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Introduction: Motor Brain–Computer Interfaces (BCIs) create new

communication pathways between the brain and external e�ectors for patients

with severe motor impairments. Control of complex e�ectors such as robotic

arms or exoskeletons is generally based on the real-time decoding of high-

resolution neural signals. However, high-dimensional and noisy brain signals pose

challenges, such as limitations in the generalization ability of the decoding model

and increased computational demands.

Methods: The use of sparse decodersmay o�er away to address these challenges.

A sparsity-promoting penalization is a common approach to obtaining a sparse

solution. BCI features are naturally structured and grouped according to spatial

(electrodes), frequency, and temporal dimensions. Applying group-wise sparsity,

where the coe�cients of a group are set to zero simultaneously, has the potential

to decrease computational time and memory usage, as well as simplify data

transfer. Additionally, online closed-loop decoder adaptation (CLDA) is known to

be an e�cient procedure for BCI decoder training, taking into account neuronal

feedback. In this study, we propose a new algorithm for online closed-loop

training of group-wise sparse multilinear decoders using Lp-Penalized Recursive

Exponentially Weighted N-way Partial Least Square (PREW-NPLS). Three types of

sparsity-promoting penalization were explored using Lp with p = 0., 0.5, and 1.

Results: The algorithms were tested o	ine in a pseudo-online manner for

features grouped by spatial dimension. A comparison study was conducted using

an epidural ECoG dataset recorded from a tetraplegic individual during long-term

BCI experiments for controlling a virtual avatar (left/right-hand 3D translation).

Novel algorithms showed comparable or better decoding performance than

conventional REW-NPLS, which was achieved with sparse models. The proposed

algorithms are compatible with real-time CLDA.

Discussion: The proposed algorithm demonstrated good performance while

drastically reducing the computational load and the memory consumption.

However, the current study is limited to o	ine computation on data recorded

with a single patient, with penalization restricted to the spatial domain only.
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1. Introduction

Brain–computer interfaces (BCIs) are systems that create a new
communication pathway between the brain and an effector without
neuromuscular activation. Motor BCIs aim to allow users with
severe motor impairments to regain limb mobility by controlling
orthoses and prostheses or by recovering motor control over their
own limbs, e.g., using electrical stimulation (Mak and Wolpaw,
2009). Most BCI systems include a neural signal acquisition system,
a transducer, an effector, and a feedback system (Schwartz et al.,
2006). The transducer is typically composed of a neural feature
extraction block and a decoder, with optional pre- and post-
processing blocks. Decoders are generally user-specific and data-
driven. They are created through a supervised tuning of parameters
on the training dataset. Once the decoder is established, the
transducer can be applied in real time to translate the user’s
intention into the control command of the effector.

As BCI systems function in real time, computing time and
resource management are crucial aspects of such systems (Haufe
et al., 2014). High-resolution neuronal activity recording systems
are generally required to achieve high-dimensional control of
complex effectors. It results in a large volume of data that needs
to be processed.

Furthermore, in motor BCI, a high decision rate (8–10Hz)
is necessary to control complex effectors such as robotic arms,
an exoskeleton, and so on (Marathe and Taylor, 2015; Shanechi
et al., 2017). In addition to high computing power requirements
and computing time, the high dimensionality of the feature
space presents challenges such as the “curse of dimensionality”
during decoder training (Bellman, 1961; Bishop, 2006; Nicolas-
Alonso and Gomez-Gil, 2012; Remeseiro and Bolon-Canedo,
2019). The feature space often contains irrelevant and/or redundant
features. Moreover, computational load is critical for the potential
development of portable BCIs.

Reducing the dimensionality of the neuronal feature space is
one approach to addressing these issues. Dimension reduction
algorithms have been widely employed in numerous studies
on BCI.

Both projection and feature selection methods were applied
for dimensional reduction, in both online BCI experiments and
offline analysis.

Projections algorithms were often used (Kim et al., 2006;
Marathe and Taylor, 2013; Haufe et al., 2014; Bundy et al., 2016;
Hsu et al., 2016; Sannelli et al., 2016; Schaeffer and Aksenova,
2016; Eliseyev et al., 2017; Jiang et al., 2017; Seifzadeh et al., 2017;
Sreenath and Ramana, 2017; Bousseta et al., 2018; Choi et al.,
2018; Lotte et al., 2018; Palmer and Hirata, 2018; Khan et al.,
2019; Jafarifarmand and Badamchizadeh, 2020). They project the
feature space into a space of a lower dimension by using a linear
or non-linear combination of the initial features. The principal and
independent component analyses (PCA and ICA), spatio-spectral
decomposition (SSD), common spatial pattern (CSP), or partial
least squares (PLS) (Kim et al., 2006; Marathe and Taylor, 2013;
Haufe et al., 2014; Bundy et al., 2016; Hsu et al., 2016; Sannelli et al.,
2016; Schaeffer andAksenova, 2016; Eliseyev et al., 2017; Jiang et al.,
2017; Seifzadeh et al., 2017; Sreenath and Ramana, 2017; Bousseta
et al., 2018; Choi et al., 2018; Lotte et al., 2018; Palmer and Hirata,

2018; Khan et al., 2019; Jafarifarmand and Badamchizadeh, 2020)
algorithms and variants were applied in BCI research. However,
such methods may not improve the computing time as they do
not optimize the feature extraction step. The irrelevant and/or
redundant features are still computed.

The feature selection family regroups filter-based, wrapper-
based, and embedded techniques (Bolón-Canedo et al., 2013;
Khaire and Dhanalakshmi, 2019). The filter-based methods rank
and select features independently without considering the decoder.
Effective in computation time, these methods tend to select highly
correlated (redundant) features. The wrapper-based techniques
incorporate supervised learning algorithms to evaluate the possible
interactions between the features. These techniques add features to
the selected subset iteratively and evaluate the subset by combining
it with the trained decoder (Lotte et al., 2018). These methods
are effective but require a great deal of computing time. On the
other hand, embedded techniques integrate the feature selection
process directly into the decoding algorithm, thus combining the
advantages of both the filter-based and wrapper-based methods
(Khaire and Dhanalakshmi, 2019). Embedded feature selection is
a promising approach as it is directly performed during the model
learning process.

Embedded feature selection in BCI is based on
regularization/penalization methods (Cincotti et al., 2008; Lotte
and Guan, 2011; Flamary and Rakotomamonjy, 2012; Eliseyev
and Aksenova, 2016; Mishra et al., 2018; Nagel and Spüler, 2019).
Regularization strategies incorporate a penalty term into the model
parameter optimization process to restrict the degree of freedom
of the model. Numerous regularization strategies were designed,
such as L0, L1 (Lasso), L2 (Ridge), elastic net regularization, and so
on. The L1 regularization process adds a penalty term equal to the
sum of the absolute values of model coefficients. L2 regularization
integrates a penalty term equal to the sum of squared values,
whereas elastic net regularization is a combination of both L1
and L2 penalizations (Bishop, 2006). L0 (Sreeja and Himanshu,
2019), L1 (Lotte and Guan, 2011; Eliseyev et al., 2012; Flamary
and Rakotomamonjy, 2012; Zhang et al., 2013; López-Larraz et al.,
2014), L2 (Cincotti et al., 2008; Flamary and Rakotomamonjy,
2012; Seifzadeh et al., 2017; Nagel and Spüler, 2019) regularization,
and an elastic net (Kim et al., 2018; Peterson et al., 2019) were
applied in the BCI field to improve the neural signal decoding
performance or other properties, e.g., prediction smoothness or
sparsity. Less common regularization methods designed and/or
applied in BCI are regularization using polynomial regression
(Eliseyev and Aksenova, 2016), sparse regularization based on
automatic relevance determination (ARD) (Toda et al., 2011;
Nakanishi et al., 2017), and Kullback–Leibler regularization in the
Riemannian mean (Mishra et al., 2018). Among regularization
techniques, Lp regularization, 0 ≤ p ≤ 1, using a penalty equal to
the Lp (0 ≤ p ≤ 1) norm/pseudo-norm of the model coefficients, is
known to be effective in discarding irrelevant/correlated features,
promoting a sparse solution (Bishop, 2006; Hastie et al., 2015).

