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Objective: This study aimed to evaluate the effects of multiple virtual reality (VR)

interaction modalities based on force-haptic feedback combined with visual or

auditory feedback in different ways on cerebral cortical activation by functional near-

infrared spectroscopy (fNIRS). Methods: A modular multi-sensory VR interaction

system based on a planar upper-limb rehabilitation robot was developed. Twenty

healthy participants completed active elbow flexion and extension training in four VR

interaction patterns, including haptic (H), haptic + auditory (HA), haptic + visual (HV),

and haptic + visual + auditory (HVA). Cortical activation changes in the sensorimotor

cortex (SMC), premotor cortex (PMC), and prefrontal cortex (PFC) were measured.

Results: Four interaction patterns all had significant activation effects on the motor

and cognitive regions of the cerebral cortex (p < 0.05). Among them, in the HVA

interaction mode, the cortical activation of each ROI was the strongest, followed by

HV, HA, and H. The connectivity between channels of SMC and bilateral PFC, as well

as the connectivity between channels in PMC, was the strongest under HVA and HV

conditions. Besides, the two-way ANOVA of visual and auditory feedback showed

that it was difficult for auditory feedback to have a strong impact on activation

without visual feedback. In addition, under the condition of visual feedback, the effect

of fusion auditory feedback on the activation degree was significantly higher than

that of no auditory feedback.

Conclusions: The interaction mode of visual, auditory, and haptic multi-sensory

integration is conducive to stronger cortical activation and cognitive control. Besides,

there is an interaction effect between visual and auditory feedback, thus improving

the cortical activation level. This research enriches the research on activation and

connectivity of cognitive and motor cortex in the process of modular multi-sensory

interaction training of rehabilitation robots. These conclusions provide a theoretical

basis for the optimal design of the interaction mode of the rehabilitation robot and

the possible scheme of clinical VR rehabilitation.

KEYWORDS

rehabilitation robot, multi-sensory interactive, cognitive cortex, motor cortex, near-infrared
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Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2023.1089276
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2023.1089276&domain=pdf&date_stamp=2023-02-09
https://doi.org/10.3389/fnhum.2023.1089276
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1089276/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1089276 February 3, 2023 Time: 16:4 # 2

Zheng et al. 10.3389/fnhum.2023.1089276

1. Introduction

In the past two decades, research and development of robot-
assisted rehabilitation have accelerated dramatically as a promising
rehabilitation therapy (Cao et al., 2020). It provides a standardized
environment for more intensive and repetitive interventions, thereby
reducing the stress and workload of therapists. The basic design
principle of rehabilitation robots is to induce cerebral cortex
activation by processing external stimuli (Kaplan, 1988). If feedback
stimuli related to motor performance are synchronized with motor
output, these not only enhance motivation but also promote plasticity
in the motor cortex (Stefan, 2000). External stimuli can be expressed
in many forms, including visual, auditory, and haptic stimuli, in
motor learning applications (Deutsch et al., 2004).

Virtual reality (VR) based rehabilitation therapy can provide
various feedback stimuli such as visual, auditory, and haptic stimuli.
Currently, its application in the clinical medical field is becoming
increasingly widespread; however, its rehabilitation effects remain
unclear. It has been argued that excessive feedback may lead to patient
dependence. However, it has also been suggested that multisensory
stimulation is beneficial for improving patients’ positive expectations
and self-efficacy (Shamy, 2010). Therefore, to achieve the optimal
training effect of robotic rehabilitation training, it is necessary to
study the influence of the form and intensity of feedback stimuli on
the method’s training effects. By exploring the optimal interaction
mode, a theoretical basis for a robotic interaction design can be
provided. This is of great significance for the development of cranial
nerve rehabilitation.

Currently, most studies compare several single-feedback stimuli
such as visual and auditory stimuli. Wang et al. (2022) studied
the effect of visual and auditory feedback based on the upper limb
rehabilitation system on cortical activation. However, haptic feedback
was not involved in this study. Haptic feedback is the most direct and
necessary form of motion information for robots (Lieberman and
Breazeal, 2007), it is indispensable. Research methods that combine
other types of feedback in a variety of ways based on haptic feedback
appear to be more applicable and comprehensive. Therefore, this
study explored the effects of haptic feedback combined with visual
or auditory feedback on cortical activation. By exploring the optimal
feedback method, the rehabilitation efficiency of a rehabilitation
robot can be improved.

