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Introduction: This study examines the state and trait effects of short-term

mindfulness-based stress reduction (MBSR) training using convolutional neural

networks (CNN) based deep learning methods and traditional machine learning

methods, including shallow and deep ConvNets as well as support vector

machine (SVM) with features extracted from common spatial pattern (CSP) and

filter bank CSP (FBCSP).

Methods: We investigated the electroencephalogram (EEG) measurements of 11

novice MBSR practitioners (6 males, 5 females; mean age 35.7 years; 7 Asians

and 4 Caucasians) during resting and meditation at early and late training stages.

The classifiers are trained and evaluated using inter-subject, mix-subject, intra-

subject, and subject-transfer classification strategies, each according to a specific

application scenario.

Results: For MBSR state effect recognition, trait effect recognition using

meditation EEG, and trait effect recognition using resting EEG, from shallow

ConvNet classifier we get mix-subject/intra-subject classification accuracies

superior to related previous studies for both novice and expert meditators with

a variety of meditation types including yoga, Tibetan, and mindfulness, whereas

from FBSCP + SVM classifier we get inter-subject classification accuracies of

68.50, 85.00, and 78.96%, respectively.

Conclusion: Deep learning is superior for state effect recognition of novice

meditators and slightly inferior but still comparable for both state and trait

effects recognition of expert meditators when compared to the literatures.

This study supports previous findings that short-term meditation training has

EEG-recognizable state and trait effects.

KEYWORDS

meditation state classification, deep learning, electroencephalogram (EEG), state and
trait characteristics, convolutional neural networks (CNN), mindfulness-based stress
reduction (MBSR), filter bank common spatial pattern (FBCSP)
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1. Introduction

With the popularization of mindfulness meditation, especially
the mindfulness-based stress reduction (MBSR) developed in a
behavioral medicine environment suitable for people suffering
from chronic pain, stress, depression and various other diseases
(Khoury et al., 2015), this intrinsic neuromodulation method has
gradually attracted widespread attention in the field of psychology
and neuroscience. Since an 8 weeks short-term training of MBSR
is effective on behavioral and brain function modulation even for
novices (Kirk et al., 2016; Kral et al., 2018; Kwak et al., 2019;
Favre et al., 2021; Rahrig et al., 2021; Guendelman et al., 2022),
MBSR training is helpful for emotion and attention regulation,
as well as decision making and executive functions, therefore has
many clinical applications. It is important to assess the training
effectiveness of MBSR practitioners and provide feedback to
improve their performance (Farkhondeh Tale Navi et al., 2022; Yu
et al., 2022). Therefore, mindfulness meditation state recognition
is of great importance for online or offline feedback during MBSR
training and practice (Brandmeyer and Delorme, 2020).

Neural mechanism of mindfulness meditation and neural
characteristics of meditation state can be investigated by
neuroimaging and neurophysiology using magnetic resonance
imaging (MRI) (Gotink et al., 2016; Valk et al., 2017), functional
magnetic resonance imaging (fMRI) (Engström et al., 2022; Li
et al., 2022; Sezer et al., 2022; Snyder et al., 2022), functional
near-infrared spectroscopy (fNIRs) (Bergen-Cico et al., 2021; Xie
et al., 2022), electroencephalogram (EEG) (Ahani et al., 2014;
Lomas et al., 2015; Ng et al., 2021; Wang et al., 2022), event-
related potential (ERPs) (Gao et al., 2017; Lasaponara et al., 2019;
Kaunhoven and Dorjee, 2021), magnetoencephalogram (MEG)
(Berkovich-Ohana et al., 2013; Wong et al., 2015; Lardone et al.,
2022), and various other biomedical engineering methods.