Regularization/penalization is generally performed in a single-
wise manner. Features are regularized independently and are not
evaluated as belonging to a group of features. However, there are
many applications, particularly in BCI, with structurally grouped
input features. This approach allows the simultaneous setting

Frontiers inHumanNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1075666
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Moly et al. 10.3389/fnhum.2023.1075666

of zero of the model coefficients within a group, which can
be beneficial in cases where the input features are structurally
grouped, such as excluding sensors (Eliseyev et al., 2017). For
such applications, a single-wise sparsity-promoting penalty may
be suboptimal. Group-wise regularization algorithms perform the
feature selection process by grouping and applying penalization to
the groups at once (Martínez-Montes et al., 2008; Eliseyev et al.,
2012; Giordani and Rocci, 2013; Zhang et al., 2013; Hastie et al.,
2015). This grouping can cluster features across various modalities,
such as electrodes and frequency bands (van Gerven et al., 2009).
Group-wise sparsity is ideal for naturally structured data, allowing
for the elimination of variables (such as electrodes or frequency)
from the signal processing workflow and reducing computational
costs. Additionally, it may simplify the model’s interpretation.

Despite being potentially beneficial for studies on BCI, group-
wise penalization has rarely been applied in this field. The natural
structure of BCI features space grouping features over modalities,
such as electrodes, frequency bands, and time delay, which are
heavily exploited (van Gerven et al., 2009; Eliseyev et al., 2012;
Motrenko and Strijov, 2018; Wu et al., 2019). For the penalization
of such groups, data may be viewed in the form of a tensor (Hastie
et al., 2015; Eliseyev and Aksenova, 2016). Tensors, or multiway
arrays, are higher-order generalizations of vectors and matrices
(for more details, see Ref. Hsu et al., 2016). Tensors have several
dimensions, also known as ways of analysis or modes. In BCIs,
recorded signals are primarily analyzed in spatial, frequency, and
temporal domains. To extract neural features, each epoch of neural
signal recording is commonly mapped to temporal-frequency-
spatial (or frequency-spatial) space (e.g., Chao et al., 2010; Schaeffer
and Aksenova, 2016; Eliseyev et al., 2017; Choi et al., 2018). Tensor-
based analyses, which present features in matrix form using tensor
unfolding, are reported to be beneficial for BCI decoding as they
preserve the natural structure of data (Zhao et al., 2013; Cichocki
et al., 2015; Zhang et al., 2015; Eliseyev et al., 2017).

The tensors of data in BCI often benefit from tensor
decomposition techniques. Slice-wise data representation can
be obtained through sparsity-promoting penalization of tensor
decomposition. Regularized PARAFAC and Tucker decomposition
are algorithms designed for group-wise tensor penalization. Slice-
wise sparsity-promoting penalization is added to the N-way Partial
Least Square (NPLS) in van Gerven et al. (2009), Eliseyev et al.
(2012), Motrenko and Strijov (2018), and Wu et al. (2019).
These techniques have been used in a few offline BCI studies
(Martínez-Montes et al., 2008; Eliseyev et al., 2012) and in other
fields (Giordani and Rocci, 2013; Kim et al., 2013, 2014; Hervás
et al., 2019). In Eliseyev et al. (2012), the L1-Regularized N-PLS
algorithm was shown to be superior to its non-penalized version by
suppressing noisy/irrelevant electrodes. However, these algorithms
were not adapted for online decoder training in closed-loop use.

Most of the presented feature-dimensional reduction
algorithms were tested offline. Additionally, feature selection
performed in an offline preliminary study (Brunner et al., 2006;
Huang et al., 2009; Spüler et al., 2012; Marathe and Taylor, 2013;
Bousseta et al., 2018; Cantillo-Negrete et al., 2018; Kim et al.,
2018; Nagel and Spüler, 2019) may not be optimal when using
a CLDA strategy (Schlögl et al., 2010; Clerc et al., 2016). CLDA
involves training the decoder online on data acquired during

closed-loop BCI control sessions. Decoders trained in this manner
have been reported to outperform decoders trained offline using
data from open-loop BCI experiments (Jarosiewicz et al., 2013).
Adaptive/incremental learning algorithms are particularly suited
for the CLDA strategy. These algorithms continuously update the
model, using only the latest data block and relevant statistics on
the older signals, while not retaining the whole signals in memory
(Schlögl et al., 2010; Brandman et al., 2018; Lotte et al., 2018).
Adaptive/incremental learning algorithms are beneficial for the
CLDA training strategy as they allow higher decoder update rates
and are compatible with long decoder learning periods, which are
generally necessary for high-dimensional control. However, only
a few adaptive dimensional reduction algorithms were proposed.
The adaptive dimensional reduction algorithms applied in the
BCI (Zhao et al., 2008; Ang et al., 2011; Song and Yoon, 2015;
Woehrle et al., 2015; Hsu et al., 2016; Mobaien and Boostani,
2016; Sannelli et al., 2016; Chen and Fang, 2017; Lotte et al., 2018)
and other (Dagher, 2010) fields are primarily based on projection
strategies (adaptive CSP, PCA, ICA, and xDAWN algorithms)
and were only tested offline. Similarly, a few adaptive feature
selection algorithms were proposed. Filter methods were tested
on BCI simulations using mutual information (Oliver et al., 2013)
or during online BCI experiments based on the Fisher score
(Faller et al., 2012). The wapper-based strategy was optimized
using parallel computation for the online BCI classifier (Mend
and Kullmann, 2012), whereas embedded methods using semi-
supervised feature selection (Long et al., 2011) and a weighting
feature algorithm (Andreu-Perez et al., 2018) have been designed
and used during online BCI applications. An adaptive genetic
algorithm was proposed for adaptive channel selection in Moro
et al. (2017). However, these methods have been applied to simple
online binary classification only.

In BCI studies, adaptive regularization algorithms were tested
offline (Roijendijk et al., 2016; Mishra et al., 2018; Sharghian et al.,
2019). Adaptive algorithms with an L1 norm regularization strategy
were reported in an adaptive logistic regression (Sheikhattar et al.,
2015), a kernel least squares (Yang et al., 2019), and recursive
least squares algorithms (Chen et al., 2012) in other fields. Only
a few feature selection methods were integrated into adaptive
algorithms for online incremental calibration during real-time BCI
experiments and were generally restricted to binary classification
and EEG-based experiments (Long et al., 2011; Faller et al., 2012;
Mend and Kullmann, 2012; Moro et al., 2017; Andreu-Perez
et al., 2018). Computational complexity and difficulty integrating
dimensional reduction methods into real-time algorithms may
explain the lack of proposed solutions.

In the study, an adaptive algorithm promoting group-wise
model sparsity, Lp-penalized recursive exponentially weighted N-
way Partial Least Square (PREW-NPLS), is proposed. Lp, p =
0, 0.5, 1 norm/pseudo-norm penalty is applied to feature groups
corresponding to the slices of data tensor related to the mode
of analysis (e.g., spatial, frequency, temporal). The algorithm was
tested with data recorded during BCI sessions of left/right arm
3D translations of a virtual avatar by a tetraplegic patient during
the clinical trial NCT02550522 (ClinicalTrials.gov) conducted at
the Grenoble Alpes University Hospital (CHUGA) (Benabid et al.,
2019; Moly et al., 2022). The datasets were recorded during online
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closed-loop experiments using the REW-NPLS decoder that was
previously integrated into the BCI system. To reproduce online
experimental conditions and to ensure that the proposed algorithm
is compatible with real-time CLDA, a pseudo-online simulation
was conducted using the same parameters (buffer size, batch
training, and so on) and the same model application procedure
as it was used in real time. The comparison study was restricted
to penalization according to spatial modality, which is the most
critical at BCIs due to data recording/transfer limitations. For
each type of penalization, a set of models/penalization parameters
were evaluated. The PREW-NPLS decoders highlighted equivalent
or better decoding performance compared to the generic REW-
NPLS algorithm for the majority of the penalization parameters.
The sparsest solutions allowed the removal of up to 75% of
the electrodes without decreasing performance. L0-PREW-NPLS
and L1-PREW-NPLS are sufficiently computationally efficient for
online closed-loop decoder adaptation at a high-frequency rate.

