39.5
{39.1–40.6}

TP(D), percentage of correctly classified D targets; TP(V), percentage of correctly classified
V targets; FP(D), percentage of D targets misclassified as V; FP(V), percentage of V targets
misclassified as D.

prospects of online control, it is important to emphasize that results
obtained via leave-one-out cross-validation are a realistic measure
of online performance. The artifact rejection methods based on
thresholds for EEG and EOG channels are easily applicable in an
online scenario as well as the rest of the processing steps which
were implemented in such manner to completely mimic the online
BCI application.

Our BCI design comprises unique combination of electrotactile
single pulse stimulation for eliciting SEPs for single-channel
BCI control, spatially proximal locations of the stimulation
sites on the same arm and stimuli probability balanced across
2 conditions. Consequently, the mismatch between conditions
is created solely by the mental focus and not the difference
is stimulus probability like in P300 studies employing oddball
paradigm with lower probability of the target stimulus (Chu
et al., 2021). This study also introduces a completely novel
concept of sERP utilization for BCI control. In our approach the

cortical representations of D and V locations in the contralateral
somatosensory map are very close. Nevertheless, the sequential
approach of single pulse stimulation allowed us to estimate
the sERP responses associated with each of the stimuli sites,
and consequently, generated within each of the neighboring
cortical representations individually (even with the same EEG
channel).

Previous reports on BCI control based on somatosensory
electrical stimulation, used predominantly steady-state
somatosensory evoked potentials (SSSEP) (Müller-Putz et al., 2006)
while our electrotactile BCI platform is based on classification
of SEPs averaged over consecutive single-trial responses for
different stimuli locations, which is a completely novel approach
enabling stimulation locations to be on the same limb unlike
SSSEP-BCIs, which are based on detection of activation of more
distant brain regions, exp. left vs. right hand sensorimotor areas
(Petit et al., 2021). Moreover, SSSEP detection in all reviewed
studies was based on multichannel EEG analysis, due to the fact
that stimulation hotspots positioned on distant body parts elicit
responses originating from different brain regions, requiring
multiple EEG channels for recording the brain activity necessary
for recognition (classification) of those signals [for review see Petit
et al. (2021)].

Yao et al. (2013) explored the effects of vibrotactile stimulation
in combination with selective sensation task as an alternative
BCI task complementary to motor imagery. In these studies,
event-related desynchronization/synchronization (ERD/ERS)
in correlation with processing of afferent inflow in human
somatosensory system, and attentional effect which modulated the
ERD/ERS were explored.

The main methodological difference of our approach compared
to previous studies using tactile stimulation and selective sensation
approach is the introduction of stimulation locations at proximal
locations of the same limb which wasn’t explored neither within
SSSEP nor tactile ERD/ERS paradigms. Additionally, our approach
is methodologically different from other tactile BCIs that utilize
ERPs (mainly P300) for control, since we employed equal
probability of target and distractor stimulus occurrence. This
approach is different from classical oddball paradigm employed
in other tactile ERP BCIs where the target (deviant, odd)
stimuli is less frequent than the standard, and different from
studies employing several targets of the same, smaller, probability
compared to distractor stimuli (Guger et al., 2017; Spataro et al.,
2018; Yao et al., 2022; Zhong et al., 2023). Guger et al. (2017)
and Spataro et al. (2018) in one of their paradigms utilized
vibrotactile stimulation on left/right wrists (targets) and distractor
on the shoulder or back in order to induce P300 responses.
The distractor received 75% of the stimuli, while the left and
right wrist each received 12.5% of the stimuli. Their design
involved equal probabilities of the targets, but the inclusion of the
distractor with higher probability creates an oddball-like design
to elicit P300.

Our sERP-based BCI introduces a compact design of 2
stimulation channels, requiring only 3 stimulation electrodes
positioned on the same forearm for stimulating two mixed nerve
branches (radial and median nerve). Intensities of ES for locations
D and V varied between the subjects. The protocol included
balancing of the pulse amplitudes between the locations in order
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to obtain similar subjective feeling of stimulation intensity. The
amplitude for D site (10–17 mA) was higher or equal to the
one used for V site (7–17 mA), as shown in Table 2. During
the preliminary tests of the system, it was observed that the
balancing of the stimulation intensity among the stimulation
sites makes the tactile attention task easier since the attention
is more easily kept on the stronger stimulus if the intensities
are unbalanced.