The most convenient method for characterizing meditation
state is EEG, which is the physiological electrical activity of
the brain recorded from the human scalp. Though short term
mindfulness training may affect EEG functional connectivity (Xue
et al., 2014; Travis, 2020; Trova et al., 2021), characteristics of
mindfulness meditation can be more conveniently described in
the spectral domain of EEG, especially in five standard frequency
bands, namely delta band (1–4 Hz), theta band (5–8 Hz), alpha
band (8–12 Hz), beta band (13–30 Hz), and gamma band (31–
80 Hz), and reliable meditation characteristics have been found in
theta and alpha bands (Cahn and Polich, 2006). In the meditation
state, the theta rhythm in the frontal and temporal lobes is
significantly stronger than in the occipital lobe. There is also a
significant increase in amplitude and decrease in frequency of
the posterior alpha rhythm at meditation states compared with
resting condition (Lagopoulos et al., 2009). In addition, some
studies have suggested that alpha regulation in the meditative
state is a dynamic process: from amplitude increase to frequency
decrease to alpha activity propagation in the frontal lobe, and
finally the appearance of theta wave due to frequency decrease (Lee
et al., 2018). Nonetheless, these results have not been consistently
reported and no consistent patterns have been observed in the delta,
beta and gamma bands in many EEG studies (Kerr et al., 2011; Ng
et al., 2021; Śliwowski et al., 2021). Moreover, different meditation
techniques and different aspects of the meditation may have their
own specific EEG characteristics (Schoenberg and Vago, 2019).

Recognition of meditation state from EEG signal has gained
some research interests, especially in the context of neurofeedback.
Traditional machine learning techniques have been extensively
applied for many different meditation styles using various feature
extraction methods. Features used for meditation state recognition
are from either frequency domain such as Fourier transform
and time-frequency analysis, or spatial-temporal domain such
as linear analysis using independent component analysis (ICA),
common spatial patterns (CSP), and linear discriminator (LD), as
well as non-linear analysis using entropy, correlation dimension
(CD), largest Lyapunov exponent (LLE), and hurst exponent (HE)
(Goshvarpour and Goshvarpour, 2012; Lin and Li, 2017; Han
et al., 2020; Tee et al., 2020; Huang et al., 2021; Kora et al.,
2021; Panachakel et al., 2021b). Brain connectivity features have
also been exploited (Dissanayaka et al., 2015; Pandey et al., 2021).
The classification techniques used for meditation state recognition
include linear discriminant analysis (LDA) (Panachakel et al.,
2021b), support vector machine (SVM) (Shaw and Routray, 2016;
Han et al., 2020), random forest (RF) (Huang et al., 2021),
and artificial neural network (ANN). Recently, deep learning
techniques including long short-term memory (LSTM) framework
(Panachakel et al., 2021a) as well as various deep convolutional
neural networks (CNN) such as VGG16, ResNet50, and MobileNet
(Pandey and Miyapuram, 2021), have also been exploited for
meditation state recognition.

There are only a small number of publications reporting
meditation state classification, mostly on yoga meditation (Han
et al., 2020), including Raja yoga (Panachakel et al., 2021a,b), Kriya
yoga (Shaw and Routray, 2016), and Himalayan yoga (Pandey and
Miyapuram, 2021), with only one on non-specified meditation
(Goshvarpour and Goshvarpour, 2012).

There is a still lack of research effort on meditation state
classification during mindfulness meditation, especially on the well
adopted MBSR training, and to the best of our knowledge only
one publication is on brain state classification during mindfulness
meditation which is not a standard 8-week MBSR but a 6-week
program adapted from MBSR and mindfulness-based cognitive
therapy (MBCT) (Ahani et al., 2014).

