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Network segregation in aging
females and evaluation of the
impact of sex steroid hormones
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Males and females show differential patterns in connectivity in resting-state networks

(RSNs) during normal aging, from early adulthood to late middle age. Age-related

differences in network integration (effectiveness of specialized communication at

the global network level) and segregation (functional specialization at the local

level of specific brain regions) may also differ by sex. These differences may be

due at least in part to endogenous hormonal fluctuation, such as that which

occurs in females during midlife with the transition to menopause when levels

of estrogens and progesterone drop markedly. A limited number of studies that

have investigated sex differences in the action of steroid hormones in brain

networks. Here we investigated how sex steroid hormones relate to age-network

relationships in both males and females, with a focus on network segregation.

Females displayed a significant quadratic relationship between age and network

segregation for the cerebellar-basal ganglia and salience networks. In both cases,

segregation was still increasing through adulthood, highest in midlife, and with a

downturn thereafter. However, there were no significant relationships between sex

steroid hormone levels and network segregation levels in females, and they did not

exhibit significant associations between progesterone or 17β-estradiol and network

segregation. Patterns of connectivity between the cerebellum and basal ganglia have

been associated with cognitive performance and self-reported balance confidence in

older adults. Together, these findings suggest that network segregation patterns with

age in females vary by network, and that sex steroid hormones are not associated

with this measure of connectivity in this cross-sectional analysis. Though this is a

null effect, it remains critical for understanding the extent to which hormones relate

to brain network architecture.

KEYWORDS

functional connectivity, aging, steroid hormones, sex differences, network segregation

1. Introduction

Advanced age is associated with an overall decrease in the effectiveness of specialized
communication at the global network level (i.e., integration) and loss of functional specialization
at the local level of specific brain regions (i.e., segregation). That is, neuronal networks become
less distinct with advanced age (Foo et al., 2021).

Age-related differences in the reorganization of functional connectivity and cognitive
abilities may also differ by sex. In adulthood, sex differences in brain structure and function
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can be observed (Cosgrove et al., 2007) and, similarly, sex differences
in resting state networks (RSNs) have been reported. For example,
studies of age differences have observed that males show increasing
connectivity between-networks when compared to females (Allen
et al., 2011; Filippi et al., 2013; Goldstone et al., 2016). Males also
exhibited more marked changes in default mode network (DMN)
connectivity, especially in the posterior cingulate cortex (PCC), but
showed smaller differences (and possibly increases) in connectivity
to the lateral prefrontal regions of the fronto-parietal network (FPN)
relative to females (Allen et al., 2011; Filippi et al., 2013). Females
on the other hand showed smaller differences in DMN connectivity
but showed greater decreases in FPN connectivity when compared to
males.

Sex differences in network architecture have also been reported
(Zhang et al., 2016). Zhang et al. (2016) observed that female
functional networks have significantly more connected nodes than
males suggest an increase in network homogeneity in female brains.
They also observed that the cerebellar nodes have a higher clustering
coefficient and local efficiency for females (Zhang et al., 2016). This
adds evidence to their findings that the clustering coefficient and local
efficiency in males are higher, while female connections are diffuse
across lobes and the network is less modular. These results jointly
support the notion that networks in female brains, compared to those
in males, are more spatially distributed but with lower correlation
strengths (Scheinost et al., 2015; Zhang et al., 2016). Overall, males
and females showed differential patterns in connectivity in RSNs
during normal aging, and from early adulthood to late middle age
(Allen et al., 2011; Filippi et al., 2013; Scheinost et al., 2015). However,
these differences vary between studies with respect to regions and
networks that are impacted.

Just as there are mixed results regarding sex differences with
age in brain networks, there are also disagreements in the literature
regarding differences in resting-state functional connectivity in the
context of hormonal differences between biological sexes. To this
point, there have been a limited number of studies that have
investigated sex steroid hormones on brain networks. Further, there
is currently disagreement among the rapidly expanding number
of studies on the possible neuroprotective effects of sex hormones
on cognitive and brain function more generally (Moffat, 2005;
Sundström Poromaa and Gingnell, 2014; Toffoletto et al., 2014).
Given that RSNs appear to be differentially impacted in males in
females in later life, further exploration of the impact of sex steroid
hormone levels on network architecture across adulthood stands
to improve our understanding of underlying factors contributing
to these differences. Specifically, it may be that sex hormone levels
are related to the integration and segregation of neuronal networks
(Peper et al., 2011).

In the brain, hormone receptors can be found across several
regions. Post-mortem studies have found estrogen receptors in the
hippocampus, claustrum, cerebral cortex, amygdala, hypothalamus,
subthalamic nucleus, and thalamus (Osterlund et al., 2000; Weiser
et al., 2008; Syan et al., 2017). As for progesterone, a post-
mortem study reported high concentrations of its receptors in the
amygdala, hypothalamus, and cerebellum (Bixo et al., 1997; Syan
et al., 2017). Testosterone exerts an early organizational effect on
the development of the hypothalamus (Jacobson et al., 1981), the
cerebral cortex (Diamond, 1991), and the hippocampus (Roof and
Havens, 1992) in addition to other brain structures. With respect
to testosterone, after conversion to estradiol, it can also interact
with estrogen receptors (Moffat, 2005). The relationship between

these two hormones (testosterone and estrogen) have been shown to
affect vascular health directly (Aggarwal et al., 2018; Raparelli et al.,
2022). The ratio of testosterone to estradiol is important for vascular
function suggesting that these hormones may not act independently
(van Koeverden et al., 2019; Raparelli et al., 2022). Therefore, it is
also important to investigate the interactions that may occur between
sex hormones and whether together they may be involved related to
aging processes, as well as differences in neuronal networks (Syan
et al., 2017). Testosterone, progesterone, and estrogens are present
in both males and females, but their levels and production vary,
mainly with respect to sex and age, though fluctuations in estrogens
and progesterone occur across the female menstrual cycle as well
(Sundström Poromaa and Gingnell, 2014).