Reports on use of steady-state somatosensory evoked potentials
as BCI control signals claim that main advantage and reason for
somatosensory stimuli introduction in BCI control is to overcome
one of the greatest challenges of visual attention BCIs (that use P300
or steady-state visually evoked potentials) which is inherent visual
fatigue after prolonged use (Ahn et al., 2016), and our work is in
line with such recommendations. This BCI platform is adapted to
requirements of both sensory training in restorative BCI (stroke
or brain injury) applications and assistive BCIs, such as enabling
communication in locked-in patients.

Information transfer rate (ITR) of our BCI design (number of
targets: 2, number of commands: 1, time in seconds per decision
for SEP3: 4.2 s, SEP5: 7 s, and SEP10: 14 s) is 14.29 bpm for SEP3,
8.57 bpm for SEP5, and 4.29 bpm for SEP10, respectively (Dal Seno
et al., 2010). These results are comparable to ITR reported in very
limited number of tactile ERP-based BCIs. Li et al. (2019) report
ITR of 2.9 bpm in their P300 BCI based on somatosensory electrical
stimulation for achieving the accuracy of 80% (4 EEG channel BCI
design). Mao et al. (2021) reports ITR of 4.61–6.95 bpm (64.5–
75.5% accuracy) of tactile P300 BCI using vibration stimuli (14 EEG
channels). Chu et al. (2021) reports ITR of 6.75 bpm (94% accuracy)
for vibration and 6.88 bpm (95% accuracy) for electrical stimuli in
their P300 BCI design (14 EEG channels).

Our BCI design includes 5 EEG channels, however, the
obtained accuracies are calculated for single-channel BCI control.
Therefore, in an online scenario, a control channel can be selected
among 5 EEG channel candidates with the best accuracy obtained
during the classifier training. We hypothesize that the accuracy or
ITR in our design can be further increased by multichannel control
which may reduce the number of trials averaged to achieve higher
accuracies. This will be a subject of future research. Moreover,
the interstimulus interval of our BCI design is 700 ms, but the
SEP pre-processing used for feature extraction is conducted on
500 ms epochs (100 ms baseline and 400 ms post-stimulus interval).
Therefore, the shortening of ISI for increasing the ITR may be
feasible and could be a topic for future research.

5. Conclusion

We presented a feasibility of a novel electrotactile BCI platform.
Our BCI design is compact including novel stimulation setup
consisted of 2 electrical stimulation channels positioned on a
forearm of the same limb. Our control paradigm is based on
selective tactile attention toward a chosen target location, with
equal probability of stimulus occurrence. The control signals
driving the system are SEPs elicited by a single electrical pulse
stimulating mixed radial or median nerve branches which enables
the proximity of the stimulation locations positioned on the

same limb unlike SSSEP BCI control. We presented a dedicated
feature extraction and selection methods and results showing
that single EEG channel BCI performance offline estimation
in all subjects ranged from 75.1 to 88%. We propose this
method for driving restorative BCIs for sensory retraining in
stroke or brain injury or assistive BCIs for communication in
severely disabled users.
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Savić et al. 10.3389/fnhum.2023.1096814

References

Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., and Zhao, X. (2019). A comprehensive
review of EEG-based brain-computer interface paradigms. J. Neural Eng. 16:011001.
doi: 10.1088/1741-2552/aaf12e

Ahn, S., Kim, K., and Jun, S. C. (2016). Steady-state somatosensory evoked potential
for brain-computer interface-present and future. Front. Hum. Neurosci. 9:716. doi:
10.3389/fnhum.2015.00716

Breitwieser, C., Kaiser, V., Neuper, C., and Müller-Putz, G. R. (2012). Stability and
distribution of steady-state somatosensory evoked potentials elicited by vibro-tactile
stimulation. Med. Biol. Eng. Comput. 50, 347–357. doi: 10.1007/s11517-012-0877-9

Brouwer, A. M., and van Erp, J. B. F. (2010). A tactile P300 brain-computer interface.
Front. Neurosci. 4:19. doi: 10.3389/fnins.2010.00019

Chu, C., Luo, J., Tian, X., Han, X., and Guo, S. (2021). A P300 brain-
computer interface paradigm based on electric and vibration simple command tactile
stimulation. Front. Hum. Neurosci. 15:641357. doi: 10.3389/fnhum.2021.641357

Dal Seno, B., Matteucci, M., and Mainardi, L. T. (2010). The utility metric: A novel
method to assess the overall performance of discrete braincomputer interfaces. IEEE
Trans. Neural Syst. Rehabil. Eng. 18, 20–28. doi: 10.1109/TNSRE.2009.2032642