The basic principle of neurological rehabilitation for stroke
is brain plasticity. In the process of rehabilitation training,
external sensory stimulation can promote neural activity, thereby
promoting neural remodeling and functional recovery. This is also
the significance of VR technology used in stroke rehabilitation.
Therefore, studying the neural activity of the brain during
rehabilitation training is the most intuitive way to reflect the training
effect. Typically, the motor and cognitive cortices are activated
during robot-assisted rehabilitation training. The premotor cortex
(PMC) is involved in the planning and execution of motor tasks
(Grafton et al., 1998). The sensorimotor cortex (SMC) is associated
with task complexity and attention (control of attentional resources)
during voluntary movements (Han et al., 2018). The PFC is mainly
responsible for executive control processes related to working
memory, coordinating other brain regions to accomplish goal-
oriented behaviors, and plays an essential role in higher cognitive
functions such as episodic memory and reasoning ability (Jacky et al.,
2015, Carlen, 2017). Studies have shown that neural networks are

active during complex executive processes and that the PFC is highly
correlated with the posterior parietal cortex (Periánez et al., 2004).
Therefore, the PMC, SMC, and PFC were selected as regions of
interest (ROIs) in this study. During the training process, the cortical
activation of the ROIs was measured to investigate the impact of
different interaction modes on the training effect.

Currently, functional neuroimaging techniques that can be used
to explore the activation of the cortex by external stimuli include
positron emission tomography (PET), functional magnetic resonance
imaging (fMRI), and functional near-infrared spectroscopy (fNIRS).
Among these, fNIRS is non-invasive, has moderate spatial resolution,
allows participants to perform body movements, is easy to wear, and
has low sensitivity to motion artifacts. It is suitable for experiments
with strong demands for interaction or brain activity detection in
natural situations. Therefore, this research used fNIRS technology
to study the corresponding ROIs in the cerebral cortex. The
rationale is that neuronal activity induces hemodynamic responses
through neurovascular coupling, which are related to changes in
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) concentrations
measured by fNIRS (Scholkmann et al., 2014). Therefore, neuronal
activity can be studied by observing changes in hemoglobin
concentration in cerebral blood flow.

The purpose of this study was to use fNIRS technology to detect
the activation of the cerebral cortex under different VR interaction
modes and to explore the optimal feedback mode to improve the
effectiveness of rehabilitation training. A multimodal, VR, interactive
training system based on an end effector rehabilitation robot was
developed to provide modular visual, auditory, and haptic feedback.
In this study, experimental conditions based on haptic feedback
that combined visual and auditory stimuli in different forms were
established, including haptic (H), haptic + auditory (HA), haptic +
visual (HV), and haptic + visual + auditory (HVA). This research
method was used to compare and study the potential differential
effects of different VR interaction modes on the cerebral cortex and to
explore a better interaction method. This provided a theoretical basis
for optimizing the interaction design of rehabilitation robots.

2. Materials and methods

2.1. Equipment

2.1.1. VR interactive system of upper-limb
rehabilitation robot

The end effector upper-limb rehabilitation robot ArmGuider
was jointly developed by the University of Shanghai for Science
and Technology and Shanghai ZD Medical Technology Co., Ltd.,
Shanghai, China. It is mainly composed of a working platform,
linkage mechanism, power system, and display screen (Figure 1).
The working platform is 1.20 meters long and 1.10 meters wide. The
screen is 0.94 meters long and 0.53 meters wide. The robot offers
multiple training modes and different speed and intensity levels.
Moreover, it can realize trajectory training in the horizontal plane.
The two-link system can transmit the interactive force between the
power system and the end effector as a transmission component.
During the training process, the patient’s affected arm was secured
to the end effector (Figures 1C, D). The patient applied a force or the
force was driven by the end effector. The robot can adjust the strength
of the assistance or resistance provided in real time according to the
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force exerted by the user on the end effector to maintain a constant
speed of movement or the patient’s training motivation. The target
disease for this rehabilitation robot is stroke with mild motor and
cognitive impairment. Some previous studies have shown that for
stroke patients with mild brain injury, the neural response of their
cerebral cortex is similar to that of healthy people (Rehme et al.,
2011, Rehme et al., 2012). Therefore, the cortical activity of healthy
people can reflect the neural activity of patients with mild stroke to a
certain extent, which provides a certain experimental basis for clinical
treatment.

Several studies on robotic therapy devices have shown that
continuous passive movement combined with active movement can
promote motor recovery (Krebs et al., 2003, Hogan et al., 2006,
Krebs, 2009). In this study, a novel passive-active combined training
mode was adopted, as this mode allows for the adjustment of the
interaction force according to the degree of patient participation to
achieve the transformation of the active and passive modes. This
innovative robotic training mode will assist therapists in delivering
optimized therapy to restore upper extremity function in stroke
patients with various needs and abilities (Blank et al., 2014). In
addition, according to the characteristics of passive-active training,
we designed a corresponding VR interaction system using the Unity
3D game engine. The virtual environment mainly uses natural
scenery such as forests and grasslands as design elements (Figure 1A).
The position of the end effector and the direction of the force were
calculated in real-time and streamed to the virtual reality application.
A butterfly net in a virtual environment then mapped the end effector.
The butterfly flew according to a preset trajectory (Figure 1A) to
represent the participants in the virtual environment and moved
accordingly based on their actual movements.