The influence of sex hormones on functional networks is vital to
our understanding of brain function and organization during periods
of endogenous hormonal fluctuation, such as that which occurs in
females during midlife with the transition to menopause when levels
of estrogens and progesterone drop markedly (Toffoletto et al., 2014;
Foo et al., 2021). Our study here aims to investigate how sex steroid
hormones relate to age-network relationships in both males and
females, with a focus on network segregation. As such, we predicted
that there would be associations between network segregation and
hormone levels, as well as interactions between hormones that may
be affecting or enhancing the segregation of RSNs.

2. Materials and methods

2.1. Study sample

One hundred and fifty-seven participants (total n = 157)
were enrolled as part of a larger study on aging. All participants
underwent a battery of cognitive and motor tasks and during
this assessment, the participants provided saliva samples for
hormone quantification (for details about collection see Section
“2.2 Hormone quantification”). After the behavioral visit the
participants returned for a magnetic resonance imaging (MRI)
session approximately 2 weeks later. However, due to unexpected
delays related to the COVID-19 pandemic, the time between the
two sessions (39.0 days ± 21.4 days) varied between participants.
For our analyses here, we focused only on the hormone and
brain imaging data.

Exclusion criteria were history of neurological disease, stroke,
or formal diagnosis of psychiatric illness (e.g., depression or
anxiety), contraindications for the brain imaging environment,
and use of hormone therapy (HTh) or hormonal contraceptives
[intrauterine device (IUD), possible use of continuous birth
control (oral), and history of hysterectomy]. These latter
exclusions were made to evaluate impacts of normative
endocrine aging on healthy adult females. For our analyses
here we focused only on those with available neuroimaging
data and hormonal assays. Thus, our final sample included
121 participants [55 males (age 57 ± 14.76) and 66 females
(age 57 ± 12.17)]. A flowchart showing the exclusions and
determination of the final sample for analysis is presented below
(Figure 1).

All study procedures were approved by the Institutional Review
Board at Texas A&M University, and written informed consent was
obtained from each participant prior to initiating any data collection.
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FIGURE 1

The initially collected number of participants and after following the
exclusion criteria, the final number of our sample.

2.2. Hormone quantification

For hormonal analyses, we followed the methodology used in
recent work from our research group (Ballard et al., 2022a). For
the sake of clarity and replicability, the methods reporting here
matches what was reported in our recent work (Ballard et al.,
2022a). Before collecting the saliva sample, participants were asked
to refrain from consuming alcohol 24 h prior and eating or
drinking 3 h prior to their first study session to avoid exogenous
influences on hormone levels. Participants were also screened for
oral disease or injury, use of substances such as nicotine or caffeine,
and prescription medications that may impact the saliva pH and
compromise samples. Participants were asked to rinse their mouth
with water 10 min prior to providing a saliva sample to clear out any
residue.

Samples were then collected in pre-labeled cryovials
provided by Salimetrics1 using the passive drool technique.
For our study, participants were asked to supply 1 mL of
saliva, after which samples were immediately stored in a −80◦

Celsius bio-freezer for stabilization. Assays were completed
by Salimetrics to quantify 17β-estradiol, progesterone, and
testosterone levels for each participant. The amount of saliva
collected was sufficient to detect 17β-estradiol at a high sensitivity
threshold of 0.1 pg/mL (Salimetrics, 2022), along with 5.0 pg/mL
and 1.0 pg/mL thresholds for progesterone and testosterone,
respectively.

The protocol used by Salimetrics includes two repetitions of each
assay; thus, the values used in our analyses represent an average
of both repetitions. A few samples were insufficient in quantity
and were unable to be properly assayed (n = 3; 2 progesterone,
1 testosterone). The intra-assay coefficient of variability for our
hormone samples was 0.15 for 17β-estradiol, 0.11 for progesterone,
and 0.07 for testosterone. This non-invasive method is adequate for
precisely measuring reproductive hormones. Salivary measurements
are strongly correlated with blood-derived measurements to index

1 https://salimetrics.com/saliva-collection-training-videos/

sex hormone levels (17β-estradiol: r = 0.80; progesterone: r = 0.80;
testosterone: r = 0.96).2

2.3. Imaging acquisition

Participants underwent structural and resting-state MRI using
a Siemens Magnetom Verio 3.0 Tesla scanner and a 32-channel
head coil. For structural MRI, we collected a high-resolution T1-
weighted 3D magnetization prepared rapid gradient multi-echo
(MPRAGE) scan [repetition time (TR) = 2,400 ms; acquisition
time = 7 min; voxel size = 0.8 mm3] and a high-resolution T2-
weighted scan [TR = 3,200 ms; acquisition time = 5.5 min; voxel
size = 0.8 mm3], each with a multiband acceleration factor of two.
For resting-state imaging, we administered four blood-oxygen level
dependent (BOLD) functional connectivity (fcMRI) scans with the
following parameters: multiband factor of eight, 488 volumes, TR
of 720 ms, and 2.5 mm3 voxels. Each fcMRI scan was 6 min
in length for a total of 24 min of resting-state imaging, and
scans were acquired with alternating phase encoding directions
(i.e., two anterior to posterior scans and two posteriors to anterior
scans). During the fcMRI scans, participants were asked to lie still
with their eyes open while fixating on a central cross. In total,
the acquisition of images takes about 45 min, including a 1.5-
min localizer.