2. Methods

2.1. Generic partial least squares and family

Algorithms of the PLS family are widely used in BCI studies due
to their stability in the case of high-dimensional data and in the
presence of correlated and/or irrelevant variables. In motor BCI,
the algorithms of the PLS family were applied in both continuous
and discrete BCIs. Offline hand/fingers trajectory decoding (Chao
et al., 2010; Chen et al., 2013; Eliseyev and Aksenova, 2014; Bundy
et al., 2016; Schaeffer and Aksenova, 2016; Schaeffer, 2017; Choi
et al., 2018), real-time hand translation/wrist rotation control
(Benabid et al., 2019; Moly et al., 2022), error potential (ERP)
detection (Rouanne et al., 2021) from ECoG, and EEG/MEG-
based classification (Trejo et al., 2006; Eliseyev et al., 2017; Maleki
et al., 2018) using the PLS algorithm were reported in preclinical
and clinical studies. In Eliseyev and Aksenova (2014), GAM-PLS
(generalized additive model—the partial least square) is reported
to outperform the generic PLS in the presence of artifacts for
3D hand trajectory decoding from ECoG data in non-human
primates (NHP). In Schaeffer (2017), PLS outperformed principle
component regression and demonstrated comparable results with
Lasso regression for hand trajectory and 1D finger trajectory
decoding from ECoG in preclinical and clinical experiments. In
Rouanne et al. (2021), NPLS demonstrated comparable results with
Logistic Regression, SVM, MLP, and CNN for ERP detection from
ECoG recordings in the sensory-motor cortex of tetraplegics, etc.

The generic PLS is a linear regression algorithm based on the
iterative projection of input and output variables into the latent
variable spaces of dimension f . The hyperparameter f is generally
estimated through cross-validation in the preliminary study.
Projectors are set tomaximize the covariance between the input and
latent output variables. The generic PLS is an offline algorithm. For
online data stream modeling, recursive PLS (RPLS) and recursive
exponentially weighted PLS (REW PLS) (Helland et al., 1992;
Dayal and MacGregor, 1997; Qin, 1998) were developed. All
the aforementioned PLS algorithms are vector-input-vector-output
algorithms. N-way Partial Least Square (NPLS) is a generalization
of the conventional PLS for tensor data (Bro, 1996, 1998). The

NPLS algorithm projects the input and output tensors into a
low-dimensional space of latent variables using a low-rank tensor
decomposition. The recursive N-way PLS (RNPLS) (Helland et al.,
1992) and recursive exponentially weighted N-way PLS (REW-
NPLS) (Dayal and MacGregor, 1997) are generalizations of the
adaptive RPLS and REW PLS algorithms to tensor variables
and allow online tensor data stream learning of the regression
model. RNPLS still requires fixing the hyperparameter f from
the offline preliminary study, whereas REW-NPLS proposes a
recursive validation procedure for the online optimization of the
hyperparameter, enabling a fully adaptive algorithm (Dayal and
MacGregor, 1997). In addition, the REW-NPLS algorithm is more
computationally effective than the RPLS algorithm (Dayal and
MacGregor, 1997).

The adaptive REW-NPLS algorithm has been tested offline
in BCI studies for trajectory decoding from ECoG signals and
for classification from MEG data, demonstrating similar or better
results compared to other algorithms from the PLS family designed
for offline use (Eliseyev et al., 2017). It was applied in real time
for closed-loop adaptation of 3D hand translation/wrist rotation
decoders in tetraplegics (Benabid et al., 2019; Moly et al., 2022).
Finally, REW-NPLS was tested in the simulation of auto-adaptive
continuous (bi-directional cursor control) and discrete multiclass
motor imagery (MI) BCI in a tetraplegic patient (Rouanne et al.,
2022). In the (Sliwowski et al., 2022) offline study, ANN algorithms
were reported to outperform the REW-NPLS decoder. However,
these algorithms cannot be applied in real time under CLDA.

Fully adaptive REW-NPLS is compatible with CLDA. However,
it may be further improved by integrating real-time adaptive
dimension reduction and promoting group-wise decoder sparsity
using regularization. Group-wise sparsity, e.g., in the spatial
dimension, may allow the elimination of irrelevant or highly
correlated electrodes, decreasing computational time and memory
consumption at the BCI use stage. This may be critical for
portable BCI systems. A sparse solution may be advantageous
for small training data sets, preventing overtraining. As BCI
decoders require regular updates due to neuronal signal non-
stationarity, reducing the decoder training time is desirable for
real-life scenarios.

2.2. REW-NPLS

NPLS (Bro, 1996, 1998) estimates a linear relationship between
a tensor of independent (input) and a tensor of dependent (output)
variables. Given Xt ∈ R

I1×...×Im and Yt∈ R
J1×...×Jn the m and n

order tensors of the input and output variables at time t, Yt =
Betat+bias+Dt , whereBeta and bias are the tensors of parameters
and their associated bias, Dt ∈ R

J1×...×Jn is the tensor of noise.

The parameters are estimated from the training dataset
{

X− ,Y−

}

,

X− ∈ R
L×I1×...×Im , Y− ∈ R

L×J1×...×Jn , L is the training dataset

size. NPLS constructs the linear regression iteratively by projecting
tensors of observation X− and Y− to the space of latent variables

using tensor decomposition: X− =
f
∑

fi=1
rfi ◦ w1

fi
◦ . . . ◦ wm

fi
+ Ex,
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Y− =
f
∑

fi=1
ufi ◦ q1

fi
◦ . . . ◦ qn

fi
+ Ey. Here, “◦” is the outer product

operator (Eliseyev et al., 2017), Rf =
[

r1, . . . , rf
]

∈ R
L×f and

Uf =
[

u1, . . . , uf
]

∈ R
L×f are matrices of the latent variables,

Wfi =
{

wi
fi

}m

i=1
, wi

fi
∈ R

Ii and Qfi =
{

qi
fi

}n

i=1
, qi

fi
∈ R

Ji , fi =
1, . . . , f are the projection vectors constructed at iteration fi, and
Ex, Ey are the residual tensors. The set of projectors is constructed
iteratively, increasing latent variable space dimensions.

REW-NPLS (Eliseyev et al., 2017) update a set of F (F ∈
N
∗ is the fixed upper bound latent space dimension) models

{

Beta
f
UI , bias

f
UI

}F

f=1
using current blocks of tensors of observation

{

XUI ,YUI

}

and previously computed models. Here, UI ∈ N is

the updated iteration number, Beta
f
UI ∈ R

(I1×...×IM)×(J1×...×JN ),

bias
f
UI ∈ R

J1×...×JN are current update of model coefficients, and
XUI ∈ R

1L×I1×...×IM , YUI ∈ R
1L×J1×...×JN are the current input

and output tensors of observations. 1L ∈ ∗ is the number of
samples recorded between the update blocks UI − 1 and UI.

The REW-NPLS algorithm is a generalization of the REW-
PLS algorithm to tensor variables and belongs to the family of
kernel PLS algorithms (Eliseyev et al., 2017). It evaluates a set of
projectors and model coefficients from covariance tensors XY =
X− ×1Y− , XY ∈ R

(I1×...×Im)×(J1×...×Jn), and XX = X− ×1X− , XX ∈

R
(I1×...×Im)×(I1×...×Im). Here, “×k” is the k-mode tensor product

(Eliseyev et al., 2017). First, a set of input variable projectors W
are evaluated from the covariance tensor XY. The projectors are
estimated using a rank one decomposition of the tensorV− = XY ∈
R
I1×...×Im in the case of single output. For higher dimensions,

the eigenvector with the largest eigenvalue is computed from the
covariance tensor XY to decrease the dimension of the tensor
to decompose: e = eig

(

XYTXY
)

, V = reshape (XY · e) ,V ∈
I1×...×Im . Here, XY ∈ R

(I1·...·Im)×(J1·...·Jn) is the unfolded tensor XY,
and e = eig() is an eigenvector with the largest eigenvalue. Output
projectors and the model parameters Beta and bias are computed
using W and covariance tensors XX and XY. The projectors
sets and model parameters are evaluated sequentially, increasing
the latent variables’ space dimension in the internal REW-NPLS
iterations f .

Finally, at the UIth update, the covariance tensors XXUI

and XYUI are computed from the previous XXUI−1 and XYUI−1

tensors, and the current block of observations
{

XUI ,YUI

}

:

XXUI = µ1XXUI−1 + XUI×1XUI ,

XYUI = µ1XYUI−1 + XUI×1YUI

µ1 is a forgetting factor. A set of projectors is evaluated using a
rank-one tensor decomposition (Eliseyev et al., 2017) of the current
tensor VUI .

In the REW-NPLS algorithm, only the covariance tensors,
the normalization coefficients, and the current model are stored
together with the current block of observations collected since the
previous update.