In this paper, we aim to perform EEG-based mindfulness
meditation state classification during MBSR training, using deep
learning methods as well as state-of-the-arts (SOTA) traditional
machine learning approaches. Many deep learning and traditional
machine learning methods have been applied to EEG-based brain
state classification problems, as reviewed in Craik et al. (2019),
Roy et al. (2019), Li et al. (2020), Gao et al. (2021), Saeidi
et al. (2021), and Gong et al. (2022). While the popular deep
learning architecture such as restricted Boltzmann machine (RBM),
deep belief network (DBN), CNN, generative adversarial network
(GAN), LSTM and gated recurrent unit (GRU) based recurrent
neural networks (RNN), autoencoder (AE) and stacked AE (SAE),
as well as some others such as capsule network (CapsNet), extreme
learning machine (ELM), echo state network (ESN), Spiking neural
network (SNN), and deep polynomial network (DPN), have all
find applications for EEG analysis, those famous and effective deep
network structures for audio, video, and image processing such as
ImageNet, AlexNet, VGG, ResNet, and MobileNet are not suitable
for most EEG applications, especially when only a small dataset is
available.

Multi-channel EEG data are essentially spatio-temporal data,
which have both the sampling of the two-dimensional surface

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1033420
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1033420 August 25, 2023 Time: 14:3 # 3

Shang et al. 10.3389/fnhum.2023.1033420

of the brain scalp and the sampling over the time series,
therefore EEG signals are different from images, sounds and
video data. Moreover, EEG signals have information encoded
in various oscillations, such as the delta, theta, alpha, beta and
gamma rhythms. Two representative CNN deep learning networks
developed specifically for EEG analysis are EEGNet (Lawhern et al.,
2018) and deep/shallow ConvNet (Schirrmeister et al., 2017). The
shallow ConvNet contains a CNN layer for spatial filtering and a
dense layer for classification, and after the end-to-end training it
conceptually trained a data-adaptive filter bank common spatial
patterns (FBCSP) (Ang et al., 2012) for feature extraction and a
following ANN for classification. The deep ConvNet is basically
the same as shallow ConvNet but with a deep CNN instead of an
ANN for classification, and they have been successfully applied for
many brain state classification tasks such as depression recognition
(Li et al., 2019), drowsiness recognition (Chen et al., 2021), and eye
states classification (Han et al., 2022). Therefore, in this paper, we
use deep and shallow ConvNets as the deep learning approaches
and compare them with SVM classification (Shen et al., 2010; Dai
et al., 2013, 2017) using CSP (Koles et al., 1990) and FBCSP as
feature extraction methods.

Instead of a binary classification of meditation and resting as
adopted in most meditation state classification literatures, in this
paper we try also differentiate early and late stages of MBSR training
for the aim of assessing the level of mindfulness meditation.

2. Materials and methods

2.1. EEG data

2.1.1. Experimental procedure and EEG data
collection

The EEG experiment was performed in the University of
Hong Kong, and was approved by the Hong Kong Local
Institutional Review Board (IRB). Eleven healthy participants
volunteered to participate in the study (6 males, 5 females; mean
age 35.7 years; 7 Asians and 4 Caucasians from local MBSR
courses). All participants have a bachelor’s degree or above and
had no previous experience in any kind of meditation before taking
the MBSR training.

In this study, participants were taught mindfulness meditation
in accordance with the standard MBSR training course which is
an 8 weeks program with a maximum of 30 participants. The
course generally includes 2–2.5 h group meeting each week for
guided practice of mindfulness meditation and stress management
techniques, 45 min daily homework, and a 1-day (7–8 h) retreat
between week 6 and week 7. Three formal techniques including
mindfulness meditation, body scanning and simple yoga postures,
are instructed by the certified trainers.

Mindfulness meditation states were investigated at two stages:
the early stage (stage 1) after the beginning of the MBSR training
(within 2 weeks, in weeks 1–2) and the late stage (stage 2) after
the end of the training (within 4 weeks, in weeks 9–12). The
experiments were performed in a quiet room, and at each stage, the
participants were asked to do 10 min resting with eyes closed but do
not think too much or fall asleep, with this period denoted as the
resting state (REST1 and REST2 for stages 1 and 2, respectively),
and then do 10 min mindfulness breathing taught in the MBSR

course, with this period denoted as the mindfulness meditation
state (MBSR1 and MBSR2 for stages 1 and 2, respectively), as shown
in Figure 1. Scalp EEG data were recorded with a 128-channel
Neuro-SCAN EEG system. More details about the experiment and
data collection are described in Gao et al. (2016).