Scanning protocols were adapted from the multiband sequences
developed by the Human Connectome Project (HCP) (Harms
et al., 2018) and the Center for Magnetic Resonance Research at
the University of Minnesota to facilitate future data sharing and
reproducibility.

2.3.1. Imaging processing
2.3.1.1. Pre-processing

Images were converted from DICOM to NIFTI and organized
into a Brain Imaging Data Structure (BIDS, version 1.6.0) format via
the latest docker container version of bidskit (version 2021.6.14).3

Using the split tool distributed with the FMRIB Software Library
(FSL) package (Jenkinson et al., 2012), a single volume was extracted
from two oppositely encoded BOLD images to estimate B0 field
maps. Next, fMRIPrep (version 20.2.3)4 was used to preprocess
anatomical and functional images. The fMRIPrep preprocessing
pipeline includes basic steps such as co-registration, normalization,
unwarping, noise component extraction, segmentation, and skull-
stripping.

While basic pre-processing was performed in the fMRI
preparation, we also completed remaining steps in the Conn toolbox,
version 21a (Whitfield-Gabrieli and Nieto-Castanon, 2012). We used
the default preprocessing pipeline, which consists of realignment and
unwarping with motion correction, centering to (0, 0, 0) coordinates,
slice-timing correction, outlier detection using a 95th percentile
threshold and the Artifact Rejection Toolbox (ART), segmentation of
gray matter, white matter, and cerebrospinal fluid, normalization to
Montreal Neurological Institute (MNI) space, and spatial smoothing
with a 5 mm full width at half-maximum (FWHM) Gaussian kernel.
A band-pass filter of 0.008–0.099 Hz was applied to denoise data.

2 https://salimetrics.com/analyte/salivary-estradiol/

3 https://github.com/jmtyszka/bidskit

4 https://fmriprep.org/
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The threshold for global-signal z-values was set at three, while the
motion correction threshold was set at 0.5 mm. After being de-spiked
during denoising to adhere to the global mean, 6-axis motion data
and frame-wise outliers were included as first-level covariates.

2.3.1.2. Region of interest selection

In our study, we used the same Region of Interest (ROIs) selection
used by Ballard et al. (2022c), in work previously completed by our
group. The MNI coordinates for each cortical node retrieved from
Cassady et al. (2019) [originally derived from Power et al. (2011)]
were selected by our group. Further, we included 20 subcortical nodes
of the [extracted from Hausman et al. (2020)] for the cerebellar-
basal ganglia network (Diedrichsen, 2006; Di Martino et al., 2008;
Diedrichsen et al., 2009). Cerebellar seeds were determined via the
SUIT atlas (Power et al., 2011; Cassady et al., 2019). Our final
set of ROIs contained 234 nodes across 11 networks (10 cortical,
1 subcortical, see Table 1 for a list of included networks). MNI
coordinates for each node were translated to voxel coordinates,
which were subsequently used to create spherical seeds with 3.5 mm
diameters in FSL (Jenkinson et al., 2012). These seeds were then
treated as ROIs.

First-level ROI-to-ROI relationships were evaluated with a
bivariate correlation approach; those correlations are needed to
calculate the variables within and between the network for each
subject which are then used in the network segregation equation.
Correlation values were transformed into z-values via Fisher’s r-to-z
conversion (Zar Jerrold, 1996). Corrections for multiple comparisons
were applied during statistical analyses.

2.3.1.3. Network segregation equation

For the analysis of network segregation, we again followed
our previous work reported by Ballard et al. (2022a,c) and based
off analyses initially conducted by Chan et al. (2014). Network
segregation values were determined using Equation 1 below. In the
formula, zw corresponds to the mean correlation between ROIs
within an individual network, and zb represents the mean correlation
between ROIs of an individual network and all remaining ROIs of
other networks. Group-level analyses were performed with a voxel
threshold of p < 0.001 and cluster threshold, FDR-corrected, of
p < 0.05.

TABLE 1 Network abbreviation key.

Abbreviation Network

Au Auditory

CBBG Cerebellar-basal ganglia

COTC Cingulo-opercular task control

DA Dorsal attention

DM Default mode

FPTC Fronto-parietal task control

Sa Salience

SSH Sensory somatomotor hand

SSM Sensory somatomotor mouth

Vi Visual

VA Ventral attention

Equation 1. Network segregation values were determined using
this formula.

Network segregation =
zw − zb

zw

2.4. Statistical analysis

We first sought to ascertain sex differences in hormone levels
within our sample. Analyses of variance (ANOVAs) were conducted
to determine sex differences in hormone levels (i.e., estradiol,
progesterone, and testosterone separately). ANOVAs were completed
using the ANOVA function from the default “stats” package in R
(v4.0.5, R Core Team, 2021) which determined beta coefficients,
degrees of freedom, F-values, and p-values; the sjstats and pwr
packages were used to compute η2 and partial η2 values (v0.18.1,
(Lüdecke, 2022)).

As our primary area of interest lies within the impact of
fluctuating hormones on female brain network segregation, our main
analyses investigated females only. However, exploratory analyses
evaluated males and all participants combined which are included
in the supplement.

