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Progressive supranuclear palsy (PSP) is characterized by recurrent falls caused

by postural instability, and a backward gait is considered beneficial for postural

instability. Furthermore, a recent approach for rehabilitation combined with

gait-oriented synchronized stimulation using non-invasive transcranial patterned

stimulation could be promising for balance function. Here, we present a

case of PSP with backward gait training combined with gait-synchronized

transcranial alternating current stimulation (tACS). A 70-year-old woman with

PSP-Richardson’s syndrome underwent backward gait training combined with

synchronized cerebellar tACS. Initially, she underwent short-term intervention

with combined training of backward gait with synchronized cerebellar tACS,

asynchronized, or sham stimulation according to the N-of-1 study design.

Synchronized tACS training demonstrated a decrease in postural instability,

whereas asynchronized or sham stimulation did not. The additional long-term

interventions of combined backward gait training with synchronized cerebellar

tACS demonstrated further decrease in postural instability with improvements

in gait speed, balance function, and fall-related self-efficacy in daily life. The

present case describes a novel approach for motor symptoms in a patient with

PSP. Backward gait training with synchronized cerebellar tACS may be a promising

therapeutic approach.

KEYWORDS

non-invasive brain stimulation (NIBS), transcranial alternating current stimulation,
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1. Introduction

Progressive supranuclear palsy (PSP) is characterized by the
rapid deterioration of Parkinsonism with supranuclear palsy and
frontal lobe dysfunction (Höglinger et al., 2017). Postural instability
is one of the symptomatic hallmarks of typical PSP with Richardson
syndrome, which is closely related to quality of life (Brown et al.,
2020). Although the symptoms affect activities of daily living,
the effects of medication, including dopaminergic replacement
therapies, are limited, and the development of training to maintain
motor functions, including postural stability, is necessary.

Few studies have been conducted on rehabilitation approaches
for the motor symptoms of PSP. Previous research has reported that
postural reaction training with eye movements or visual awareness
three times per week for 4 weeks moderately improved gait speed
evaluated by 8 feet walk test (Zampieri and Di Fabio, 2008). The
case report showed that 2.5-year exercise programs, including
two 14 weeks of forward and backward walking training using a
bodyweight-supported treadmill, maintained balance function in
a patient with mixed PSP and cortico-basal degeneration (Steffen
et al., 2007). Another case report showed that treadmill training for
8 weeks improved balance and gait, leading to a decrease in falls
(Suteerawattananon et al., 2002). Although rehabilitation programs
might be helpful in delaying the deterioration of motor symptoms,
their effects seem to be limited in PSP patients (Intiso et al., 2018).

Recent rehabilitation strategies using non-invasive brain
stimulation (NIBS) can be effective for gait and balance function
(Forogh et al., 2017; Koganemaru et al., 2017; Krogh et al., 2022;
Spiandor et al., 2022). While NIBS using anodal transcranial
direct current stimulation enhances neuronal activities, NIBS using
transcranial alternating current stimulation (tACS) synchronizes
specific neuronal networks in a frequency and phase-dependent
manner (Ali et al., 2013). The synchronization of widespread
neuronal activities facilitates the transfer of information to remote
areas and increases the possibility of inducing specific timing-
dependent plasticity due to enhanced coincidental firing of pre-
and post-synaptic neurons (Fell and Axmacher, 2011). Recently,
gait-synchronized tACS over the foot area of the affected primary
motor cortex (M1) improved gait and balance functions in post-
stroke patients (Koganemaru et al., 2019; Kitatani et al., 2020).
Cerebellar tACS has also been reported to synchronize gait cycles
in healthy subjects, suggesting that the activity of gait-related
neuronal networks interconnected with the cerebellar cortices was
synchronized and facilitated by stimulation (Koganemaru et al.,
2018, 2020).