2.3. PARAFAC procedure in REW-NPLS

Several tensor decomposition strategies were designed:
the Parallel factor analysis (PARAFAC), Tucker, multilinear
SVD decomposition, and so forth (Cichocki et al., 2015).
Similar to generic NPLS, the REW-NPLS algorithm employs
PARAFAC tensor decomposition (Eliseyev et al., 2017). PARAFAC
or CANDECOMP/PARAFAC (CP), also known as polyadic
decomposition (PD), can be considered the generalization
of principal component analysis (PCA) and singular value
decomposition (SVD) to the tensor case (Sheikhattar et al., 2015;
Sharghian et al., 2019). This method represents a M-order tensor
V− ∈ R

I1×...×Im as the linear combination of vectors’ outer products

(rank-one tensors) such as follows:

V− =
R
∑

r=1

ρrw
1
r ◦ w

2
r ◦ . . . ◦ wm

r + E−,

∥

∥wi
r

∥

∥ = 1, r = 1, . . . ,R; i = 1, . . . ,m.

Here, 1 ≤ i ≤ m corresponds to the ith mode/dimension
of the tensor variable, “◦” is the (vector) outer product of the
decomposition factors (projectors) wi

r ∈ R
Ii , R ∈ N is the

number of rank-one tensors used for decomposition, ρr is the
weight associated with each rank-one tensor of the decomposition
and E− ∈ R

I1×...×Im is the residual tensor (Kolda and Bader, 2009).

PARAFAC evaluates the projectors, minimizing the residuals.
Similar to generic NPLS, only one step of PARAFAC (R = 1)

is applied to the current tensor decomposition at each internal
iteration fi = 1, . . . , f of REW-NPLS:

V− = ρrw
1 ◦ w2 ◦ . . . ◦ wm + E−,

∥

∥w1
∥

∥ = 1, i = 1, . . . ,m.

To solve the optimization problem, the alternating least squares
(ALS) algorithm is employed in REW-NPLS. ALS optimizes one
projector iteratively at a time and fixes others, reducing, at each
iteration of ALS, the optimization problem to a least-squares linear
regression (Kolda and Bader, 2009; Cichocki et al., 2015; Pereira Da
Silva et al., 2015).

REW-NPLS includes several iterations inside other iterative
procedures: ALS iterations for PARAFAC (R = 1) decomposition,
internal REW-NPLS iterations increasing latent variables space
dimension, and, finally, the update iterations UI.

2.4. Lp-Penalized REW-NPLS (PREW-NPLS)

Sparse input variables projectors may result in a sparse model.
Variable excluded from all the projectors Wfi , fi = 1, . . . , f is
excluded from consideration. As for the tensor data, the projection
is made according to the mode of analysis (e.g., special, frequency,
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or temporal). The sparsity of the projectors may allow excluding
the slices of data from the model (e.g., exclude non-informative or
redundant electrodes). To achieve sparse projectors, the proposed
PREW-NPLS algorithm employed a penalized version of the
PARAFAC (R = 1), introducing sparsity-promoting penalization.
Lp, p = 0, 0.5, 1 penalization, being the classic lasso regularization
(L1) or less conventional L0 and L0.5 penalization is studied. This
section describes Lp-Penalization in PARAFAC (R = 1) and its
integration into the REW-NPLS algorithm to build a new sparsity-
promoting adaptive PREW-NPLS algorithm.

2.4.1. Lp-penalized PARAFAC (R = 1)
To simplify the notations without losing generality, a case of a

three-order tensor is considered in the section. Given a three-order
tensor, one step of PARAFAC (R = 1) applied at each iteration of
REW-NPLS solves the optimization problem:

min
w1 , w2 ,w3

∥

∥

∥
V− − ρ w1 ◦ w2 ◦ w3

∥

∥

∥

2
, (1)

∥

∥w1
∥

∥ =
∥

∥w2
∥

∥ =
∥

∥w3
∥

∥ = 1,

V− ∈ R
I1×I2×I3 and wi ∈ R

∗Ii , i = 1, 2, 3. As the norms of the

projectors are arbitrary values in (1), the decomposition vectors are
evaluated, minimizing V− −w1 ◦w2 ◦w32 before being normalized.

The optimization problem (1) is solved using the ALS procedure.
At each step, ALS fixes two of the three vectors w1,w2,w3 reducing
the problem to a linear least-squares optimization, e.g. w2, w3 are
fixes to approximate w1and then w2 is evaluated fixing w1,w3 etc.
until convergence (Uschmajew, 2015):

min
w1

∥

∥

∥

∥

V−
(1)

− w1(w3 ⊗ w2)T
∥

∥

∥

∥

2

,

min
w2

∥

∥

∥

∥

V−
(2)

− w2(w3 ⊗ w1)T
∥

∥

∥

∥

2

,

min
w3

∥

∥

∥

∥

V−
(3)

− w3(w2 ⊗ w1)T
∥

∥

∥

∥

2

.

Here, V−
(i)

=
(

v11 . . . v
I1
1

)

∈ RI1×I2I3 is the tensor V− unfolded

according to i-the direction and ⊗ is the Kronecker product.
Taking into account that

(

w2 ⊗ w1
)T ∈ RI1I2 ,

(

w3 ⊗ w1
)T ∈ RI1I3

and
(

w3 ⊗ w2
)T ∈ RI2I3 are vectors, the optimization tasks are

separated into element-wise optimizations:

min
w1
j

∥

∥

∥
v
j
1 − w1

j

(

w3 ⊗ w2)T
∥

∥

∥

2
j = 1, . . . , I1, (2)

min
w2
j

∥

∥

∥
v
j
2 − w2

j

(

w3 ⊗ w1)T
∥

∥

∥

2
j = 1, . . . , I2, (3)

min
w3
j

∥

∥

∥
v
j
3 − w3

j

(

w2 ⊗ w1)T
∥

∥

∥

2
j = 1, . . . , I3. (4)

Here, w1 =
(

w1
1, . . . , w

1
I1

)T
∈ R

*I1 , w2 =
(

w2
1, . . . , w

2
I2

)T
∈

R
*I2 , and w3 =

(

w3
1, . . . , w

3
I3

)T
∈ R

*I3 . The least square (LS)

solutions of (2)–(4) are:

(

w1
j

)

LS
=

v
j
1

(

w3 ⊗ w2
)

∥

∥w3 ⊗ w2
∥

∥

2 , j = 1, . . . , I1, (5)

(

w2
j

)

LS
=

v
j
2

(

w3 ⊗ w1
)

∥

∥w3 ⊗ w1
∥

∥

2 , j = 1, . . . , I2, (6)

(

w3
j

)

LS
=

v
j
3

(

w2 ⊗ w1
)

∥

∥w2 ⊗ w1
∥

∥

2 , j = 1, . . . , I3. (7)

In this study, sparse promoting penalization using Lp, p =
0, 0.5, 1 norm/pseudo norm is proposed to be integrated into the
cost function of PARAFAC (R = 1) to provide a slice-wise sparsity
to the solution. The optimization task (1) is replaced by:

∥

∥

∥
V− − V̂

∥

∥

∥

2
+ P

(

w1,w2,w3)→ min, (8)

V̂ = ρ w1 ◦ w2 ◦ w3,

P
(

w1,w2,w3) = λ1
∥

∥w1
∥

∥

q,L1
+ λ2

∥

∥w2
∥

∥

q,L2
+ λ3

∥

∥w3
∥

∥

q,L3
,

∥

∥w1
∥

∥ =
∥

∥w2
∥

∥ =
∥

∥w3
∥

∥ = 1.

Here,
∥

∥wi
∥

∥

p,Li
for p = 0, 0.5, 1 and i = 1, 2, 3 is denoted as

∥

∥wi
∥

∥

0,Li
=
∑

k∈Li

(

1− δ0,wi
k

)

,

∥

∥wi
∥

∥

1,Li
=
∑

k∈Li

∣

∣wi
k

∣

∣ ,

and

∥

∥wi
∥

∥

1
2 ,Li

=
∑

k∈Li

√

∣

∣wi
k

∣

∣.

0 < λi ≤ 1 are regularization coefficients, the Kronecker delta
δ0,wi

k
= 1 if wi

k
= 0, and δ0,wi

k
= 0 otherwise. Notably, only
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a part of the indices defined by a set Li ⊂ {1, 2, . . . , Ii}, i =
1, 2, 3 are penalized, resulting in selective penalization (Lutay and
Khusainov, 2021). A setLi may vary depending on the REW-NPLS
iteration. Selective penalization is introduced for the integration of
Lp. -Penalized PARAFAC (R = 1) into the REW-NPLS algorithm.