In this study, auditory, visual, and haptic feedback were
combined in a VR system. Haptic feedback involves the robot
adjusting the force exerted on the end effector according to the
active force exerted by the participant. To evaluate the patient’s
exercise ability, we introduced the concept of “engagement,” that
is, the proportion of the patient’s active exertion in the force
required to complete the task. Throughout the training process,
user engagement was displayed on the screen in real-time. The
main task of the participants was to control the butterfly net
to catch the virtual butterfly by pushing the end effector. When
the participant’s engagement exceeded 30%, the butterfly in the
virtual environment was “caught.” Visual feedback refers to the
real-time display of the motion trajectory and special effects of
bonus points when the task was completed. Auditory feedback
refers to the sound played when a task was completed. Typically,
feedback strategies can be categorized according to when feedback
is provided: during motor task execution [concurrent (online, real-
time) feedback], or after (terminal feedback) motor task execution.
In general, a visual concurrent feedback design is desirable to guide
participants to optimal movements without relying on feedback. The
reference trajectories provided additional information regarding the
participants’ range of motion. Therefore, concurrent feedback and
terminal feedback were included in this study, and their effects on
neural activity need to be further explored.

2.1.2. fNIRS system
In this study, a continuous-wave fNIRS system (Brite24, Artinis,

Netherlands) was used to measure cortical activity. A system with
wavelengths of 760 and 850 nm was used to record cortical activity
at a sampling rate of 10 Hz. To test cortical neural activity in the

cognitive and motor areas, we chose two 12-channel optode templates
with a total of 18 optodes (10 light sources and 8 detectors) (Figure 2).
The optodes were mounted on a holder on the NIRS cap. The distance
between the sources and detectors was 3.0 cm. For accurate fixation,
caps were available in large, medium, and small sizes to accommodate
different head sizes. The international 10–20 system was used to
locate the fNIRS optodes (Wang et al., 2018). Cz, Fz, and other symbol
positions were marked on the caps according to the 10–20 system.
For more accurate positioning, the cranial vertex (Cz) was set as a
reference point for the positioning of the optodes. In addition, the
Montreal Neurological Institute (MNI) 152 is the most widely used
average brain template, created by averaging 152 brains co-registered
with the Talairach brain (Peters, 1998) to eliminate differences in
the shape and anatomy of different brains. Previous studies have
established a correspondence between the MNI coordinate system
and the 10–20 system (Jasper, 1958). At the same time, NIRS-SPM
provides statistical parametric mapping tools for fNIRS (Collins et al.,
1994). NIRS-SPM uses probabilistic registration of 3D spatial data
of optodes and 10–20 landmark positions to transform functional
images into the MNI space (Figure 2). The brain areas corresponding
to each channel were then extrapolated from the reference points
based on the MNI template (Okamoto et al., 2004). The ROIs based
on the Brodmann area (BA) regions included the SMC (BA4), PMC
(BA6), and PFC (BA8/9/46). The channels corresponding to each ROI
were as follows: PFC: channels 1–12; SMC: channels 14, 15, 17, 19, 20,
21, and 23; and PMC: channels 13, 16, 18, 22, and 24.

2.2. Participants

Twenty healthy participants (five women; mean age, 24 ± 2.34)
with no history of neurological, motor, or psychological disorders
participated in this study. Auditory, visual, and cognitive abilities
were tested during the experimental training before the experiment,
and no impairments were found. All the participants were fully
informed of the experimental procedures. In addition, to avoid the
different effects on cortical activation that occur due to handedness,
we tested the handedness of all participants using the Edinburgh
Handedness Inventory to ensure the accuracy of the experimental
results (Oldfield, 1969). The test results showed that all the
participants were right-handed.

2.3. Procedure

In this study, the four experimental conditions were as follows:
H, HA, HV, and HVA. As shown in Figure 3, under the H condition,
the interactive interface was blank, and the participants could only
feel the interactive force of the robot end effector without visual
and auditory feedback. In the HA condition, interactive forces and
prompt tones were provided, but no interactive interface was visible.
Those in the HV and HVA conditions could see the interactive
interface; however, the conditions differed in terms of whether a
prompt tone was provided. In addition, the training speed was
set to 0.12 m/s. The training trajectory was a straight line (length
of 45 cm) in the Y-direction, as shown in Figures 1C, D. The
trajectory allows for the training of elbow flexion and extension
and strengthening of the biceps and triceps muscles. We measured
the participants’ cortical activity under the four conditions. A block
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FIGURE 1

Rehabilitation robots and fNIRS equipment. (A) The virtual reality (VR) system; the yellow line (from A to B) represents the training trajectory while the
butterfly net represents the virtual object mapping the robot’s end effector. (B) The fNIRS equipment. (C,D) The actual movement process during the
experiment. The participant’s hand was fixed onto the end effector and they carried out a straight-line reciprocating motion from A to B. The actual
distance from A to B is 0.45 meters.

paradigm design that repeats three cycles (with each cycle consisting
of two phases, rest (40 s) to task (40 s)) was used for each task, as
depicted in Figure 3. Therefore, a single measurement lasted 240
s. During the 40 s task phase, there are approximately five upper
arm flexion and extension movements. The execution sequence of
the four experimental conditions was assigned randomly by applying
a random permutation function “randperm” in MATLABR2012b
(MathWorks, Natick, MA, USA).