Grigoryan, R., Goranskaya, D., Demchinsky, A., Ryabova, K., Kuleshov, D., and
Kaplan, A. (2020). Difference in somatosensory event-related potentials in the blind
subjects leads to better performance in tactile P300 BCI. bioRxiv [Preprint]. doi:
10.1101/2020.06.16.155796

Guger, C., Spataro, R., Allison, B. Z., Heilinger, A., Ortner, R., Cho, W., et al. (2017).
Complete locked-in and locked-in patients: Command following assessment and
communication with vibro-tactile P300 and motor imagery brain-computer interface
tools. Front. Neurosci. 11:251. doi: 10.3389/fnins.2017.00251

Höffken, O., Veit, M., Knossalla, F., Lissek, S., Bliem, B., Ragert, P., et al. (2007).
Sustained increase of somatosensory cortex excitability by tactile coactivation studied
by paired median nerve stimulation in humans correlates with perceptual gain.
J. Physiol. 584, 463–471. doi: 10.1113/jphysiol.2007.140079

Josiassen, R. C., Shagass, C., Roemer, R. A., Slepner, S., and Czartorysky, B.
(1990). Early cognitive components of somatosensory event-related potentials. Int. J.
Psychophysiol. 9, 139–149.

Kaufmann, T., Herweg, A., and Kübler, A. (2014). Toward brain-computer
interface based wheelchair control utilizing tactually-evoked event-related potentials.
J. Neuroeng. Rehabil. 11, 1–17. doi: 10.1186/1743-0003-11-7

Li, J., Pu, J., Cui, H., Xie, X., Xu, S., Li, T., et al. (2019). An online P300 brain–
computer interface based on tactile selective attention of somatosensory electrical
stimulation. J. Med. Biol. Eng. 39, 732–738. doi: 10.1007/s40846-018-0459-x

Liu, J., Pho, R. W., Pereira, B. P., Lau, H. K., and Kumar, V. P. (1997). Distribution of
primary motor nerve branches and terminal nerve entry points to the forearm muscles.
Anat. Rec. 248, 456–463. doi: 10.1002/(SICI)1097-0185(199707)248:3&lt;456::AID-
AR19&gt;3.0.CO;2-O

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A.,
et al. (2018). A Review of classification algorithms for EEG-based brain-computer
interfaces: A 10-year update. J. Neural Eng. 15:031005. doi: 10.1088/1741-2552/aab2f2

Mao, Y., Jin, J., Li, S., Miao, Y., and Cichocki, A. (2021). Effects of skin friction
on tactile P300 brain-computer interface performance. Comput. Intell. Neurosci.
2021:6694310. doi: 10.1155/2021/6694310

Müller-Putz, G. R., Scherer, R., Neuper, C., and Pfurtscheller, G. (2006). Steady-state
somatosensory evoked potentials: Suitable brain signals for brain-computer interfaces?
IEEE Trans. Neural Syst. Rehabil. Eng. 14, 30–37. doi: 10.1109/TNSRE.2005.863842

Namerow, N. S., Sclabassi, R. J., and Enns, N. F. (1974). Somatosensory responses
to stimulus trains: Normative data. Electroencephalogr. Clin. Neurophysiol. 37, 11–21.
doi: 10.1016/0013-4694(74)90241-7

Petit, J., Rouillard, J., and Cabestaing, F. (2021). EEG-based brain-computer
interfaces exploiting steady-state somatosensory-evoked potentials: A literature
review. J. Neural Eng. 18:051003. doi: 10.1088/1741-2552/ac2fc4

Ramadan, R. A., and Vasilakos, A. V. (2017). Brain computer interface: Control
signals review. Neurocomputing 223, 26–44. doi: 10.1016/j.neucom.2016.10.024

Sellers, E. W., Arbel, Y., and Donchin, E. (2012). BCIs that use P300 event-related
potentials. Brain Comput. Interf. Princ. Pract. 24, 215–226.

Steinert, S., Bublitz, C., Jox, R., and Friedrich, O. (2019). Doing things with thoughts:
Brain-computer interfaces and disembodied agency. Philos. Technol. 32, 457–482.
doi: 10.1007/s13347-018-0308-4

Song, D. H., Chung, M. E., Han, Z. A., Kim, S. Y., Park, H. K., and Seo, Y. J. (2014).
Anatomic localization of motor points of wrist flexors. Am. J. Phys. Med. Rehabil. 93,
282–286.