For diseases presenting with Parkinsonism, including PSP,
subclinical cerebellar involvement is reported as hypometabolism
and pathological protein accumulation in cerebellar tissues
(Kovacs et al., 2020) and functional impairments indicated by
reduced cerebellar inhibition (CBI) (Shirota et al., 2010). The
cerebellum regulates posture and balance during movements in
coordination with the brainstem, which is disrupted in patients
with Parkinsonism (Kurz et al., 2012; Hoogkamer et al., 2014;
Peterson et al., 2014; Takakusaki, 2017). During gait, the cerebellum
shows rhythmic bursts to produce step cycles and to maintain
the balance of the gait-cycle-dependent swaying body in animals
and possibly humans (Mori, 1987; Fukuyama et al., 1997; Mori
et al., 1999). Cerebellar dysfunction leads to an inability to maintain

balance during gait, resulting in a wide-based gait that enlarges
the base of support in pure cerebellar dysfunction (Morton and
Bastian, 2004). Compared to forward gait, backward gait is more
specifically influenced by cerebellar activities that exert anticipatory
postural adjustments without visual monitoring of steps and an
external space (Timmann and Horak, 2001; Hoogkamer et al., 2017;
Aman et al., 2018; Myers et al., 2018). Thus, backward gait training
is effective in improving posture and balance, and decreasing falls
(DeMark et al., 2019).

Therefore, we hypothesized that backward gait training
combined with gait-synchronized tACS on the cerebellum would
improve balance dysfunction, postural instability, and cerebellar
activity in patients with PSP and systematically compared the
short-term effects of three interventions: gait-synchronized tACS,
gait-asynchronized tACS, and gait with sham tACS in a case of
PSP–Richardson syndrome.

2. Case description

A 70-year-old woman without any medical history was referred
to the hospital with difficulty in walking and recurrent falls that
had deteriorated within a year. Neurological examination revealed
supranuclear gaze palsy, truncal-dominant rigidity, and severe
postural instability. The patient did not show any dystonia in
the upper and lower extremities on the both sides. 123I-ioflupane
single-photon emission computed tomography (Dat-SPECT)
demonstrated bilateral depletion of dopamine transporters in the
striatum, and MRI revealed atrophy of the midbrain tegmentum.
123I-IMP (N-isopropyl-p-123I-iodoamphetamine) SPECT revealed
hypometabolism in both frontal lobes. The compound of levodopa
and carbidopa was administered at a total dose of 450 mg/day,
which was not effective for motor symptoms. Including levodopa-
resistant motor symptoms, the patient was diagnosed with probable
PSP-Richardson syndrome according to the clinical criteria
(Höglinger et al., 2017). The participant was enrolled in this study

TABLE 1 Clinical course of the case.

Years Clinical findings

0 (onset) Aware of difficulty in walking

0.6 Developed the postural instability and recurrent falls especially to the
backward

0.8 Referred to the outpatient clinic of Kyoto University Hospital
Neurological findings:
• Vertical gaze palsy with preserved oculocephalic reflex
• Severe rigidity of the neck
• Retropulsion
• Dysarthria
MRI:
• Atrophy of the bilateral frontal lobe, and midbrain tegmentum
123I-IMP SPECT:
• Hypometabolism of the bilateral frontal lobes
123I-ioflupane SPECT (Dat-SPECT):
• Bilateral depletion of dopamine transporters in the striatum
Diagnosed as PSP with Richardson syndrome

1.0 Administration of the levodopa

1.6 Enrolled the study
PSPRS was rated as 33
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FIGURE 1

The histogram of the number of gait cycles of the right leg during the tACS X-axis demonstrates the phase of the cerebellar tACS, and Y-axis shows
the number of gait cycles of the right leg.

TABLE 2 Sub-scores of mini-BESTest.

Items 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Short-term intervention

A Pre-intervention 2 1 1 0 0 1 2 1 2 2 2 1 2 0

Post-intervention 2 0 1 1 0 0 2 2 2 2 2 1 2 0

B Pre-intervention 2 0 0 0 0 0 2 2 2 2 2 1 2 0

Post-intervention 2 0 1 1 0 0 2 2 2 2 2 1 2 0

C Pre-intervention 2 0 1 1 1 0 2 1 2 2 2 1 2 0

Post-intervention 2 0 1 1 1 0 2 1 2 2 2 1 2 0

Long-term intervention

Pre-intervention 2 0 0 1 1 0 2 2 2 2 2 1 2 0

Post-intervention 2 0 1 1 1 1 2 2 2 2 2 1 2 0

Items: 1. Sit to stand, 2. Rise to toes, 3. Stand on one leg, 4. Compensatory stepping correction-forward, 5. Compensatory stepping correction-backward, 6. Compensatory stepping correction-
lateral, 7. Stance (feet together): eyes open, firm surface, 8. Stance (feet together): eyes open, foam surface, 9. Incline-eyes closed, 10. Change in gait speed, 11. Walk with head turns-horizontal,
12. Walk with pivot turns, 13. Step Over Obstacles, and 14. Timed up and go with dual task (3-meter walk).

a year and seven months after the onset of postural instability. The
study protocol was approved by the Hokkaido University Certified
Review Board of Japan (No. CRB1180001), and written informed
consent was obtained from the patient (Table 1).