Cortical activation was measured using an fNIRS system. The
ROIs were the SMC, PMC, and PFC, and the arrangement of the
optodes is illustrated in Figure 2. As the signals of channels 1–7
were weak and unstable after pre-processing, these channels were
removed. The channels corresponding to each ROI were as follows:
PFC, channels 8, 9, 10, 11, and 12; SMC, channels 14, 15, 17, 19, 20,
21, and 23; and PMC, channels 13, 16, 18, 22, and 24. According
to the modified Beer–Lambert law, we obtained the HbO and HbR
values that followed changes in cortical concentration levels (Holper
et al., 2009). The optodes were placed on the cap according to the
template. According to the international 10–20 system, the cap was
positioned on each participant’s forehead by centering the specific
mark on the bottom line of the optodes at the Fpz (10% of the
distance between the Nasion and Inion). The same method was
applied for Cz and Fz for validation. We then used the MNI template
for probabilistic registration in the NIRS-SPM system (Collins et al.,
1994). The luminous flux of each channel was adjusted to a better
range to ensure the reliability of the experimental data.

The experiment was conducted in a quiet and stable-light
environment. Before the experiment, the participants were asked
to sit comfortably in a chair with their upper bodies upright. The
heights of the working platform and chair were adjusted to a
comfortable position. The participant’s right forearm was fixed to

the end effector. Moreover, the participants were trained on the
robot for five minutes to familiarize themselves with the experimental
procedure and operating methods. During the experiment, the
participants were required to perform upper limb reciprocation
between points A and B under different experimental conditions
(Figures 1C, D). Participants were required to actively participate
to achieve the highest possible engagement. In addition, auditory
stimuli were presented to participants through loudspeakers. The
participants were required to focus on the screen in all four
experimental conditions, including on the blank background in
the H and HA conditions, as shown in Figure 3. In addition,
participants were instructed to relax their bodies during the
experiment and avoid physical movements other than those of
the right arm, including facial movements, frequent blinking,
and looking around. One experimenter operated the robot and
provided participants with verbal prompts including “start” and
“rest,” while another experimenter used the fNIRS system to monitor
changes in cerebral cortex activity in real-time (Cope and Delpy,
1988).

2.4. Data analysis

2.4.1. Cortical activation imaging
The fNIRS equipment measured changes in the optical density

of cerebral blood flow non-invasively. According to the modified
Beer–Lambert law, the relative change in HbO concentration can
be obtained by changing the optical density (Holper et al., 2009).
We analyzed the fNIRS data using the software package NIRS-SPM
(KAIST, Daejeon, South Korea) (Collins et al., 1994) implemented in
MATLAB (MathWorks, Natick, MA, USA). Global drifts often occur
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FIGURE 2

Localization of the fNIRS optodes, channels, MNI coordinates, and Brodmann correspondences. (A) Yellow, transmitters; blue, detectors; and red,
channels. (B) Montreal Neurological Institute (MNI) coordinates for each channel (n = 24) with x, y, and z coordinates. The Brodmann area
correspondences (number, name, and %) were extracted from the NIRS-SPM toolbox on the right.

due to breathing, cardiac, vaso-motion, or other experimental errors
in fNIRS experiments. In this study, the hemodynamic response
function (HRF) and wavelet-MDL were employed to eliminate the
global trend and improve the signal-to-noise ratio (SNR) (Yu et al.,
2011). Besides, the hemodynamic modality separation method was
used to further remove the global trend (Yamada et al., 2012).
Moreover, a generalized linear model (GLM) was used to analyze
the fNIRS data by simulating the hypothetical HbO response under
experimental conditions (Ye et al., 2009). After analyzing each
participant’s data, a group analysis was conducted on all participants’
experimental data under the same experimental conditions, and
a t-test was selected to obtain the activation diagram of each
experimental condition.