Spataro, R., Heilinger, A., Allison, B., De Cicco, D., Marchese, S., Gregoretti, C.,
et al. (2018). Preserved somatosensory discrimination predicts consciousness recovery
in unresponsive wakefulness syndrome. Clin. Neurophysiol. 129, 1130–1136. doi: 10.
1016/j.clinph.2018.02.131

Tobimatsu, S., Zhang, Y. M., and Kato, M. (1999). Steady-state vibration
somatosensory evoked potentials: Physiological characteristics and tuning function. Clin.
Neurophysiol. 110, 1953–1958. doi: 10.1016/s1388-2457(99)00146-7

Toleikis, J. R. (2005). Intraoperative monitoring using somatosensory evoked
potentials. A position statement by the American society of neurophysiological
monitoring. J. Clin. Monit. Comput. 19, 241–258. doi: 10.1007/s10877-005-4397-0

Xiao, X., Xu, M., Jin, J., Wang, Y., Jung, T. P., and Ming, D. (2020). Discriminative
canonical pattern matching for single-trial classification of ERP components. IEEE
Trans. Biomed. Eng. 67, 2266–2275. doi: 10.1109/TBME.2019.2958641

Yao, L., Jiang, N., Mrachacz-Kersting, N., Zhu, X., Farina, D., and Wang, Y. (2022).
Reducing the calibration time in somatosensory BCI by using tactile ERD. IEEE Trans.
Neural Syst. Rehabil. Eng. 30, 1870–1876. doi: 10.1109/TNSRE.2022.3184402

Yao, L., Meng, J., Zhang, D., Sheng, X., and Zhu, X. (2013). Selective sensation based
brain-computer interface via mechanical vibrotactile stimulation. PLoS One 8:e64784.
doi: 10.1371/journal.pone.0064784

Zhong, Y., Yao, L., Wang, J., and Wang, Y. (2023). Tactile sensation assisted motor
imagery training for enhanced BCI performance: A randomized controlled study.
IEEE Trans. Biomed. Eng. 70, 694–702. doi: 10.1109/TBME.2022.3201241

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1096814
https://doi.org/10.1088/1741-2552/aaf12e
https://doi.org/10.3389/fnhum.2015.00716
https://doi.org/10.3389/fnhum.2015.00716
https://doi.org/10.1007/s11517-012-0877-9
https://doi.org/10.3389/fnins.2010.00019
https://doi.org/10.3389/fnhum.2021.641357
https://doi.org/10.1109/TNSRE.2009.2032642
https://doi.org/10.1101/2020.06.16.155796
https://doi.org/10.1101/2020.06.16.155796
https://doi.org/10.3389/fnins.2017.00251
https://doi.org/10.1113/jphysiol.2007.140079
https://doi.org/10.1186/1743-0003-11-7
https://doi.org/10.1007/s40846-018-0459-x
https://doi.org/10.1002/(SICI)1097-0185(199707)248:3&lt;456::AID-AR19&gt;3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-0185(199707)248:3&lt;456::AID-AR19&gt;3.0.CO;2-O
https://doi.org/10.1088/1741-2552/aab2f2
https://doi.org/10.1155/2021/6694310
https://doi.org/10.1109/TNSRE.2005.863842
https://doi.org/10.1016/0013-4694(74)90241-7
https://doi.org/10.1088/1741-2552/ac2fc4
https://doi.org/10.1016/j.neucom.2016.10.024
https://doi.org/10.1007/s13347-018-0308-4
https://doi.org/10.1016/j.clinph.2018.02.131
https://doi.org/10.1016/j.clinph.2018.02.131
https://doi.org/10.1016/s1388-2457(99)00146-7
https://doi.org/10.1007/s10877-005-4397-0
https://doi.org/10.1109/TBME.2019.2958641
https://doi.org/10.1109/TNSRE.2022.3184402
https://doi.org/10.1371/journal.pone.0064784
https://doi.org/10.1109/TBME.2022.3201241
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/

	Novel electrotactile brain-computer interface with somatosensory event-related potential based control
	1. Introduction
	2. Materials and methods
	2.1. Subjects
	2.2. Instrumentation and experimental setup
	2.3. Experimental protocol
	2.4. Data preprocessing
	2.5. Feature extraction and selection approaches
	2.6. Classification approaches
	2.7. Data analysis

	3. Results
	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