To explore the unique associations between hormone levels
(i.e., estradiol, progesterone, and testosterone separately) and
each network of interest in females, linear regressions were
performed in which hormone levels served as the predictor and
network segregation as the outcome. These linear regressions
were also conducted in exploratory analyses with males and all
participants collapsing the two sexes (Supplementary Tables 1–
6). The lm function from the default “stats” package in R (v4.0.5,
R Core Team, 2021) determined beta coefficients, degrees of
freedom, F-values, p-values, R2, and adjusted R2. False discovery
rate (FDR) correction was applied to account for multiple
comparisons (i.e., number of networks examined) using the FSA
package in R exclusively on results with a p-value ≤ 0.05
(FSA v0.9.3, Ogle et al., 2022). Linear regressions with hormone
level interactions (i.e., estradiol∗progesterone, estradiol∗testosterone,
and progesterone∗testosterone) as the predictor variables explored
the relationship between combined hormone levels and network
segregation in females. Exploratory analyses investigated the same
hormone level interactions in males and all participants together
(Supplementary Tables 12, 13). FDR correction was applied as
previously described (FSA v0.9.3, Bernard et al., 2015). Our cross-
sectional hormone level data is also visualized via locally weighted
scatterplot smoothing (Supplementary Figure 1) to provide
comparison to normal distributions of sex hormone levels by age.

Associations between network segregation and age were
evaluated via linear regression with age as the predictor and
network connectivity as the outcome in females; males and
all participants together were run as exploratory analyses
(Supplementary Tables 7, 8). We conducted similar regressions
with quadratic age [Age + I (Age2)] as the predictor to investigate
whether network segregation demonstrated better fit with a quadratic
function rather than linear across middle-to advanced-age adults,
given prior work suggesting non-linear relationships between brain
system segregation (Chan et al., 2014) as well as brain volume
(Bernard et al., 2015) and age. Quadratic regressions for males and
all participants were run as exploratory analyses (Supplementary
Tables 9, 10). Linear and quadratic regressions were performed
using the lm function from the default “stats” package in R (v4.0.5,
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R Core Team, 2021) which determined beta coefficients, degrees of
freedom, F-values, p-values, R2, and adjusted R2. FDR correction was
applied as previously described to account for multiple comparisons
(i.e., number of networks examined) (FSA v0.9.3, Chan et al.,
2014). Akaike’s An Information Criterion (AIC) (Sakamoto et al.,
1986) compared fit between linear and quadratic models with a
requirement that model value must differ by 10 to be considered
a superior fit (Burnham and Anderson, 2004; Bohon and Welch,
2021). AIC was calculated by the default “stats” package in R (v4.0.5,
R Core Team, 2021).

The stargazer package (v5.2.2; Hlavac, 2018) was used to create
Tables 2–7. The ggplot2 package was used to create linear and
quadratic plots (Figures 1–5; v3.3.3; Wickham, 2016). All figures
were created using a colorblind friendly palette via RColorBrewer
(Neuwirth and Neuwirth, 2023).

3. Results

3.1. Hormone levels by sex

An ANOVA revealed significant sex differences in testosterone
when accounting for age [F(1,111) = 79.496, p < 0.001; Figure 1], that
is testosterone levels were significantly lower in females. ANOVAs
did not reveal significant sex differences in estradiol or progesterone
levels [F(1,105) = 3.318, p = 0.071, η2 = 0.031], and [F(1,109) = 3.270,
p = 0.073, η2 = 0.029], respectively Figure 2.

3.2. Network segregation and hormone
levels in females

When examining females alone, network segregation was not
significantly associated with progesterone, estradiol, or testosterone
in females after FDR correction (see Tables 2–4). Similar exploratory
analyses were conducted with hormone levels (i.e., estradiol,
progesterone, and testosterone; respectively) across participants and
in males and all participants (see Supplementary Tables 1–3).

3.3. Interactions between hormone levels
and network segregation in females

Regressions evaluating combined effects (interactions) of
hormone levels (i.e., Estradiol∗Progesterone, Estradiol∗Testosterone,
and Progesterone∗Testosterone) as the predictor and network
segregation as the outcome were not significant (see Table 5).
Similar analyses were conducted in males and all participants
(see Supplementary Tables 12, 13). Notably, though the 17β-
estradiol∗testosterone interaction was associated with segregation in
both the sensory somatomotor hand and mouth networks, these did
not survive FDR correction.

3.4. Linear and quadratic associations
between age and network segregation

Network segregation was evaluated in females across the adult
lifespan with respect to age. Linear regressions with age as the
predictor and network segregation as the outcome revealed no
significant associations after corrections for multiple comparisons
(see Table 6).

However, in females, regressions with quadratic age as the
predictor and network segregation as the outcome, demonstrated
significant associations in the cerebellar-basal ganglia (CBBG) [F(2,
63) = 10.020, raw p = 0.002, FDR adjusted p = 0.011] and salience (Sa)
[F(2, 63) = 10.806, raw p < 0.001, FDR adjusted p = 0.011] networks
(Figures 3, 4 and Table 7). There were no additional significant
associations in network segregation and quadratic age for females
or males as revealed in our exploratory analyses (detailed results are
presented in Table 7).

Comparisons of model fit between linear and quadratic
regressions revealed that salience network segregation fits
significantly better with a quadratic model as compared to
linear in females (AIC difference = 11.11, Figure 3). However,
all other comparisons of model fit between linear, and
quadratic were not statistically significant (see Supplementary
Table 11).

TABLE 2 This table presents results from linear regressions for estradiol and network segregation in females.

Female estradiol linear associations with network segregation

Estradiol β
coefficient

Raw P-value R2 Adjusted R2 Residual std.
error (df = 55)

F statistic
(df = 1; 55)

Au −0.008 0.738 0.002 −0.016 0.103 0.114

CBBG 0.039 0.313 0.019 0.001 0.157 1.037

COTC 0.914 0.385 0.014 −0.004 4.27 0.769

DA −0.023 0.392 0.013 −0.005 0.109 0.746

DM 0.018 0.625 0.004 −0.014 0.146 0.242

FPTC 0.015 0.646 0.004 −0.014 0.129 0.214

Sa 0.038 0.259 0.023 0.005 0.138 1.306

SSH −0.008 0.761 0.002 −0.016 0.111 0.094

SSM −0.024 0.205 0.029 0.011 0.077 1.646

Vi −0.013 0.705 0.003 −0.015 0.137 0.146

VA −0.022 0.731 0.002 −0.016 0.26 0.120

Raw p-values are listed, and FDR correction was only performed if raw p-value was < 0.05.
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TABLE 3 This table presents results from linear regressions for progesterone and network segregation in females.