2.4.2. Statistical analysis
The GLM model is a linear combination of predicted responses

to different stimuli and error terms. By comparing the ideal and
detected modes of the GLM, the β coefficient can be estimated
by applying the least-squares method. The activation level of the
cerebral cortex can then be obtained by statistical analysis of the β

(Collins et al., 1994). Each channel corresponds to a β value that
represents the activation level of the channel. The β value of the
corresponding channel in each ROI was statistically analyzed as a
parameter representing the activation level of this channel. In this
study, the average of the β values of channels located in the same
ROI was calculated and then a two-way repeated measures ANOVA
was performed across different experimental conditions and different
ROIs. In addition, a Greenhouse–Geisser (G–G) correction was
applied when the spherical hypothesis was violated. The Bonferroni
test was used for post hoc analysis, followed by ANOVA. Statistical
analysis was performed using SPSS software for Windows (version
26.0; SPSS Inc., Chicago, IL, USA). If the p-value was less than 0.05,
the null hypothesis of no difference was rejected.

2.4.3. Connectivity analysis
Connectivity analysis provides more information regarding

dynamic network-level changes than that inferred from the extent
and laterality of activation (Veldsman et al., 2015). This may be a
complementary approach to understanding the neural reorganization
patterns underlying stroke recovery (Grefkes and Fink, 2014). In this
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FIGURE 3

The experimental paradigm and the four different virtual reality (VR) training modes. The patients performed four cycling tasks, each starting with a 40 s
rest period and a 40 s training period, which was repeated three times. The abbreviations in the figure represent haptic (H), haptic + auditory (HA),
haptic + visual (HV), and haptic + visual + auditory (HVA).

study, the Pearson correlation coefficient was used to characterize the
connectivity among the studied brain areas. The Pearson correlation
coefficient was obtained by dividing the covariance by the standard
deviation of the two variables (generally represented by r), with r
represented by values between −1 and 1. As the linear relationship
between the two variables increased, the correlation coefficient
tended to be 1 or −1. The HbO concentration in the task phase was
analyzed, and the sample size for each channel was 1200. Pearson
correlation coefficients between each channel were calculated. The
average of the analysis data for all participants was then computed.
In order to compare the correlation coefficients more intuitively,
statistical analysis was carried out. The average value of correlation
coefficients of between channels located in the corresponding ROIs
was calculated. Then, one-way ANOVA was performed among
the experimental conditions, and the Bonferroni correction was
conducted.

3. Results

This study investigated the cortical activation and functional
connectivity among brain areas during different VR interaction
modes using fNIRS technology. The engagement was calculated
as the behavioral result. Optical imaging and statistical analysis
of beta waves were performed for cortical activation analysis. In
addition, Pearson’s correlation analysis was applied to assess the
connectivity among the ROIs.

The statistical analysis of engagement in four conditions is
shown in Figure 4. During the experiment, the sensors of the robot

recorded the active force exerted by the subject on the end effector.
We calculated the ratio of the subject’s active force to the total
force required to complete the task to obtain the engagement, as
the behavioral result. One-way ANOVAs were performed for the
engagement of four conditions. As can be seen in Figure 4, the
engagement was highest in the HVA group, followed by the HV,
HA, and H groups, respectively. Among them, there were significant
differences between the H and HVA, HA and HVA conditions
(p < 0.05).

The time series data of concentration change of HbO and HHb
are plotted in Figure 5. We randomly selected channel 8 and
calculated the averaged fNIRS responses (of both HbO and HHb)
that were superimposed across four conditions of all subjects. The
solid line represents the mean of the concentration and the shade
represents the error (mean ± SD) (n = 20). The three areas separated
by dotted lines in the figure represent three trials, where the first 40 s
of each trial are the task phase. In the figure, HbO and HHb under the
same conditions are drawn in the same color. In the task phase, the
HbO concentration change curve shows an upward trend, while the
HHb concentration change curve shows a downward trend. It can be
seen from the figure that the average concentration changes of HbO
and HHb show good periodicity. When the concentration of HbO
increases, the concentration of HHb decreases slightly.

The fNIRS cortical activation imaging scans during the four VR
training modes are illustrated in Figure 6 (p < 0.05, uncorrected).
The color bar represents the t-value. As shown in the figure, the
SMC, PMC, and PFC regions showed significant activation (p < 0.05)
under the four interaction modes. It is worth mentioning that the
activation levels in both the cognitive and motor regions of the HV
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FIGURE 4

Statistical analysis of the engagement under four experimental
conditions. *p < 0.05, **p < 0.01. The abbreviations in the figure
represent haptic (H), haptic + auditory (HA), haptic + visual (HV), and
haptic + visual + auditory (HVA).

and HVA groups were similar. Furthermore, compared to the H
and HA groups, the activation area, and degree of the HVA and
HV groups were stronger. Additionally, in the motor region, the
activation area of the H group was broader than that of the HA group.
Nevertheless, the degree of activation of the HA group was higher
than that of the H group (Figure 6).