Two experiments were performed for each participant, with
the first experiment in weeks 1–2, and the second experiment in
weeks 9–12. Each experiment investigated two brain states: resting
(denoted as REST1 and REST2, respectively) and mindfulness
meditation (denoted as MBSR1 and MBSR2, respectively).

2.1.2. EEG data pre-processing
The EEG data were preprocessed using the MATLAB toolkit

EEGLAB (Delorme and Makeig, 2004) with the following steps
before making brain state classification.

A number of 15 EEG channels (channels 10, 11, 17, 28, 59,
63, 64, 72, 74, 84, 85, 110, 111, 115, and 118) were excluded
due to high impedance, with 113 EEG channels left for further
processing and analysis. The remaining EEG data was resampled
at the sampling rate of 250 Hz from the original sampling rate of
1,000 Hz, and then re-referenced to whole brain average reference
from the original left mastoid reference. After that, notch filtering
at 50 and 100 Hz was performed to reduce powerline noise,
and 0.1–120 Hz bandpass filtering was followed to reduce low
frequency signal drifting. At last, eye movement, eye blinking
(EOG) and movement (EMG) artifacts were removed using the
Automatic Artifact Removal (AAR) method (Gómez-Herrero,
2007) implemented in the EEGLAB toolkit.

After the pre-processing, for each participant, the EEG data
were segmented into four segments according to the four brain
states REST1, MBSR1, REST2, and MBSR2, respectively. Each
segment is then divided into trials of 5 s, so that each brain state
has 120 trials of data.

2.2. Brain state classification methods

2.2.1. CSP + SVM
Support vector machine (SVM) is a robust and effective

machine learning method which does not require very large
dataset. Kernels can be used in SVM, with linear kernel for linear
classification, and other kernels such as polynomial kernels and
radial basis function (RBF) kernels for non-linear classification.
Before applying SVM for brain state classification, EEG features
rather than raw EEG data are preferred as the inputs to the classifier.

Common Spatial Pattern (CSP) analysis is a supervised spatial
filtering method for multichannel EEG feature extraction. CSP
applies basically to a two-classes classification problem and aims
for both compression and discrimination. CSP analysis has mainly
three steps. First get the covariance matrices for each group,
denoted as C1 and C2, respectively, from the groups’ EEG data
matrices E1 and E2. Then a whitening matrix is constructed from
C = C1 + C2 and applied to C1 and C2 to get the whitened
covariance matrices S1 and S2, which have identical eigen matrices
U and their corresponding eigen value pairs summed to 1. Finally,
the first two and the last two eigen vectors (corresponding to totally
four filters) are chosen to project the EEG data matrices E1 and
E2 to feature signal matrices F1 and F2, each having four rows
of data. The logarithm of variance of each row of F1 and F2 is
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FIGURE 1

Flow chart of experimental design.

used as a feature, resulting in a feature vector of dimension 4, and
then the feature vectors are used as inputs to the SVM classifier for
training and classification. For multiple classes problem, we apply
the one-vs.-rest (OVR) strategy for both CSP and SVM.

2.2.2. FBCSP + SVM
Common spatial pattern gets discriminative features from the

full-band raw EEG signals. Since as have been demonstrated in
the literature, different frequency bands of the EEG signals may
represent different brain functions and contribute differently to
the characteristics of mindfulness meditation state, a temporal
filter bank which decompose the EEG signals to a number of
distinct frequency bands may be helpful before the EEG signals
are projected by CSP spatial filters. After the EEG signals are
decomposed into different frequency bands by the filter bank, each
band of the signal is then utilized to obtain its corresponding CSP
filter and subsequently its specific feature vectors, and at last all
these feature vectors are combined to feed into the SVM for training
and classification. The approach of filter bank plus CSP is denoted
as Filter Bank Common Spatial Pattern (FBCSP). In this study, we
construct a filter bank of 10 bandpass filters, each have a bandwidth
of 4 Hz, i.e., 0–4 , 4–8. . .36–40 Hz, to cover all the five EEG rhythms
delta, theta, alpha, beta and gamma.