Female progesterone linear associations with network segregation

Progesterone
β coefficient

Raw
P-value

FDR
corrected
P-value

R2 Adjusted
R2

Residual std.
error (df = 59)

F statistic
(df = 1; 59)

Au 0.0001 0.575 0.926 0.005 −0.011 0.107 0.318

CBBG 0.0003 0.176 0.484 0.031 0.014 0.166 1.880

COTC 0.015 0.010 0.110 0.109 0.094 3.873 7.247

DA 0.0001 0.674 0.926 0.003 −0.014 0.107 0.179

DM 0.0002 0.255 0.561 0.022 0.005 0.143 1.323

FPTC 0.0004 0.049 0.270 0.064 0.049 0.123 4.067

Sa 0.0003 0.102 0.374 0.045 0.029 0.134 2.764

SSH 0.0001 0.711 0.926 0.002 −0.015 0.116 0.139

SSM 0.00001 0.926 0.926 0.0002 −0.017 0.082 0.009

Vi 0.00004 0.850 0.926 0.001 −0.016 0.133 0.036

VA −0.0001 0.881 0.926 0.0004 −0.017 0.246 0.023

Raw p-values and FDR corrected p-values are included. There were no significant findings after FDR correction.

TABLE 4 This table presents results from linear regressions for testosterone and network segregation in females.

Female testosterone linear associations with network segregation

Testosterone β
coefficient

Raw
P-value

R2 Adjusted
R2

Residual std.
error (df = 60)

F statistic
(df = 1; 60)

Au −0.0001 0.881 0.0004 −0.016 0.106 0.023

CBBG 0.0003 0.668 0.003 −0.014 0.167 0.187

COTC 0.009 0.561 0.006 −0.011 4.115 0.342

DA −0.0002 0.715 0.002 −0.014 0.106 0.135

DM 0.001 0.112 0.042 0.026 0.141 2.605

FPTC 0.0001 0.900 0.0003 −0.016 0.126 0.016

Sa 0.001 0.262 0.021 0.005 0.136 1.284

SSH −0.0001 0.872 0.0004 −0.016 0.116 0.027

SSM −0.0003 0.283 0.019 0.003 0.08 1.175

Vi −0.0002 0.676 0.003 −0.014 0.131 0.177

VA −0.001 0.364 0.014 −0.003 0.245 0.837

Raw p-values are listed, and FDR correction was only performed if raw p-value was < 0.05.

4. Discussion

This study investigated network segregation in aging females in
the context of sex steroid hormones. Primarily, we were interested
in network segregation in adult females, as sex steroid hormone
levels—which undergo dramatic changes in females during mid
and later life—may impact brain network properties. Understanding
differences in network segregation in females in the context of aging
and hormone levels stands to provide a greater understanding around
factors contributing to functional differences in aging, particularly
given that older females are at greater risk for negative outcomes
in later life (Gao et al., 1998; Burger, 2008; Lahousse et al., 2014;
Alzheimer’s Association, 2022). Somewhat surprisingly, we found
no significant relationships between sex steroid hormone levels and
network segregation levels in adult females. To our knowledge, this is
the first study to directly investigate endogenous hormone levels with
network segregation and patterns of aging.

In the context of both endogenous hormone levels and exogenous
sex hormone treatments, sex hormones have displayed impacts on
brain structure and function (e.g., cortical connectivity, subcortical
connectivity, and within-network coherence) (Peper et al., 2011;
Taylor et al., 2019; Pritschet et al., 2020). Given the notable
vacillations in hormone levels during distinct reproductive stages
(Diedrichsen, 2006) and cognitive inefficiencies associated with
certain reproductive stages (Greendale et al., 2011; Epperson et al.,
2013; Weber et al., 2014; Rentz et al., 2017; Taylor et al., 2019;
Pritschet et al., 2020), we expected to find associations between
network segregation and hormone levels. However, females did
not exhibit significant associations between progesterone, 17β-
estradiol, or testosterone and network segregation. These findings
are inconsistent with a recent study of network segregation from our
group (Ballard et al., 2022c) which demonstrated some differences
with reproductive stage, suggesting hormones may play impact
network segregation. That is, female reproductive aging is associated
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TABLE 5 This table exhibits results from linear regressions for hormone interactions and network segregation in females.

Female hormone level interactions with network segregation

Estradiol
by

progesterone
(E*P)

β coefficient

Raw E*P
P-value

Estradiol
by

testosterone
(E*T)

β coefficient

Raw E*T
P-value

Progesterone
by

testosterone
(P*T)

β coefficient

Raw P*T
P-value

FDR
corrected
P-value for
estradiol by
testosterone

(E*T)

R2 Adjusted
R2

Residual std.
error (df = 48)

F
statistic

(df = 6; 48)