3. Diagnostic assessment

3.1. Clinical measurements

Clinical evaluations were performed before and after
intervention. For the short-term evaluations, assessments included

the timed up and go test (TUG), the mini-Balance Evaluation
Systems Test (mini-BESTest) (Horak et al., 2009), and the Visual
Analog Scale (VAS; score was determined by the distance on
the 10 cm line, in which “0” indicated the worst condition and
“10” indicated the best condition for the subjective judgment
to the general motor function). For the long-term follow-ups,
the Progressive Supranuclear Palsy Rating Scale (PSPRS) (Golbe
and Ohman-Strickland, 2007), Fall Efficacy Scale (FES) (Tinetti
et al., 1990), modified FES (Hill et al., 1996; Delbaere et al., 2011),
and Activities-Specific Balance Confidence (ABC) Scale (Powell
and Myers, 1995) were assessed. All the clinical evaluations were
double-blinded.
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FIGURE 2

Results of the short-term intervention, long-term intervention, and
cerebellar brain inhibition. (A) Results of the short-term
intervention. The bar graph demonstrates the difference in the pre-
and post-intervention (subtraction of the scores, i.e., post-minus
pre-interventions). Intervention A, sham stimulation; intervention B,
gait-synchronized cerebellar tACS; and intervention C,
gait-asynchronized cerebellar tACS. (B) Results of the long-term
intervention. The bar graph demonstrates the scores of
mini-BESTest, VAS, the time for TUG (seconds), the sub-scores of
Progressive Supranuclear Palsy Rating Scale (PSPRS), Fall Efficacy
Scale (FES), modified FES, and Activities-Specific Balance
Confidence (ABC) Scale in the pre- and post-interventions.
(C) Cerebellar brain inhibition (CBI). The X-axis shows the
inter-stimulus intervals, and the Y-axis demonstrates the CBI. TS,
test stimulus.

3.2. Cerebellar brain inhibition (CBI)

To assess right cerebellar function, CBI was measured using
the paired transcranial magnetic stimulation (TMS) technique
(Magstim R© BiStim2, Magstim Co. Ltd., UK) (Ugawa et al., 1994) for
long-term evaluation. TMS pulse on the left primary motor cortex
with intensity to evoke ∼1.0 mV peak-to-peak amplitude (SI 1 mV)
which was preceded by the stimulation on the right cerebellar
hemisphere at 90% intensity of resting motor threshold with an
inter-stimulus interval (ISI) varying between 3, 5, and 10 ms were
applied for 15 times for each ISIs. The figure-eight coils were placed
on the primary motor cortex and cerebellum (Benussi et al., 2017).
Motor evoked potentials were recorded using electrodes placed on
the right first dorsal interosseous (FDI) muscle.

3.3. Intervention with tACS procedure

tACS was administered using a DC stimulator (NeuroConn
DC, GmbH, Germany), according to a previously described gait-
synchronized stimulation (Koganemaru et al., 2019). The stimulus
electrode was placed on the right cerebellum (5 × 5 cm), which was
determined with a neuro-navigation system using her head MRI
scan (Brainsight Brainbox Ltd., UK). We chose the right side due
to more severe motor symptoms on the right side compared with
the left side. A reference electrode (7 × 5 cm) was placed on the left
shoulder.

The current waveform was a sinusoidal wave with a peak-
to-peak amplitude of 3 mA (−1.5 ∼ +1.5 mA) computed with
an external computer, and the waveform was applied to the DC
stimulator. Prior to the first intervention, we determined the
stimulus frequency of the tACS by calculating the gait frequency
(Hz) [= 1/one gait cycle time (s)] during a 30-s backward walking
at a self-speed. After that, we gave the tACS with the determined
frequency during a 2-min backward walking to detect the phase
of tACS to synchronize the timing of the gait cycle of the right
leg (the timing of the right heel contact) using a flat pressure
sensor attached to the right heel (MF01-N-221-A01, Switch Science
Inc., Japan). This was because the synchronized phase of cerebellar
tACS was individually different, according to a previous study
(Koganemaru et al., 2020). For the calculation of the synchronized
phase, all instantaneous phases of the tACS at every right heel
contact were determined and summarized as a histogram with 18
discrete bins (20◦ each). The mean phase of the bin representing
the maximum number of right heel contacts was regarded as the
synchronized phase.