The statistical analysis of the regression coefficients (β) under
four experimental conditions of three ROIs was shown in Figure 7.
The results of repeated measures ANOVA showed that the main
effect of experimental conditions was significant, F = 27.4, p < 0.001,
η2 = 0.259. The main effect of ROI was significant, F = 5.705,

p = 0.012, η2 = 0.024. The interaction between ROI and conditions
was significant, F = 4.686, p = 0.001, η2 = 0.056. The simple effect
test of experimental conditions showed that in PFC, the simple effect
of experimental conditions was significant, F = 26.216, p < 0.001,
η2 = 0.251. In SMC, the simple effect of experimental conditions
was significant, F = 27.701, p < 0.001, η2 = 0.261. In PMC, the
simple effect of experimental conditions was significant, F = 11.156,
p < 0.001, η2 = 0.125. The simple effect test result of ROI shows
that under the H condition, the simple effect of ROI was significant,
F = 8.440, p < 0.001, η2 = 0.067. Under HA condition, the simple
effect of ROI was significant, F = 9.155, p < 0.001, η2 = 0.073.
Under the HV condition, the simple effect of ROI was not significant,
F = 0.243, p = 0.785, η2 = 0.002. Under the HVA condition, the simple
effect of ROI was not significant, F = 1.604, p = 0.203, η2 = 0.014.
After multiple comparisons, it was found that under the H condition,
the beta values of PFC, PMC, and SMC decreased in turn, and the beta
values of PFC were significantly higher than SMC (p < 0.001). Under
the HA condition, the beta values of PFC, SMC, and PMC decreased
in turn, and the beta values of PFC and SMC were significantly higher
than that of PMC (p < 0.001). Under the HV condition, the beta
values of SMC, PFC, and PMC decreased in turn, without significant
difference. Under the HVA condition, the beta values of PMC, SMC,
and PFC decreased in turn, and there was no significant difference.

To investigate the effect of auditory feedback in the presence of
visual feedback, we conducted a two-way ANOVA on the beta values
of all ROIs under the condition of the presence or absence of visual
and auditory feedback. The results of the intersubjective effect test
showed that the test statistic of whether there was visual feedback or
not was F = 86.472, p < 0.001, indicating that there was a significant
difference in the effect of visual feedback on the activation level. The
test statistic of auditory feedback was F = 17.633, p < 0.001, indicating
that there was a significant difference in the influence of auditory

FIGURE 5

Time series of oxyhemoglobin (HbO) and HHb changes during the task. The solid line represents the mean of the concentration and the shade
represents the error (mean ± SD) (n = 20). The three areas separated by dotted lines in the figure represent three trials, where the first 40 s of each trial
are the task phase. The red, green, blue, and purple curves represent HVA, HV, HA, and H modes, respectively. Thicker lines represent HbO and thinner
lines represent HHb. The abbreviations in the figure represent haptic (H), haptic + auditory (HA), haptic + visual (HV), and haptic + visual + auditory (HVA).
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FIGURE 6

Optical imaging of cortical activities (group analysis). The abbreviations in the figure represent haptic (H), haptic + auditory (HA), haptic + visual (HV), and
haptic + visual + auditory (HVA).

feedback on the activation level. The test statistic of whether there was
visual feedback ∗ whether there was auditory feedback was F = 22.168,
p < 0.001, indicating that visual and auditory feedback have an
interaction effect, which had a significant impact on the activation
level. The result of the descriptive statistical analysis was shown in
Figure 8. As can be seen from the figure, in the absence of visual
feedback, the impact of auditory feedback on the activation level
was similar, while in the presence of visual feedback, the impact of
auditory feedback on the activation level was significantly improved.

The functional connectivity analysis of HbO among the ROIs
is shown in Figure 6. Each pixel value in the 24 × 24 matrix
corresponds to the value of the Pearson correlation coefficient, which
represents the correlation between the two measurement channels.
The channels were ordered according to the ROI to which they
belong. The ROIs were distinguished by gaps forming a 9 × 9
matrix. The numbers marked in the figure are the mean values

FIGURE 7

Statistical analysis of the regression coefficients (β) under four
experimental conditions of three regions of interest (ROIs). SMC,
sensorimotor cortex; PFC, prefrontal cortex; PMC, premotor cortex.
The abbreviations in the figure represent haptic (H), haptic + auditory
(HA), haptic + visual (HV), and haptic + visual + auditory (HVA).

of the Pearson correlation coefficients among the channels in each
ROI. It can be concluded that the correlation between the SMC
and PMC was the strongest in the HVA training mode, whereas the
strongest correlation between the PMC and PFC was found in the
H training mode. The strongest correlation between the SMC and
PFC was observed in the HVA and HV training modes. In addition,
the correlations between the channels within the PFC and SMC were
stronger in the H and HA modes. However, the correlation between
the channels of the two ROIs was stronger under the HV and HVA
modes.