Au 0.0003 0.669 −0.003 0.072 0.00001 0.360 0.264 0.096 −0.017 0.103 0.851

CBBG 0.001 0.131 −0.003 0.167 0.00001 0.760 0.359 0.133 0.024 0.155 1.225

COTC −0.029 0.245 −0.056 0.315 0.001 0.111 0.429 0.182 0.079 4.087 1.776

DA −0.0005 0.489 −0.001 0.511 0.00001 0.507 0.511 0.05 −0.069 0.111 0.422

DM 0.0002 0.792 −0.002 0.333 0 0.856 0.429 0.085 −0.029 0.148 0.747

FPTC −0.0002 0.786 −0.002 0.196 0.00001 0.496 0.359 0.135 0.027 0.126 1.248

Sa 0.0001 0.940 −0.002 0.359 0.00002 0.363 0.429 0.072 −0.044 0.14 0.619

SSH 0.0002 0.755 −0.003 0.035 0.00003 0.088 0.193 0.133 0.025 0.111 1.23

SSM 0.0001 0.766 −0.002 0.028 0.00002 0.137 0.193 0.157 0.051 0.076 1.485

Vi −0.001 0.125 0.002 0.390 0.00001 0.711 0.429 0.059 −0.059 0.142 0.497

VA 0.002 0.307 −0.005 0.127 0.00001 0.691 0.349 0.072 −0.044 0.26 0.617

Raw p-values and FDR corrected p-values are included. FDR correction was only performed if raw p-value was < 0.05. There were no significant findings after FDR correction.
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TABLE 6 This table exhibits results from linear regressions for age and network segregation in females.

Female linear age associations with network segregation

Age β
coefficient

Raw
P-value

FDR corrected
P-value

R2 Adjusted
R2

Residual std.
error (df = 64)

F statistic
(df = 1; 64)

Au −0.002 0.024 0.088 0.078 0.064 0.105 5.414

CBBG −0.005 0.01 0.077 0.099 0.085 0.168 7.061

COTC −0.082 0.044 0.103 0.062 0.047 3.918 4.231

DA −0.001 0.311 0.342 0.016 0.001 0.106 1.043

DM −0.002 0.18 0.283 0.028 0.013 0.146 1.843

FPTC −0.003 0.047 0.103 0.06 0.046 0.126 4.114

Sa −0.004 0.014 0.077 0.092 0.078 0.141 6.466

SSH −0.001 0.276 0.337 0.019 0.003 0.113 1.210

SSM −0.001 0.065 0.119 0.052 0.037 0.077 3.529

Vi −0.001 0.357 0.357 0.013 −0.002 0.13 0.862

VA −0.003 0.252 0.337 0.021 0.005 0.241 1.341

Raw p-values and FDR corrected p-values are included. There were no significant findings after FDR correction.

TABLE 7 This table exhibits results from quadratic regressions for age and network segregation in females.

Female quadratic age associations with network segregation

Quadratic β
coefficient

Raw P-value FDR corrected
P-value

R2 Adjusted
R2

Residual std.
error (df = 63)

F statistic
(df = 2; 63)

Au −0.0002 0.014 0.051 0.164 0.138 0.1 6.202

CBBG −0.0003 0.002 0.011* 0.241 0.217 0.155 10.020

COTC −0.002 0.391 0.430 0.073 0.044 3.925 2.482

DA −0.0001 0.071 0.112 0.066 0.036 0.104 2.23

DM −0.0002 0.043 0.095 0.09 0.061 0.142 3.109

FPTC −0.0002 0.058 0.106 0.113 0.085 0.124 4.011

Sa −0.0003 0.0005 0.011* 0.255 0.232 0.129 10.806

SSH −0.0002 0.035 0.095 0.086 0.057 0.11 2.977

SSM −0.0001 0.16 0.210 0.082 0.053 0.077 2.808

Vi −0.0001 0.172 0.210 0.042 0.012 0.129 1.393

VA −0.0001 0.578 0.578 0.025 −0.006 0.242 0.820

Raw p-values and FDR corrected p-values are included. Asterisks indicate significance at p < 0.05* for FDR corrected values. Only FDR corrected values are interpreted as significant.

with declines in 17β-estradiol and progesterone (Burger, 2008;
Harlow et al., 2012; Sundström Poromaa and Gingnell, 2014) and
Ballard et al. (2022c) demonstrated significant differences between
distinct reproductive stages and network segregation (i.e., COTC,
DMN, DA, FPTC, and Sa) in females (Ballard et al., 2022c). Of note,
Ballard et al.’s (2022c) findings may be driven by age as they also
found linear relationships between age and network segregation in
the aforementioned networks. Pritschet et al. (2020) demonstrated
that estradiol is associated with increasing global efficiency in the
DMN and DA networks, whereas progesterone was associated with
reduced coherence throughout the brain (Pritschet et al., 2020).
While Pritschet et al.’s (2020) findings suggested influences of
estradiol and progesterone on network dynamics, it is difficult to
directly compare their findings to ours as their study was based
on dense sampling in a young female across a menstrual cycle
and evaluated a different aspect of network function. However,
it broadly demonstrates the purported relationship between brain
network organization and sex steroid hormones in the female

brain. Although we cannot directly compare our findings with this
and other studies, network segregation is a proxy for measuring
functional organization in the brain and may loosely be interpreted
as such.

Lastly, the combined impact (interaction) of hormone levels (i.e.,
estradiol, progesterone, and testosterone) on network segregation did
not reveal a relationship with network segregation in females. We
found interactions between estradiol and testosterone in SSH and
SSM networks for raw p-values, but these findings did not survive
FDR correction. However, this finding agrees with the study by
Moffat (2005), in which they note that testosterone can interact not
only with androgen receptors, but also with estradiol receptors, and
therefore, its administration can, in some cases, parallel the effects
of estradiol on the entire nervous system. An important element
in understanding the effects of testosterone on the nervous system
is that many of its behavioral and anatomical effects occur after it
has been converted to its metabolically active derivatives–estradiol or
dihydrotestosterone (Moffat, 2005).
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FIGURE 2

Linear scatter plots demonstrate estradiol levels in females and males across adulthood. The gray superimposed on each colored line depicts the 95%
confidence interval in each sex. Estradiol levels (left) were not significantly different by sex when accounting for age (p = 0.071). Progesterone levels
(middle) were not significantly different by sex when accounting for age (p = 0.073). Testosterone levels (right) were significantly different by sex when
accounting for age (p < 0.001).