2.2.3. Shallow ConvNet
The shallow ConvNet designed in Schirrmeister et al. (2017)

is inspired from FBCSP. The filter bank in FBCSP is replaced
by a temporal convolution layer in shallow ConvNet, and the
following CSP spatial filter is replaced by a spatial convolution
layer, and the SVM classifier is replaced by a mean pooling layer
and fully connected dense layer of ANN. In the FBCSP + SVM
framework, filter bank is manually designed, CSP spatial filters
are mathematically designed according to the signal in each
frequency band, and the SVM classifier is trained using the CSP
extracted features. In the shallow ConvNet network, the whole
network is trained end-to-end, so the filter bank and CSP are
not deterministically specified but jointly optimized from the data.
Theoretically, joint optimization is in general better than sub-
problem optimization. The shallow ConvNet can be regarded as
composed of feature extraction function and classifier function.

In this study, the details of our shallow ConvNet adapted to our
mindfulness meditation state classification problem are shown in
Figure 2. In the temporal convolution layer, each trial of our EEG
data has 113 channels (after bad channel removal) and 1,251 time
points (5 s of data with a resampled sampling rate of 250 Hz), and
we include 40 temporal filters in this layer to represent 40 filters in

the filter bank. It should be noted that after the end-to-end training,
these 40 filters are generally not non-overlapped bandpass filters
but instead can be of any form. The spatial filter layer contains 40
spatial filters, corresponding to the 40 temporally filtering outputs.
These spatial filters are expected to take the role of CSP spatial filters
in FBCSP, but after end-to-end they may or may not get similar
spatial filtering as those in FBCSP.

2.2.4. Deep ConvNet
The shallow ConvNet uses a single layer ANN to replace the

SVM classifier in the FBCSP + SVM framework. Since deep CNN
architecture has been demonstrated in many applications to be
superior than shallow architectures for large dataset, the ANN in
shallow ConvNet can be replaced by deep CNN to form a deep
ConvNet architecture (Schirrmeister et al., 2017), which inserts
three convolution-max-pooling blocks between the spatial filter
block and the final classification block. There are four convolutional
pooling blocks in the deep ConvNets. The deep ConvNet used in
this study is described in Figure 3, where we use 25 temporal filters
in the first layer instead of 40 in the shallow ConvNet, with the main
purpose of reducing network complexity.

2.3. Classification and training strategy

In addition to the four-class (MBSR1, REST1, MBSR2, and
REST2) classification, we also performed five binary classifications
including MBSR1/REST1, MBSR2/REST2, and MBSR/REST for
mindfulness/rest brain states classification at the two stages and
their combination, as well as MBSR1/MBSR2 and REST1/REST2
for stage classification corresponding to mindfulness state and
resting state, respectively. The class MBSR combines MBSR1 and
MBSR2, and the class REST combine REST1 and REST2.

Since we have EEG data from a group of subjects, how
to arrange training and classification across subject should be
considered (Kamrud et al., 2021). In this study, four scenarios
are investigated, including inter-subject classification, individual-
subject classification, intra-subject classification, and transfer
learning. For each scenario, we choose randomly 60% of the EEG
trials as training set, 20% as validation set, and 20% as testing set,
for deep and shallow ConvNets, while we use 80% as training and
20% as testing for CSP/FBCSP + SVM. We repeat this data-dividing
and classification for 11 times to get an average performance. For
the inter-subject classification scenario, leave-one-subject-out cross
validation (LOOCV) is performed.
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FIGURE 2

Shallow ConvNet.