First, we evaluated the effects of short-term intervention of
backward gait training combined with cerebellar tACS according
to the N-of-1 study design (Guyatt et al., 1990). We performed
a combination of sham stimulation (Intervention A), gait-
synchronized cerebellar tACS (Intervention B), and cerebellar tACS
asynchronized with gait using the inverted phase as a control
condition (Intervention C). The order of the interventions was A–
C, with an interval of more than a week between the interventions.
One session of backward training comprised a 4-min self-paced
backward gait on the treadmill using Kineassist with truncal belts
(Woodway USA, Inc.) to prevent falls and a 1-min break, and
four sessions were performed in each intervention. In addition,
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the long-term intervention was performed with 10 times of the
backward gait training combined with gait-synchronized cerebellar
tACS twice a week for 5 weeks. The medication with a compound of
levodopa and carbidopa (150 mg, three times a day) was continued
during the interventions.

4. Results

The patient did not report any perception during all
the stimulation conditions in the short-term and long-term
interventions. There was neither side effect nor unanticipated event
during all the interventions.

4.1. Results for the short-term
intervention

The self-paced speed of the backward gait on the treadmill was
0.3 m/sec and the stimulus frequency of the tACS was 0.97 Hz. The
phase of cerebellar tACS to synchronize the gait cycle of the right leg
was 10◦ (Figure 1), which was used in Intervention B. The inverted
phase (190◦) was used as the control condition in Intervention C.

The short-term intervention elucidated that Intervention B
improved the time of TUG and the total score of the mini-BES test,
whereas interventions A and C did not (Table 2 and Figure 2A,
the baselines of TUG:10.91, 13.84 and 8.82 s, mini-BESTest:17, 15,
and 17 in Interventions A–C, respectively. The VAS revealed the
largest improvement in general motor symptoms in Intervention B
(Figure 2A; baseline points were 7.6, 8.2, and 8.8 in Interventions
A–C, respectively).

4.2. Results for the additional long-term
intervention

In addition, we evaluated the long-term intervention of
backward gait training combined with gait-synchronized tACS
in an observational study. We found improvements in gait
and balance functions evaluated using TUG and mini-BESTest
(Table 2 and Figure 2B). PSPRS was also improved, especially
in the subscale of the “Gait and midline,” along with the VAS
improvement for general symptoms (Figure 2B). The FES and
modified FES scores increased after long-term intervention. The
ABC scale also showed an increase in scores: 490 at pre-
intervention and 640 at post-intervention (Figure 2B). CBI using
paired TMS of the left M1 and right cerebellum was improved
at inter-stimulus interval of 3,5, and 10 ms, suggesting that the
function of the right cerebellum was recovered (Figure 2C).

5. Discussion

The present case demonstrates the potential therapeutic
effect of backward gait training with synchronized cerebellar
tACS in a patient with PSP. The short-term evaluation showed
that training with the synchronized tACS seemed effective

in improving the balance functions evaluated by TUG and
the mini-BESTest, whereas sham- or asynchronized- tACS
combined with backward gait did not improve them. The
long-term intervention of synchronized tACS combined with
backward gait training also improved gait speed and postural
instability, as evaluated by TUG and mini-BESTest, and the
general motor symptoms of PSP evaluated by PSPRS. The self-
efficacy related to fall prevention showed an improvement
in the scores for FES, modified FES, and ABC scales.
Cerebellar function evaluated by the CBI was improved on
the stimulated right side.

There are several approaches for the application of NIBS to the
cerebellum in patients with PSP. However, their therapeutic effects
on motor symptoms remain limited. One session of intermittent
theta burst TMS (iTBS) on the cerebellum improved postural
instability, but its long-term effects were not investigated (Pilotto
et al., 2021). In an observational study, iTBS on the cerebellum
improved only dysarthria, as evaluated by the PSPRS (Brusa et al.,
2014).