Similar sparse promoting penalization in PARAFAC (R = 1)
was considered in Eliseyev et al. (2012). However, this study was
limited to L1-norm penalization. Integrated with the conventional
non-adaptive NPLS algorithm, the optimization problem was
solved using time consuming numerical optimization, which was
then applied offline. In the current manuscript, a more general case
of Lp, p = 0, 0.5, 1 norm/pseudo norm penalization is considered.
In addition, selective penalization is applied for efficient integration
of penalized PARAFAC into the REW-NPLS algorithm. Finally, an
efficient optimization procedure compatible with real-time online
applications is proposed.

The same ALS strategy is applied to complete the optimization
task (8). ALS fixed all projectors at each step except one, leading
to three successive optimization tasks. The least square (LS)
sotion wi

LS of the non-regularized problem is used as an initial
approximation. Notably, unlike in non-regularized optimization,
due to the penalization terms, the norms of the projectors are not
arbitrary values anymore. Therefore, the normalization of a current
estimate is added to ALS optimization iterations:

min
w̃1

(

∥

∥

∥

∥

V−
(1)

− w̃1
(

w3 ⊗ w2
)T
∥

∥

∥

∥

2
+ λ1

∥

∥

∥
w̃1
∥

∥

∥

q,L1

)

, w1 = w̃1/

∥

∥

∥
w̃1
∥

∥

∥
, (9)

min
w̃2

(

∥

∥

∥

∥

V−
(2)

−w̃2
(

w3 ⊗ w1
)T
∥

∥

∥

∥

2
+λ2

∥

∥

∥
w̃2
∥

∥

∥

q,L2

)

, w2= w̃2/

∥

∥

∥
w̃2
∥

∥

∥
, (10)

min
w̃3

(

∥

∥

∥

∥

V−
(3)

− w̃3
(

w2 ⊗ w1
)T
∥

∥

∥

∥

2
+λ3

∥

∥

∥
w̃3
∥

∥

∥

q,L3

)

, w3= w̃3/

∥

∥

∥
w̃3
∥

∥

∥
. (11)

It should be noted that all considered regularization functions
are decomposed as a sum of element-wise functions. Consequently,
similarly to (3)–(5) optimization tasks, (9)–(11) are split into
element-wise optimizations:

min
w1
j

(

∥

∥

∥
v
j
1 − w1

j

(

w3 ⊗ w2)T
∥

∥

∥

2
+ λ1×gp(w

1
j )

)

, j = 1,. . . , I1, (12)

min
w2
j

(

∥

∥

∥
v
j
2− w2

j

(

w3 ⊗ w1)T
∥

∥

∥

2
+λ2×gp

(

w2
j

)

)

, j = 1,. . . ,I2, (13)

min
w3
j

(

∥

∥

∥
v
j
3 − w3

j

(

w2 ⊗ w1)T
∥

∥

∥

2
+ λ3×gp(w

3
j )

)

, j = 1,. . . ,I3, (14)

gp(w
i
j) =































1− δ0,wi
j
, if p = 0 and wi

j ∈ Li
∣

∣

∣
wi
j

∣

∣

∣
, if p = 1 and wi

j ∈ Li
√

∣

∣

∣
wi
j

∣

∣

∣
, if p = 1/2 and wi

j ∈ Li

0, otherwise

. (15)

The particular cases of L0, L0.5, L1 penalization are given below.
Details are presented in the Appendix.

L0 -penalization. In the case of L0-penalization, the
penalization term reflects the number of non-zero coefficients.
Considering one of the optimization iterations of ALS, e.g. (12), the
solution is an element-wise hard thresholding of the least square

solution
(

w1
j

)

LS
, j = 1, . . . , I1 (see Appendix):

(

w1
j

)

L0
=







0 if j ∈ L1 and
(

w1
j

)

LS
≤ ThresholdL0

(

w1
j

)

LS
otherwise

,

where

ThresholdL0 =
√

λ1

|w3 ⊗ w2
|.

L0.5-penalization. In the case of L0.5 penalization and
considering one of the optimization steps of ALS, e.g., (12), the cost
function CostFL0.5 to minimize takes the following form:

CostFL0.5

(

w1
j

)

=
∥

∥

∥
v
j
1 − w1

j

(

w3 ⊗ w2)T
∥

∥

∥

2
+ λ1

√

∣

∣

∣
w1
j

∣

∣

∣
(16)

or, equivalently,

CostFL0.5

(

w1
j

)

=
∥

∥w3 ⊗ w2
∥

∥

2
((

w1
j

)

LS
− w1

j

)2
+ λ1

√

∣

∣

∣
w1
j

∣

∣

∣
,(17)

with solution,

(

w1
j

)

L0.5
=































0, if j ∈ L1 and
(

w1
j

)

LS
≤ ThresholdL0.5

argmin
(

CostFL0.5 (0) , CostFL0.5

(

B·
(

w1
j

)

LS

) )

,

if j ∈ L1 and
(

w1
j

)

LS
> ThresholdL0.5

(

w1
j

)

LS
, otherwise,

where

ThresholdL0.5 =
3

4

(

λ1
∥

∥w3 ⊗ w2
∥

∥

2

)2�3

,

and B is the biggest root of the cubic equation,

x(1− x)2 = C,

C =
λ21

∥

∥16w3 ⊗ w2
∥

∥

4
((

w1
j

)

LS

)3 ,

in the interval [0; 1] (see Appendix).
L1 -penalization. Finally, in the case of L1 penalization,

considering one optimization step of ALS optimization, e.g., (12),
the solution is an element-wise soft-thresholding of the least square
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solution
(

w1
j

)

LS
j = 1, . . . , I1 (see Appendix):

(

w1
j

)

L1
=































0 , if j ∈ L1 and
(

w1
j

)

LS
≤ ThresholdL1

sign
((

w1
j

)

LS

) (∣

∣

∣

(

w1
j

)

LS

∣

∣

∣
− ThresholdL1

)

,

if j ∈ L1 and
(

w1
j

)

LS
> ThresholdL1

(

w1
j

)

LS
otherwise

,

where

ThresholdL1 =
λ1

∥

∥w3 ⊗ w2
∥

∥

2 .

2.4.2. Integration to PREW-NPLS
A Penalized PARAFAC (R = 1) is used in the

REW-NPLS algorithm to extract a set of projectors
{

w1
f
∈ R

I1 ,w2
f
∈ R

I2 , . . . ,wm
f
∈ R

Im
}F

f=1
. For f = 1, all projector

elements can be potentially penalized: Lj,1 =
{

1, 2, . . . , Ij
}

,
j = 1, . . .m. After the first set of projectors’ extraction, non-zero
elements of the projectors correspond to tensor slices already
included in the decoding model with non-zero coefficients. For
the next iterations, corresponding indexes were removed from a
set of indexes to be penalized, resulting in a sequence Lj,2 ⊂ Lj,1.
A scheme representing the PREW-NPLS algorithm in the case of
penalizing one data tensor direction is shown in Figure 1.

2.5. Experiments

This study relies on the neural signal dataset recorded during
the online closed-loop BCI clinical experiments. The ≪ BCI
and Tetraplegia≫ clinical trial (NCT02550522, ClinicalTrials.gov)
(University Hospital, Grenoble, 2015) was approved by French
authorities: National Agency for the Safety of Medicines and
Health Products (Agence nationale de sécurité du médicament
et des produits de santé, ANSM) with the registration number
2015-A00650-49 and the Ethic Committee for the Protection of
Individuals (Comité de Protection des Personnes, CPP) with the
registration number 15-CHUG-19. The research activities were
carried out in accordance with the guidelines and regulations of
the ANSM and the CPP. The patient provided informed consent
for the clinical trial and publication as well as to publish the
information/image(s) in an online open-access publication. Details
of the clinical trial protocol are available in Benabid et al. (2019).

The participant was a 29-year-old right-handed male with
traumatic sensorimotor tetraplegia caused by a complete C4–C5
spinal cord injury two years prior to the study. He underwent
bilateral implantation of two chronic wireless WIMAGINE
implants (Benabid et al., 2019) for ECoG signal recording on 21
June 2017. Two WIMAGINE recording systems were surgically
implanted into the skull near the sensory-motor cortex (SMC)
through a 25-mm radial craniotomy. Before the surgery, the
patients’ SMC was clearly localized using functional imaging.
Details are provided in Benabid et al. (2019). The WIMAGINE
device is made up of an active implantable medical device
composed of 64-plane platinum-iridium 90/10 electrodes with a

2.3mm diameter and a 4–4.5mm inter-electrode distance (Sauter-
Starace et al., 2019). The recorded signals were low- and high-pass
filtered, with a bandwidth range of 0.5Hz to 300Hz, using analog
low-pass filters as well as a digital low-pass FIR filter embedded
into the implant hardware. The digitized ECoG data from 32
electrodes from each implant (Figure 2) were radio transmitted to
a custom-designed base station at a 586Hz sampling rate.