The results of the statistical analysis of the correlation coefficients
(r) are shown in Figure 10. As can be seen from the figure, the
connectivity of bilateral PFC vs. PFC, and SMC vs. SMC was strong
and similar under all experimental conditions. The connectivity
of bilateral PFC vs. SMC, and PMC vs. PMC was stronger under
HVA and HV conditions, and the connectivity of SMC vs. PMC

FIGURE 8

Statistical analysis of the regression coefficients (β) under the
presence or absence of visual feedback or auditory feedback. A simple
representation was given in the figure. NV, no visual feedback; V, visual
feedback; NA, no auditory feedback; A, auditory feedback.
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was strongest under HVA conditions. However, the connectivity of
bilateral PFC vs. PMC was the strongest under H.

4. Discussion

This study aimed to investigate the effects of different VR
interaction modes on the degree of cortical activation and
connectivity among ROIs. We developed a modular VR interactive
system based on an end-effector rehabilitative robot. Four different
VR interaction modes (H, HA, HV, and HVA) were included in
this study, the behavioral performance and cortical activation were
measured using the robot and fNIRS equipment, respectively. The
results showed that the behavioral performance under HVA was the
best (Figure 4). The average concentration changes of HbO and HHb
showed good periodicity. When the concentration of HbO increases,
the concentration of HHb decreases slightly (Figure 5). The results
showed that all four VR interaction modes had significant activation
effects on the cerebral cortex, with the HVA condition inducing the
strongest activation, encompassing the SMC, PMC, and PFC regions
(Figure 7). Furthermore, the HVA mode also displayed a significant
advantage in functional connectivity between SMC and PMC regions
(Figures 9, 10).

Previous research has shown that the visual perception of spatial
information is more accurate, whereas the auditory perception of
time information is even more accurate (Freides, 1974). Haptic
perception can fulfill the relatively high requirements related to
temporal and spatial information processing (Nesbitt, 2004), while
visual feedback plays an essential role in therapeutic regimens for
voluntary movements (Luara et al., 2016). These features can be
powerful when employed with VR technology (Maciejasz et al., 2014).
In addition, auditory feedback can redistribute one’s perceptual and
cognitive load and become the focus of attention (Eldridge, 2006,
Secoli et al., 2011). However, the impact of auditory feedback is
largely dependent on the intuitiveness and accuracy of the mapping
interpretation, and it must be chosen carefully; therefore, auditory
displays are less common than visual displays (Sigrist et al., 2013). It
can be seen from the results of this study that in the absence of visual
feedback, compared with the H mode, the HA mode had a smaller
area of activation in the motor cortex (Figure 6), a weaker degree
of cortical activation in PMC (Figure 7), and weaker connectivity
between PFC and SMC, PFC and PMC (Figures 9, 10). The results
of two-way ANOVA of the existence of visual feedback and auditory
feedback show that auditory feedback was difficult to show a strong
effect on cortical activation level in the absence of visual feedback.
However, in the presence of visual feedback, the improvement of
activation level by fusion auditory feedback was significantly higher

FIGURE 9

Heat map of the connectivity among the channels. The matrix map includes all channel pairs. Color bars indicate the value of r. The x and y axes
representing the ROIs indicate the dorsolateral prefrontal cortex (PFC, channels 8–12), somatosensory area (SMC, channels 14, 15, 17, 19–21, and 23),
and premotor cortex (PMC, channels 13, 16, 18, 22, and 24). The abbreviations in the figure represent haptic (H), haptic + auditory (HA), haptic + visual
(HV), and haptic + visual + auditory (HVA).

Frontiers in Human Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1089276
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1089276 February 3, 2023 Time: 16:4 # 10

Zheng et al. 10.3389/fnhum.2023.1089276

FIGURE 10

Statistical analysis of the correlation coefficients (r) under four experimental conditions between different regions of interest (ROIs). The ROIs
include the bilateral dorsolateral prefrontal cortex (PFC, channels 8–12), somatosensory area (SMC, channels 14, 15, 17, 19–21, and 23), and premotor
cortex (PMC, channels 13, 16, 18, 22, and 24). The abbreviations in the figure represent haptic (H), haptic + auditory (HA), haptic + visual (HV), and
haptic + visual + auditory (HVA).

than that without auditory feedback, which may be related to the
interaction effect between visual and auditory feedback (Figure 8).

As shown in Figures 6, 7, the HV and HVA groups demonstrated
higher degrees of activation in the SMC and PFC regions than the
H and HA groups. Previous studies have shown that the PFC is
associated with decision-making and motor strategy development.
Specifically, the PFC assists in regulating the response and behavior
generated by environmental stimuli (Wood and Grafman, 2003) and
participates in the attentional demands of trajectory planning. Thus,
activation of the PFC reflects its role in maintaining attention and
regulating postural control (Woollacott and Shumway-Cook, 2002,
Drew et al., 2004). In contrast, the SMC plays a vital role in the
early stages of motor learning and is mainly involved in observing
motor tasks and integrating multiple sensory inputs (Bhattacharjee
et al., 2020). It is usually activated in response to somatosensory
stimuli such as haptic stimuli, disturbances, and passive movements.
Thus, activation of the SMC and PFC regions during active upper-
limb training represents the increased attention of the participants.
As can be seen from the results of this study, interaction patterns
that incorporate visual feedback may help to engage the attention of
users.