FIGURE 3

Scatter plots demonstrate the linear (left) and quadratic (right) relationship between Cerebellar-basal ganglia network connectivity and age. Parentheses
next to quadratic values (right) indicate the approximate square root of the quadratic value for interpretative purposes. The gray superimposed on each
colored line depicts the 95% confidence interval in each sex.

One consideration beyond the scope of the current study is how
stages within a female menstrual cycle or menopausal stage could
impact brain connectivity. Syan et al. (2017) examined endogenous
estradiol, progesterone, and a neuroactive metabolite of progesterone
(allopregnanolone) at different menstrual phases and demonstrated
an impact of hormone levels in the late luteal phase on resting
state connectivity in both cortical and subcortical regions for
reproductive aged females (Syan et al., 2017). As mentioned earlier,
Pritschet et al. (2020) exhibited an impact of sex hormones on
network architecture in tandem with the cycle of a reproductive
aged female. Thus, sex steroid hormones have shown a relationship
with brain connectivity as it relates to regular menstrual cycle
fluctuation. Individual variation exists both in a regular menstrual
cycle and menopausal stages (Fehring et al., 2006; Harlow et al.,
2012; Boker et al., 2014). Notably, hormone levels are not the sole
indicator for identifying distinct reproductive stages. Seminal work in
categorizing stages in reproductive aging described principal criteria
for determining reproductive stage by changes in cycle regularity
and days to years since last cycle (Harlow et al., 2012). Endocrine
information such as follicle stimulating hormones, antimullerian

hormone, and inhibin-B are used to support categorization by
changes in cycle (Harlow et al., 2012). We did not examine menstrual
cycle, the above specified endocrine information, menopausal stage,
or within individual hormone variance in this investigation. As such,
the nature of our analyses and scope of our study may not capture the
complexity of female network segregation.

In the context of aging, females did display a significant quadratic
relationship between age and network segregation for the CBBG and
Sa networks. In both cases, segregation was still increasing through
adulthood and highest in midlife with a downturn thereafter. Patterns
of connectivity between the cerebellum and basal ganglia have been
positively linked to cognitive performance and self-reported balance
confidence in older adults (Power et al., 2011; Bernard and Seidler,
2013). Further, in their review Diedrichsen et al. (2009) (Diedrichsen,
2006) implicated the relationship between the cerebellum and basal
ganglia as critical for modulating cortical functions such as cognition
and relying on subcortical processes. We can see in Figure 3,
that both females and males demonstrate an inverted “U-shaped”
decline in CBBG network segregation across the span of aging adults.
Functionally this pattern in females may be related to the drop in
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FIGURE 4

Scatter plots demonstrate the linear (left) and quadratic (right) relationship between salience network connectivity and age. Parentheses next to
quadratic values (right) indicate the approximate square root of the quadratic value for interpretative purposes. The gray superimposed on each colored
line depicts the 95% confidence interval in each sex. The quadratic model demonstrated significantly better fit than the linear model for salience network
segregation across adulthood (AIC difference = 11.11).

cognition and decreased balance that females experience above and
beyond males in aging (Burger, 2008; Pritschet et al., 2020), though
we should note that this is speculative as we did not include any
behavioral analyses here.

The quadratic age relationship with Sa network segregation
in females was somewhat consistent with work from Chan et al.
(2014), where they showed a significant quadratic age relationship
across female and male participants in “association systems” which
included the Sa network, but was aggregated with DMN, FPTC,
VA, COTC, and DA (Chan et al., 2014). The Sa network has
been associated with “conscious integration of autonomic feedback
and responses with internal goals and environmental demands”
(Weis et al., 2008). This network has also been conceptualized
as an “integral hub” for facilitating communication between the
DMN and central executive networks in a triple network model
(Van Goozen et al., 1995). Notably, dysfunction in the Sa network
has been linked to reduced cognitive performance in older adults
(Dimech et al., 2019) and increased connectivity in this network
has been linked to Alzheimer’s disease (Morrison et al., 2006). The
quadratic relationship seen in females, but not males (see Figure 3),
could similarly be highlighting cognitive inefficiencies that have been
demonstrated during advanced aging in females (Pritschet et al.,
2020).

It is important to emphasize that we did not find significant
quadratic age relationships in any additional networks for females,
nor any networks in males in our exploratory analyses. These
findings are consistent with Lee et al. (2016) study that examined
rs-fMRI graph network analysis in the DMN, Sa, and Central
Executive network and a quadratic age relationship in both groups
of “good” and “poor” cognitive performers (Lee et al., 2016). While
Lee et al. (2016) assessed components of both network segregation
and network integration (i.e., global efficiency, local efficiency,
betweenness centrality, connectivity strength, and nodal degree),
their analyses notably varied from ours in that they controlled for
gender (Lee et al., 2016). That is, the relationship between quadratic
age and segregation in certain networks may be driven by inherent
hormonal differences between sexes, but as gender was controlled for

in their study that relationship was left unexplored (Lee et al., 2016).
Thus, the methodological differences may explain the differences in
outcomes relative to what we report here.