Since the implantation, the patient had been trained to control
multiple real and virtual effectors, such as games that were specially
created for BCI training, a wheelchair, an exoskeleton, an avatar,
and so on, using a custom-made BCI platform (Benabid et al.,
2019). The database used in the study was recorded during the
online closed-loop BCI experiments of upper limbs BCI control.
The BCI sessions included alternative active states (AS) of the 3D
reaching task for each hand, 1D wrist rotation of each hand, and
the idle state (IS) (Benabid et al., 2019). The patient aimed to
reach the proposed targets or rotate the wrist to specific angles
following pursuit tasks. A pursuit task session was composed of
successive tasks, e.g., a left-hand 3D reaching task, a right-hand
3D reaching task, IS, and so on. Each task is composed of several
trials in which the cursor must reach the proposed targets. The
cursor position is not reset between tasks, during the task, or during
the idle state. Twenty-two targets were symmetrically distributed
in two cubes in front of the patient. The virtual avatar was used
as visual feedback (Benabid et al., 2019). In this study, only the
left- and right-hand 3D translation trials were used for algorithm
evaluation. The experimental paradigm is illustrated in Figure 2.

Data were recorded in the period of 468–666 days after
implantation and included 43 sessions. The average session
duration was 29 ± 8 min. During the experiments, the first six
experimental sessions were used for incremental real-time decoder
updates. REW NPLS decoders for each active state task were
integrated into the BCI clinical trial platform. The decoders were
initialized with a zero. The total training time of the decoding
models was 3 h and 37min, including a total of 189 and 194 trials of
the left- and right-hand translation, respectively. The decoders were
calibrated during experimental sessions in late September 2018
and were tested without re-calibration in experiments from early
October 2018 to mid-March 2019, with 37 experimental sessions
distributed over 5–203 days after the last model update session
(468–666 days after implantation; Figure 2).

2.6. Application, feature extraction

During the experimental sessions, neural signal epochs of 1s
for 64 recording channels Xt ∈ R

586x64 with sliding steps of
100ms used for feature extraction. The epochs were mapped into
the feature space using a complex continuous wavelet transform
(CCWT) (Morlet) with a frequency range of 10–150Hz and a
10-Hz step. CCWT is a common feature extraction strategy that
is widely used in the field of BCIs (Chao et al., 2010; Shimoda
et al., 2012; Schaeffer and Aksenova, 2016; Eliseyev et al., 2017;
Choi et al., 2018). The absolute value of CCWT was decimated
by averaging along the temporal modality to obtain a 10-point
description of 1s time epoch for each frequency band and for
each channel, resulting in the temporal-frequency-spatial neural
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FIGURE 1

Penalized REW-NPLS (PREW-NPLS) algorithm. For the model update iteration UI, an updated training data set is collected. The update loop includes

the recursive validation procedure for the evaluation of optimal latent variable space dimension f (number of factors) and penalized NPLS loop,

which includes the sequential tensors XY and XX decomposition. Each step of decomposition uses Rank 1 PARAFAC, which employs penalized

alternating least square procedure. Selective sparsity-promoting penalization with penalization parameter λ is applied, e.g., to the spatial dimension.

Part of the weights is set to zero due to penalization (shown in red). This results in zero slices in the decoding model (shown in red). A set of updated

models for all parameters f are stored up to the maximum f value, 100 in the current setting.

feature tensor Xt ∈ R
10x15x64. The observations of neural features

Xt and the movement features yt recorded during the decoder
update/calibration sessions were used for the decoding model
identification. The movement features (optimal prediction) at time
t is defined as the 3D Cartesian vector between the current effector
position and the target position (Benabid et al., 2019). The control
command ŷt for 3D hand translation is defined as the cartesian
increments of the current position and is sent to the effector
at 10 Hz.

2.7. Comparison study

To compare the proposed PREW-NPLS and the generic, non-
penalized REW-NPLS algorithms, the decoding of the 3D reaching
task for each hand is considered. The comparison study was
restricted to penalization according to spatial modality. Three types
of penalization Lp, p = 0, 0.5, 1 were tested. For Lp, p = 0.5, 1
penalties, a set of models were evaluated with the penalization
parameter λ going from 0 to 0.5 with 0.02 steps. In the case of the
L0-PREW-NPLS, preliminary results highlighted that the studied λ

range was not relevant. Therefore, the models with the penalization

parameter λ going from 0 to 0.05 with 0.002 steps were estimated.
The cases with λ = 0 correspond to the generic, non-penalized
REW-NPLS algorithm.

The performance of algorithms was evaluated offline in
a pseudo-online manner. Pseudo-online simulation uses the
procedure and parameters of online stream data processing.
The dataset was recorded during the online closed-loop BCI
experiments using the REW-NPLS decoder previously integrated
into the BCI system. As the recorded data integrate the
neuronal feedback into real-time decoding, the presented offline
comparison study is not fully generalizable to the online case.
Nevertheless, it allows the characterization of, to some extent, the
studied algorithms.

To be as close as possible to the settings of the online
experiments, in the comparison study, the penalized models were
calibrated on the same experiments that were used for decoder
training during the online closed-loop experiments.

The predicted trajectories performed during the online closed-
loop experiments are related to the decoding model used during
the experiments. Consequently, sample-based indicators were used
to compare the predictions of the tested algorithms in the offline
study. The cosine similarity indicator was based on the comparison
between the predicted directions ŷt and the optimal direction yt
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FIGURE 2

Experimental design. (A) The patient underwent bilateral implantation of two chronic wireless WIMAGINE implants. The recording systems were

epidurally implanted within a 25mm radial craniotomy in front of the sensory-motor cortex. The WIMAGINE implant is composed of 64 plane

electrodes with a 2.3mm diameter and a 4–4.5mm inter-electrode distance. The digitized ECoG data from 32 electrodes from each implant (shown

in red) are radio transmitted to a base station at the 586Hz sampling rate. Reference electrodes are shown in green. (B) The database was recorded

during the online closed-loop BCI experiments of alternative upper limbs BCI control. The virtual avatar was used as visual feedback. (C) The data

sets were recorded in the period of 468 to 666 days after implantation and includes 43 sessions in general. The first six experimental sessions were

used for incremental real-time decoder training. Separate decoders were identified to control di�erent tasks: alternative 3D reaching tasks, and wrists

rotation. They were mixed together using the Markov Mixture of expert approach (Moly et al., 2022). The decoders were tested without re-calibration

with 37 experimental sessions distributed over 5–203 days after the last model update. Only 3D reaching tasks of both hands are included in the

current study. The 3D reaching tasks are composed of a series of trials in which the sequentially proposed targets must be reached (pursuit tasks).

The cursor position is not reset during the task, between tasks, and during the idle state.

was employed:

CosSimt =
yt · ŷt

∥

∥yt
∥

∥

∥

∥ŷt
∥

∥

.

Here, “·” defined the dot product yt and ŷt , and they are the
optimal and predicted output. The optimal 0 output is defined as
the 3DCartesian vector between the current position and the target.
Notably, CosSimt [−1, 1] represent how direct the movement is to
the final destination. A mean cosine similarity of 1 corresponds
to a direct and short trajectory. CosSim performance criterion is
evaluated as the median, 25th (Q1) and 75th (Q3) percentiles of the
CosSimt over samples and is notated as CosSim = median (Q1 −
Q3).

The PREW-NPLS algorithms converge to sparse solutions,
fixing non-relevant model coefficients to exactly zero. The
decoding performance, therefore, is not the only relevant indicator.
Considering a penalized model with the penalization restricted to
the ith dimension, the model Sparsity index for ith dimension is
introduced as the percentage of slices according to ith dimension
of the tensor of model coefficients fixed fully to zero. For example,
if the model is penalized according to the spatial dimension,

minimizing the number of electrodes involved, Sparsity index for
the spatial dimension corresponds to the percentage of electrodes
fully excluded from the decoder (zero model coefficient for these
electrodes for all frequencies and all time delays).

The significance of the differences in the cosine similarity
between the REW-NPLS and PREW-NPLS algorithms was
computed for the left and right-hand 3D translation studies and
for each penalization parameter λ. The statistical analysis was
performed with the non-parametric paired Wilcoxon signed rank
test with (αmulti−class = 0.00161) and without (α = 0.05) the
Bonferroni correction.