As shown in Figure 7, the cortical activation levels were similar
under the HV and HA interaction modes in SMC and PFC regions,
whereas activation under the HVA condition was significantly
higher than in the other interaction modes. This indicates that the
higher activation levels under HVA conditions may not result from
individual visual or auditory feedback; instead, these may result from
a combination of multiple feedback modalities. Similar results have
been reported in previous studies. For example, Leff et al. (2011)
showed that the motion control system of the arm can adapt to a
kinematic environment using auditory feedback and that the effect of
auditory feedback is similar to that of visual feedback. Furthermore,
Radziun and Ehrsson (2018) hypothesized that neuron populations
integrate auditory signals with visual, tactile, and proprioceptive

signals from the upper limbs, suggesting that the four interactions
among vision, touch, proprioception, and sound are more conducive
to the perception of limb ownership. In addition, studies have shown
that auditory stimuli are effective at perceiving speed, regularity,
and periodicity of motion (Kapur et al., 2005). Therefore, in future
designs, auditory feedback design objects can incorporate the carrier
signal, loudness, and pitch height (Konttinen et al., 2010).

As shown in Figures 9, 10, the correlation between the SMC and
PMC was the strongest under the HVA mode. Notably, the PMC is
responsible for motor initiation and motor control coding of skilled
motor sequences (Sabes, 2000, Inoue and Sakaguchi, 2014). This
suggests that HVA training modalities can provide sufficient feedback
to stimulate the motor cortex to better facilitate motor initiation
and control, which may be advantageous in the early stages of
motor activity. In addition, some studies have shown that multimodal
stimuli are generally perceived more accurately and faster than
unimodal stimuli, reaching the threshold of neural activation earlier
(Forster et al., 2002, Shams and Seitz, 2008). As task complexity
increases, users prefer multimodal interactions, suggesting that users
self-manage by shifting from unimodal interactions to multimodal
interactions as their cognitive demands increase (Oviatt et al., 2004).
Previous studies have shown that when visual information is input,
the movement pattern is controlled according to the target location.
In response, the movement policy responds quickly. In the absence of
visual input, the response is slower but easier to recall later (Kovacs
et al., 2010). Therefore, multimodal fusion should be employed
during the early stages of motor learning. As the patient’s motor
function continues to improve, the stimulation can be gradually
reduced to maintain a greater cognitive load and enhance memory.

In summary, we studied the cortical activation patterns under
four different VR training modes based on end-effector upper-limb
rehabilitation robots. The results show that upper-limb rehabilitation
robot training can activate the lateral SMC, PMC, and PFC. In
addition, the HVA training mode displayed higher levels of brain
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activation and stronger connectivity among cortical regions. These
results may contribute to the development of rehabilitation robots
and provide a physiological basis for robot design and rehabilitation
strategy formulation. Moreover, fNIRS can be a useful tool for
studying the cortical effects of rehabilitation robots.

The limitations of this study must be considered. First, the form
of auditory feedback used in this study was relatively simple and may
not have strongly excited the nerves, thus affecting the experimental
results. Second, some researchers have suggested that after training
with multimodal stimuli, multimodal processing may be activated
even if only a single modal stimulus is present (Shams and Seitz,
2008), which may have influenced the results of the experiments.
In addition, the target users of this technology are older adults and
people with upper extremity dysfunction; however, this hypothesis
was tested only in young, healthy participants, and the number of
participants was small. In the future, more participants should be
included, including patients with neurological injuries, to investigate
these initial findings in greater depth.

In the future, we will increase the modalities of robotic auditory
stimulation to explore whether multiple auditory feedback tones
lead to higher neural activity levels. In addition, elderly people and
people with brain injuries will be included. Furthermore, the effects
of other training modes, forces, and trajectories of the rehabilitation
robot on cortical activation should be investigated to provide more
comprehensive and systematic evidence.

5. Conclusion

In this study, we used fNIRS to investigate the significant
activation of the parietal and prefrontal cortices during a VR training
task. We have integrated visual and auditory feedback based on
haptic feedback to form a multilevel VR training mode. With the
integration of more sensory feedback, neuronal activity generally
increased, which was reflected in the degree of cortical activation
and connectivity of the ROIs. This indicates that multimode VR
is more helpful in activating the cerebral cortex and promoting
the connection of brain regions. The results may provide a specific
theoretical basis for the human-computer interaction design of upper
limb rehabilitation robots and provide an optimal interactive mode
for rehabilitation robots.
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