Comparisons of model fit demonstrated the quadratic model as a
substantially better fit for Sa network segregation and age in females;
however, no additional quadratic age models displayed a significantly
better fit in our analyses. To our knowledge, associations between
quadratic age and network segregation have not been otherwise
evaluated or reported. We would suggest that this may be a useful
area of investigation in future work. We did not, however, find linear
relationships between age and network segregation when examining
females or males after FDR correction. Similarly, Grady et al. (2016),
did not see linear relationships with age and network segregation,
although their examination was specific to the DMN, DA, and FPTC
networks (Grady et al., 2016). As stated, earlier Chan et al. (2014)
found a significant quadratic age relationship in association systems
(Chan et al., 2014); however, these systems were also significantly
linearly associated with age. The same study also revealed linear age
relationships with network segregation in “sensory-motor systems”
which aggregated Hand somato-motor, Visual, Mouth somato-motor,
and Auditory within-network segregations (Hausmann, 2005). While
we did not replicate Chan et al.’ (2014) findings, we also did not
aggregate networks for analysis in the same fashion. Further there
are also differences in the data used for analyses with respect to both
sample size and length of scans. That is, their sample size was twice
as large as our study and scan length was about 5 min per participant.
Of note, our approach to data collection (guided by recent scientific
advancement and literature) often produces more reliable data
(Pannunzi et al., 2017) as we collected 24 total minutes of resting
state scans, alternating from anterior to posterior slice collection.
Thus, Chan et al.’ (2014) investigation of network segregation in
sensory-motor systems may not be appropriate for drawing direct
comparisons to our data given methodological advancements in
recent years resulting in differences in data collection parameters.
Additional studies evaluating linear and quadratic relationships by
sex are warranted, particularly with larger samples that include longer
resting state acquisition times such as that used here.
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Overall, we found quadratic age relationships for females in
CBBG and Sa network segregation. We did not find significant
impacts of individual or combined hormone levels on within-
network segregation in the networks of interest. Future research
would benefit from examining inter-individual differences over
time to gain more insight into subtle influences of endogenous
hormones. Another relevant area of research would be examining
individual differences of network segregation over time in those
taking hormonal contraceptives or receiving hormone replacement
therapy to better understand the dynamic interplay between sex
steroid hormones and brain network organization.

4.1. Limitations

There are several limitations relevant to the present investigation.
Namely, the variability and collection of hormone assays and the
cross-sectional nature of these data. It is important to recognize
that hormone levels can vary almost as much within a naturally
cycling female as they can between naturally cycling females (Fehring
et al., 2006; Bernard and Seidler, 2013). Furthermore, the hormone
assay was collected on a different day than the scan as freezing
the sample at a particular temperature is required immediately,
and our study design incorporated a delay to allow for additional
measures of activity and questionnaire completion (not related to the
research questions presented here). The large variance of hormone
levels within a cycle implies that levels could change in a matter
of days for reproductive age females. Thus, given the age range of
our female sample, the offset between the hormone sample and the
scan may impact these relationships for those that still have regular
menstrual cycles. While this is only a small subset of this sample, it
is an important limitation, nonetheless. Hormone levels vary within
and between naturally cycling females so examining sex hormone
levels in the same participant over time would account for some
individual variance in hormone fluctuations. Regarding menopause,
our study did ask about participant start date of menopause (date of
final menstrual period) with additional questions to help categorize
menopausal stages. That is, all participants completed 6-month
menstrual diaries after undergoing the brain imaging session. The
impact of menopausal stage is a question of interest for us, and
indeed we have studied this recently (Ballard et al., 2022b). However,
sex hormone levels have been directly associated with menopausal
stages (Burger et al., 2007) and we are interested in the variability in
hormone levels more generally, as this also provides a quantitative
measure, as opposed to self-report menstrual cycle information.
Regarding obstetrics history, we do not have that information for this
sample, although the literature suggests that parity has been positively
related to brain volume in aging females (de Lange et al., 2019).
Several females who had undergone hysterectomy were included
in the study, but the surgeries were dated over 10 years prior to
enrollment in the study. As such, it was assumed that hormones
had reached a stable low. Another notable limitation is our sex
hormone analyses did not account for age. This was intentional as
preliminary analyses demonstrated age was significantly correlated
with female estradiol and progesterone (p < 0.01) and testosterone
maintains a relatively consistent level throughout for mid- to older-
age females (Andersen et al., 2011). Thus, incorporating age into
hormone-based analyses would account for very similar variance
to sex hormone levels. Sleep patterns have also demonstrated
a relationship with sex hormone levels (Li et al., 2015; Brown

and Gervais, 2022). Indeed, we do find this aspect important to
investigate and it has been explored by proxy with this sample in
the context of reproductive stages (Ballard et al., 2022b). Lastly,
our sample size was relatively small in relation to the number of
analyses conducted. With this in mind, we were very targeted in our
analyses and applied a correction for multiple comparisons (FDR
correction). However, replication of this study in a larger sample is
warranted.

5. Conclusion

This study demonstrated a quadratic relationship between
aging and network segregation for the CBBG and Sa networks
in females. In both cases, segregation was still increasing through
adulthood and highest in midlife with a downturn thereafter. These
networks are functionally related to cognitive performance, balance,
and integrating autonomic feedback in response to environmental
demands (Bernard and Seidler, 2013; Chan et al., 2014; Hausman
et al., 2020).

Prior research has shown that the sex hormones can regulate
neurogenesis, inflammatory processes, impact network segregation,
and may also play a role in regulating cognitive and affective
processes, mainly in the aging process (Syan et al., 2017; Foo et al.,
2021). Furthermore, the notable variability in hormone levels in
certain reproductive stages and cognitive deficits associated with
specific reproductive stages did not have an impact on network
segregation as was expected (Greendale et al., 2011; Epperson et al.,
2013; Weber et al., 2014; Rentz et al., 2017; Taylor et al., 2019;
Pritschet et al., 2020).

Future studies could focus on examining participants
longitudinally and pairing these types of data with behavioral
outcomes.
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