3. Results

The cosine similarity performance and the Sparsity of models
with Lp, p = 0, 0.5, 1 penalization according to spatial modality
for the left and right-hand 3D movement tasks are presented
depending on the penalization coefficient λ in Figure 3. The generic
REW-NPLS (λ = 0) performance is presented in the first position

of each sub-figure.
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FIGURE 3

The cosine similarity and the model sparsity for the L_p penalized REW-NPLS algorithm for 3D reaching tasks decoding. The cosine similarity and the

model sparsity for the L0-PREW-NPLS (A), L0.5-PREW-NPLS (B), and L1-PREW-NPLS (C) estimated for the left-hand 3D reaching task control. The

cosine similarity and the model sparsity for the L0-PREW-NPLS (D), L0.5-PREW-NPLS (E), and L1-PREW-NPLS (F) estimated for the right hand 3D

reaching task control. The cosine similarly is summarized using a box plot where the red line is the median the blue lines indicate the 25th and 75th

percentiles (Q1 and Q3). Additionally, the whiskers show the upper and lower extreme cosine similarity obtained for the data set. The generic

REW-NPLS algorithm results are presented in the first box plot of each sub-plot corresponding to λ = 0.

The generic REW-NPLS (λ = 0) performance highlighted a
CosSim = 0.223 (0.158 − 0.266) (median = 0.223, Q1 = 0.158,
Q3 = 0.266), for the left hand, and CosSim = 0.127 (0.047− 0.155)
(median = 0.127, Q1 = 0.047, Q3 = 0.155) for the right-hand 3D
translation decoding.

The penalized decoders showed relevant performance
for different penalization parameters λ. Sparsity indexes
generally increase with higher penalization coefficients. Decoding
performance for all penalty types and penalization parameters were
highly variable between sessions (high inter-session variability).
Decoding of the right-hand translation stresses worse cosine
similarity than decoding of the left-hand, but PREW-NPLS allowed
for better decoding performance than generic REW-NPLS.

L_0 PREW-NPLS algorithm demonstrated improved
performance compared to the generic REW-NPLS for different
parameters λ in both hand translation and decoding tasks
(Figures 3A, D). For a minor penalization, λ = 0.01, low
sparsity was observed: Sparsity = 0% for the left hand, and

Sparsity = 4.68% corresponding to only three electrodes
removed for the right hand. Additionally, the performance
reached CosSim = 0.252 (0.165 − 0.296) for the left hand and
CosSim = 0.157 (0.1018 − 0.203) for the right hand translation,
resulting in a median movement of the cosine similarity of 13 and
24%, respectively.

Performance improvement was demonstrated for sparser
solutions using different penalization parameters. For a moderate
penalty, λ = 0.026, cosine similarity CosSim = 0.248 (0.173 −
0.288) was achieved with a Sparsity = 56.25% for the left hand.
For the right hand, with λ = 0.018, cosine similarity CosSim =
0.157 (0.0989 − 0.185) was achieved with Sparsity = 37.5%. A
sparser solution with Sparsity = 45.31% was obtained for the right
hand for λ = 0.024, with CosSim = 0.153 (0.0786− 0.198).

For a strong penalty (0.04 ≤ λ ≤ 0.046), L_0 PREW-NPLS
demonstrated for the left hand a similar decoding performance
CosSim = 0.248 (0.162 − 0.294) with 40 electrode parameters
set to the 0 value, Sparsity = 62.5%. For the right hand, L_0
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PREW-NPLS models converged to a highly sparse solution with
λ > 0.046 with 48 electrodes over 64 removed

(

Sparsity = 75%
)

,
which highlighted decoding performance similar to the generic
REW-NPLS [CosSim = 0.128 (0.058− 0.168)].

Similarly, the L_0.5 PREW-NPLS decoder demonstrated
better decoding performance with sparser solutions for several
penalization parameters compared to the generic REW-NPLS
decoder (Figures 3B, E).

In particular, for a moderate penalty, λ = 0.22, for the left
hand, 18 electrode parameter weights were set to zero (Sparsity =
28.13%), achieving higher performance CosSim = 0.253 (0.189 −
0.301) compared to the generic REW-NPLS model. Similarly,
for the right hand, for penalization λ = 0.16, a sparse model
(Sparsity = 54.69%) was identified, increasing the decoding
performance CosSim = 0.150 (0.0881 − 0.176). Sparsest models
were obtained for λ = 0.26, 0.28 with Sparsity = 79.69% and
Sparsity = 78.13%, respectively.

With higher penalization, for the left hand, the performance
CosSim = 0.245 (0.156 − 0.2838) was achieved with Sparsity =
35.94% for λ = 0.3. For λ ≥ 0.32, the sparsity converged to
Sparsity = 28.13% with decoding performance similar to the
generic REW-NPLS model: CosSim = 0.217 (0.143 − 0.261).
For the right hand, for λ ≥ 0.36, the models converged to the
same solutions with Sparsity = 68.75% (44 electrodes removed)
and a cosine similarity CosSim = 0.131 (0.0835− 0.186) slightly
superior compared to the generic REW-NPLS decoder.

L_1 PREW-NPLS decoder demonstrated similar results
(Figures 3C, F). For low penalty, λ = 0.12, Sparsity = 0%, the
L_1 PREW-NPLS model highlighted CosSim = 0.253 (0.151 −
0.286) for the left hand. For the right hand, the models with
small penalization parameters λ = 0.04, 0.06 and 0.1 with zero
sparsity (Sparsity = 0 %) highlighted a cosine similarity CosSim =
0.154 (0.0915− 0.202), CosSim = 0.158 (0.0791− 0.184) and
CosSim = 0.164 (0.0959− 0.191) representing an improvements
of 21, 24, and 29%, respectively.

For higher penalization parameters, Sparsity = 29.69% was
reached for λ = 0.20 with a decoding performance of CosSim =
0.249(0.162 − 0.295) for the left hand. Similarly, for the right
hand, the decoding performance CosSim = 0.154 (0.101− 0.192)
and CosSim = 0.152 (0.0872− 0.197) with 33 (51.56%) and 44
(68.75%) electrode parameters weights set to zero was achieved for
λ = 0.22, 0.26, respectively.

Finally, for the strong penalization, λ ≥ 0.34, 41 electrode
parameter weights were set to zero leading to CosSim =
0.245 (0.173 − 0.283) for the left-hand. For penalization
parameters λ ≥ 0.38, the models stabilized to a solution with
Sparsity = 68.75% with a decoding performance CosSim =
0.131 (0.0835− 0.186) for the right hand.

The REW-NPLS and the L_p PREW-NPLS model parameter
weights were shown in the temporal, frequency, and spatial
domains in Supplementary Figures 1, 2 for the left- and right-
hand translation models, respectively. The presented models were
the ones with the maximal penalization coefficient λ =0.06,0.4
and 0.4 for the L_0-, L_0.5,- and L_1 PREW-NPLS algorithms,
respectively. The spatial parameter weights are presented in
Supplementary Figures 3, 4 on a map with the electrode locations
relative to the sensory (SS) and motor (MS) sulci.

The results of the statistical analysis performed with the non-
parametric paired Wilcoxon signed rank test with and without the
Bonferroni correction are presented in Supplementary Tables 1, 2
for the left- and right-hand translation and decoding for each of
the PREW-NPLS algorithms. Numerous models highlighted the
statistically significant performance improvement of the proposed
PREW-NPLS algorithms compared to the generic REW-NPLS for
all the penalization types.

4. Discussion

Among the various potential applications, the functional
compensation/restoration of individuals suffering from severe
motor disabilities has always been a focus of BCI research.
The primary challenge of motor BCIs is the high-dimensional
control of complex effectors. To achieve this objective, high-
resolution neuronal activity recording is generally required, which
results in the high-dimensional data flow being processed in real
time with a high decision rate of at least (8–10Hz). Moreover,
closed-loop decoder training is reported to be more effective
(Jarosiewicz et al., 2013) compared to decoders trained classically
using training data recorded in an open-loop setting. CLDA
BCIs use incremental learning/adaptive algorithms capable of
updating a decoder in real time during BCI sessions, increasing
the computational load. In addition to high computing time
and power requirements, high-dimensional feature space may
lead to numerous issues, complicating decoder training. Efficient
feature selection decreases the feature space dimension and may
allow for improving the generalization ability of the decoder by
excluding irrelevant, redundant, or noisy variables. As neuronal
activity features are naturally grouped (e.g., by the sensors and the
frequency bands), group-wise feature selection may be beneficial,
which can help fully exclude non-informative or redundant
electrodes or/and frequency bands from consideration. A group-
wise feature selection procedure embedded in adaptive/incremental
learning of the decoder is proposed in the study. It was based on
sparsity-promoting penalization of the data tensor decomposition
integration to the REW-NPLS algorithm. Lp, p = 0, 0.5, 1
norm/pseudo-norm penalties were studied. Sparsity-promoting
penalties were applied to feature groups corresponding to slices of
the data tensor related to the mode of analysis (e.g., spatial).