2.3.1. Inter-subject classification
In order to be applicable to the general population whose EEG

data are not available during the training of the classifier, the
classifier should be trained on a specific group of training subjects
and then applies to the general population. This training strategy
is called inter-subject or cross-subject training. For inter-subject
training/classification, the leave-one-subject-out cross validation
(LOOCV) method was adopted in this study. Among the EEG data
of 11 subjects, each of them was left in turn for testing and the data
of the other 10 subjects are used for training, where 80% trials of the
training subjects are used as training set and 20% trials were used
as validation set for the training of deep and shallow ConvNets,
whereas for CSP/FBCSP + SVM all EEG trials of the training
subjects are used for training. Therefore, for each classification
method, we have 11 trained classifiers, each for a specific testing
subject. The principle of LOOCV is to guarantee that the subject
used for testing cannot be mixed into the training set, so no data
leakage occurs during LOOCV.

2.3.2. Mix-subject classification
In this so-called mix-subject classification scenario, we mix data

from all subjects and divide the EEG trials as training, validation
(for deep and shallow ConvNets) and testing set randomly. This
classification strategy is user-independent, as pointed out by
Kamrud et al. (2021), if an inter-subject model is intended to
perform classification on only the same population where the
training subjects are drawn, but not also unseen individuals, then
testing the model on unseen subjects is unnecessary. This user-
independent mix-subject classification strategy has been adopted
by most previous studies for meditation state classification (Ahani
et al., 2014; Shaw and Routray, 2016; Han et al., 2020).

2.3.3. Intra-subject classification
The purpose of both inter-subject and mix-subject classification

strategies are for effective applications in unseen (by the training)
subjects from the general population and the population same
as the training subjects, respectively. However, inter-subject
classification performs usually much poorer than mix-subject
classification (Kamrud et al., 2021; Fu et al., 2022). If the mix-
subject classification strategy is not applicable due to population
shift and the inter-subject classification performs not good
enough, the alternative intra-subject or within-subject classification
strategy is to collect some EEG data from the target subject
and use such EEG data for training and testing, and the
classifier trained this way can be used by this specific subject
for future mindfulness state recognition applications such as
neurofeedback assisted mindfulness training. The advantage of
the intra-subject classification strategy is that the classifier is
dedicatedly trained for the specific target subject so does not
suffer from the problem caused by individual differences, while
its disadvantage is that the classifier is not readily available
from the beginning because some training data need to be
collected in advance and the classifier should be trained again
from these training data. Although intra-subject classification may
have some narrowly limited application scenario as discussed
above for meditation states classification, it can hardly have
any practical application for meditation experience classification.
This strategy is studied only for state classification in this
paper.

2.3.4. Subject-transfer classification
Another disadvantage of the intra-subject classification strategy

is that in general the classifier can only be trained from a relatively
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FIGURE 3

Deep ConvNet.

small dataset from a single subject and limited time span. For
deep learning methods, especially those with very deep structures
and thus a huge amount of model parameters to be learned
from the data, a relatively large dataset is necessary for obtaining
an effective model. To overcome this shortage of data problem,
the idea of transfer learning (Pan and Yang, 2010; Niu et al.,
2020) can be applied, and specifically we adopt a subject transfer
strategy (Samek et al., 2013; Zhao et al., 2019). In this subject-
transfer classification strategy, the inter-subject classification and
intra-subject classification strategies are combined. For each target
subject, we first train a subject-independent classifier using the
same procedure as described in the inter-subject classification
strategy, and then we finetune this classifier using the EEG data
of the target subject and get a subject-transferred classifier. In
the finetuning, the division of the EEG data of the target subject
into training, validation, and testing sets follows the same as in

the intra-subject classification strategy. In this study this subject-
transfer classification strategy applies only to deep and shallow
ConvNets but not CSP and FBCSP assisted SVM, since only deep
networks can be trained by finetuning (Pan and Yang, 2010; Niu
et al., 2020). For the same reason as in intra-subject classification,
the subject-transfer classification strategy is also studied only for
state classification.