NIBS can enhance motor function recovery in combination
with rehabilitation programs (Koganemaru et al., 2015). Therefore,
it would be appropriate to combine motor training with
specific functions. Backward gait training has been reported
to improve balance function as well as gait capacity in post-
stroke patients (Wen and Wang, 2022), and to improve the
stride length reflecting the gait-related balance function, compared
with forward gait training in patients with Parkinson’s disease
(Grobbelaar et al., 2017). Therefore, the combination of tACS of
the cerebellum with backward gait training may have improved
cerebellar motor control related to balance stability, resulting
in improved axial symptoms of PSP in this case. Previous
reports have demonstrated cerebellar dysfunction by reduced
CBI in PSP patients (Shirota et al., 2010; Benussi et al., 2019).
Cerebellar iTBS to induce LTP effects improved CBI without any
improvement in balance function (Brusa et al., 2014). In the
present case, CBI was improved at the stimulated side after long-
term intervention. This suggests that improvement of cerebellar
function may correlate with motor improvement due to cerebellar
stimulation combined with specific training requiring cerebellar
control.

The self-efficacy scores related to preventing falls showed
an increase, as represented in the scores for the FES, modified
FES, and ABC scales. The increase in scores may reflect a
reduced risk of falls in daily living. The frequency of falls
remained at zero during the interventions. The increased subjective
confidence in preventing falls might have been related to the
prevention of falls.

The short-term evaluation with asynchronized-tACS with
the inverted phase demonstrated the deterioration of TUG.
A previous report showed that asynchronized tACS over
the regions between fronto-parietal areas with the inverted
phase deteriorated the cognitive performance by decoupling
relevant brain rhythm (Polanía et al., 2012). Similarly, it
may be possible that the cerebellar function was temporally
exacerbated due to decoupling the cerebellar activity with the
gait rhythm to deteriorate the gait and balance function in
the TUG test. Detailed assessments of cerebellar function are
required in the stimulation with the inverted phase during the
gait.
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We applied the measurement of the mini-BESTest. The mini-
BESTest is considered sensitive in the assessment of Parkinson’s
disease to discriminate between fallers and non-fallers (Leddy et al.,
2011), suggesting its high sensitivity of balance dysfunction in
patients with Parkinsonism. Although some items (e.g., lateral push
and release, standing on foam with eyes closed) are hard to perform
in PSP-Richardson syndrome (Dale et al., 2022), this patient
could complete almost all the assessments. The “reactive postural
control” sub-scores of the mini-BESTest showed improvements
only in the intervention B (real stimulation) of the short-term
intervention. Therefore, we considered that the mini-BESTest
could appropriately evaluate for the improvement of the balance
function in this case.

The long-term intervention was performed as an additional
observational study. A previous observational study and case
reports showed an improvement of the balance function or fall
tendency in PSP patients by the long-term exercise program
(Matsuda et al., 2022) or gait training (Suteerawattananon et al.,
2002; Steffen et al., 2007). Therefore, the practice effect may affect
the performance after the intervention in this case. A comparative
study is warranted by conducting long-term backward gait
trainings with or without the gait-synchronized brain stimulation.

The spatial resolution of the tACS is limited (Yang et al.,
2021) and the scalp-applied currents are attenuated to 25% by soft
tissue and the skull (Miranda et al., 2006; Wagner et al., 2007;
Vöröslakos et al., 2018). However, we confirmed the peak intensity
of the electric field on the right cerebellum and less distribution on
other brain areas by simulating the electric field distribution in the
patient’s head MRI with the current electrode montage (Saturnino
et al., 2019; Puonti et al., 2020).

As typical PSP cases demonstrate mild atrophy of the brainstem
and cerebellum (Mimuro and Yoshida, 2020), this case showed
mild cerebellar atrophy. Meanwhile, the peak of electrical field
was simulated on the right cerebellum and the cerebellar-
brain inhibition was enhanced after the long-term intervention.
Therefore, we considered that the application of tACS with the
current electrode montage could modify the cerebellar activity.

In normal gait, the cerebellum plays a pivotal role in predictive
feedforward adaptation to novel terrains and environments
(Takakusaki, 2013; Pisotta and Molinari, 2014). A previous study
showed that patients with cerebellar impairment had a difficulty
or inability in feedforward prediction and adaptation relating
to the lower-limb and posture controls during the gait on the
split-belt treadmill (Morton and Bastian, 2006). Compared to
forward gait, backward gait needs more precise feedforward
postural and lower-limb adaptation by the cerebellum due to
the controlling the body and limbs without visual information
(Klous et al., 2011). Then, the present intervention with cerebellar
tACS and backward gait training may have contributed to
improvements of the predictive feedforward adaptation by the
cerebellum.

The present case demonstrates that backward gait training
combined with synchronized cerebellar tACS can be a promising
treatment for improving the motor symptoms of PSP.

Author’s note

The patient stated that she hoped that the present findings
may contribute to the development of new strategies for the
treatment of PSP.
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