The proposed algorithms were tested with a dataset of left/right
arms 3D translations of a virtual avatar controlled by the tetraplegic
subject. The studied models were trained on the same data (the
first six sessions), which were used for decoder training during the
online experiments. The number of training sessions was relatively
small (14%) and focused at the beginning of the experiments.
This may partially explain the high inter-session variability of
the decoding performance for all the algorithms (depicted in
Supplementary Figure 5). However, Lp-PREW-NPLS algorithms
highlighted equal or better decoding performance compared to
the generic REW-NPLS decoder with sparse solutions, with up
to two-thirds of the electrode parameter weights set to zero for
both tasks of the left and the right-hand translation. Computational
load measurements demonstrated the expected decrease (close to
linear) in memory consumption and computational time during
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the model execution stage, depending on the model sparsity for
3D hand translation. 25, 50, and 75% of sparsity in the spatial
dimension results in an average of 25, 50, and 75% decreases
in memory consumption and a 23, 45, and 67% decrease in
computational time.

The PREW-NPLS decoders highlighted equal or better
decoding performance compared to the generic REW-NPLS
algorithm for the majority of the penalization parameters. For
example, for the right-hand decoding, the L1-PREW-NPLS decoder
with a moderate penalization parameter λ = 0.26, highlighted a
significant (p − value = 10−6) cosine similarity improvement of
21, 116, and [[Mathtype-mtef1-eqn-317.mtf]] for the median and
the 25th and 75th percentiles, respectively, with fewer than half
of the electrodes, maintained at a non-zero value (33 electrodes
set to zero). For the small penalization parameters (λ = 0.1),
the model converged to a non-sparse solution with a significant
cosine similarity improvement

(

p− value = 10−6
)

, leading to a
median, 25th and 75th percentile enhancement of 24, 104, and
23%, respectively. The sparsest solution with the L1-PREW-NPLS
algorithm removed 75% of the electrodes without decreasing
the cosine similarity indicator and reducing the features space
from 10 × 15 × 64 = 9, 600 features to 10 × 15 × 16 =
2, 400 features.

Decoding performance improvements were more evident for
the 3D right-hand translation models than the left-hand 3D
translation. As the 3D right-hand translation models demonstrated
lower decoding performance than left-hand translation models, a
sparse decoder is more effective for a less performant neural signal
decoder in this study.

An increase in the training dataset size may potentially
improve decoder performance and limit overtraining.
Supplementary Figure 6 shows the cosine similarity and model
sparsity using L1-PREW-NPLS with larger training datasets: 30
and 50% of the whole data (13 and 22 sessions, respectively). It
results in fewer sparse models and an improvement in the decoder’s
performance (Supplementary Figure 6). However, in BCI research,
the recording of data is highly expensive, limiting access to big
datasets. The decoder training method with shorter recordings is
highly profitable for real-life BCI applications.

The relative efficiency of penalization types is unclear in the
current study. The maximum improvement in performance
was achieved using L1 penalization, but the results are
comparable to other penalization types. Application L0.5 penalty
is computationally heavier compared to L0 or L1 penalties
without evident advantages. A complimentary comparative
study may allow clarification of the relative efficiency of the
proposed penalizations.

L0-PREW-NPLS and L1-PREW-NPLS algorithms are
sufficiently computationally effective to be applied for the
online closed-loop decoder adaptation. To reproduce the
online experimental conditions, a pseudo-online simulation was
conducted using the same parameters (buffer size, batch training,
and so on) as used in real time to ensure the compatibility of the
proposed algorithm with the real-time application.

Finally, reducing the feature space dimension may lead to more
interpretable models. Several activation patterns were discernible.
In the spatial domains, the electrodes close to the motor and
sensory sulci exhibit important parameter weights.

The current study is limited to offline simulations using
datasets recorded from previous online closed-loop experiments
with the REW-NPLS decoder integrated into the BCI system. As
the neuronal signal integrates the neuronal feedback to the decoder,
which was applied in real time, the offline comparison study is
not fully generalizable. However, conducting real experiments to
compare all algorithms is too costly. In addition, as the neuronal
feedback is related to the real-time decoder output, the comparison
results are likely to be biased in favor of the decoder applied during
real-time experiments rather than the newly tested algorithms.

The study presented in the study is limited to penalization in
the spatial domain, which is crucial for decreasing data transfer.
In order to evaluate the influence on the decoding performance
of penalization applied to other modalities, further research needs
to be conducted to include decoders that promote sparsity in the
frequency and temporal domains.

This study reports a case study. The results are obtained
from the dataset, which was based on a single-subject clinical
trial. Further tests with more subjects are required to support the
conclusions. The authors plan to contribute to conducting clinical
trials to assess the proposed algorithm in real-time experiments.
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SUPPLEMENTARY TABLE 1

Significance of the performance (CosSim median) di�erences between the

REW-NPLS and the L_0, L_0.5, and L_1 PREW-NPLS algorithms for the left

hand 3D translation study using the non-parametric paired Wilcoxon signed

rank test with and without the Bonferroni correction (α = 0.05 and

αBonferroni = 0.00161).

SUPPLEMENTARY TABLE 2

Significance of the performance (CosSim median) di�erences between the

REW-NPLS and the L_0, L_0.5, and L_1 PREW-NPLS algorithms for the right

hand 3D translation study using the non-parametric paired Wilcoxon signed

rank test with and without the Bonferroni correction (α = 0.05 and

αBonferroni = 0.00161).

SUPPLEMENTARY FIGURE 1

Parameter weights of the generic REW-NPLS and Lp, p = 0, 0.5, 1

PREW-NPLS for the left-hand 3D translation. Absolute values of model

coe�cients are projected into spatial, frequency, or temporal domains. The

parameter weights related to the three controlled axes (y1, y2, and y3) are

represented using blue, orange, and yellow lines, respectively.

SUPPLEMENTARY FIGURE 2

Parameter weights of the generic REW-NPLS and Lp, p = 0, 0.5, 1,

PREW-NPLS for the right-hand 3D translation. Absolute values of model

coe�cients are projected into spatial, frequency, or temporal domains. The

parameter weights related to the three controlled axes (y1, y2, and y3) are

represented using blue, orange, and yellow lines, respectively.

SUPPLEMENTARY FIGURE 3

Parameter weights of the models identified using generic REW-NPLS and

Lp, p = 0, 0.5, 1, PREW-NPLS algorithms (the left-hand 3D translation

study) projected into the spatial domain depending on the electrode

locations in the implant. The sensory sulcus (SS) and motor sulcus (MS) are

shown by yellow and red curves respectively.

SUPPLEMENTARY FIGURE 4

Parameter weights of the models identified using generic REW-NPLS and

Lp, p = 0, 0.5, 1, PREW-NPLS algorithms (the right-hand 3D translation

study) projected into the spatial domain depending on the electrode

locations in the implant. The sensory sulcus (SS) and motor sulcus (MS) are

shown by yellow and red curves respectively.

SUPPLEMENTARY FIGURE 5

The cosine similarity for the Lp penalized REW-NPLS algorithms

(p = 0, 0.5, 1), for di�erent λ for 37 test sessions. Cosine similarity of

decoding of left-hand 3D translation is depicted in subplots (A–C). Cosine

similarity of decoding of right-hand 3D translation is depicted in subplots

(D–F).

SUPPLEMENTARY FIGURE 6

The cosine similarity and the model sparsity for the L_1 penalized

REW-NPLS algorithm for 3D reaching tasks using 30% (A, C) and 50% (B, D)

of the data set for the decoder training. The cosine similarly is summarized

using a box plot where the red line is the median the blue lines indicate the

25th and 75th percentiles (Q1 and Q3). Additionally, the whiskers show the

upper and lower extreme cosine similarity obtained for the data set. The

generic REW-NPLS algorithm results are presented in the first box plot of

each sub-plot corresponding to λ = 0.
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