3. Results

For each of the four classification strategies (inter-subject,
mix-subject, intra-subject, and subject-transfer), each of the
four classification methods (CSP + SVM, FBCSP + SVM,
shallow ConvNet, and deep ConvNet), and each of the
six classification tasks (MBSR1/REST1/MBSR2/REST2,
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MBRS1/REST1, MBSR2/REST2, MBSR/REST, MBSR1/MBSR2,
and REST1/REST2), we perform either 11 times of LOOCV or
11 times of training/classification with random division of the
data, and then get the average classification accuracy for each
combination of classification strategy and classification method.
The results are then grouped according to the classification strategy
and presented in the form of both tables and figures. Statistical
tests on the performance of the two deep learning methods (deep
and shallow ConvNets) using the non-parametric Mann-Whitney
U-test of two independent samples (Nachar, 2008) and on six
different classification tasks using k-independent sample Kruskal-
Wallis test (Vargha and Delaney, 1998), are also presented for each
classification strategy if applicable.

3.1. Inter-subject classification

The classification accuracies are presented in Table 1 and
also in Figure 4. The non-parametric Mann-Whitney U-test of
two independent samples finds that the difference of classification
accuracy between the deep and shallow ConvNets is not significant
(Z = −0.665, p = 0.512), but the k-independent sample Kruskal-
Wallis test shows that the difference among the six categories is
significant (Z = 34.344, p = 0.000).

3.2. Mix-subject classification

The classification accuracies are presented in Table 2 and also
in Figure 5. We find that the classification accuracies between
the two convolutional neural networks are significantly different
(Z = 2.795, p = 0.005) using the non-parametric Mann-Whitney
U-test. The classification accuracy of deep ConvNet is significantly
better than that of the shallow ConvNet. The non-parametric
k-independent sample Kruskal-Wallis test finds that the results of
the six classification tasks are significantly different (Z = 98.650,
p = 0.000).

3.3. Intra-subject classification

The classification accuracies are presented in Table 3.

3.4. Subject-transfer classification

The classification accuracies are presented in Table 4.

4. Discussion

4.1. Comparison with the literatures

4.1.1. State classification
In the literature there are four published studies on classifying

meditation states and resting states of the same subject using EEG
measurements, as detailed in Table 5, where the results of our

study on meditation and resting state classification, represented
by the average accuracy of the two stages, i.e., MBSR1/REST1 and
MBSR2/REST2, are also presented for ease of comparison.

Mix-subject classification of mindfulness meditation state
for a group of novice meditators participating in a short-term
MBSR/MBCT adapted mindfulness training program is presented
in Ahani et al. (2014), where SVM is used to obtain a classification
accuracy of 78%, which is very close to our CSP and FBCSP
based results (82.29 and 73.58%, respectively, with mean value
of 77.94%), but is much inferior to the performance of our deep
and shallow ConvNets (with classification accuracy of 99.65 and
95.43%, respectively).

Meditation state classification for expert and novice yoga
meditators using SVM is reported in Han et al. (2020) with
the accuracy of 74.31 and 62.16%, respectively, according to a
mix-subject classification strategy, where it demonstrates that the
discrimination between meditation and resting is much more
difficult for novice than for expert meditators, since the meditation
expertise of the novices is much lower than that of experts.

In the intra-subject classification scenario, using the traditional
machine learning technique CSP + LDA, for Raja yoga experts,
(Panachakel et al., 2021b) reports a classification accuracy of 97.9%,
very much higher than our result (82.29%) using similar machine
learning technique (CSP + SVM) but for MBSR novices. This
implies that the task of meditation state recognition in the settings
of our study for novice MBSR practitioners is much more difficult
and challenging than that for Raja yoga experts. However, for the
same intra-subject scenario for MBSR novices in our study, both
shallow and deep ConvNets obtain very promising and improved
classification accuracy, which are 98.40 and 90.45%, respectively,
and the subject transfer learning further improves the accuracy to
98.80 and 96.00%, respectively.

The inter-subject classification accuracy using traditional
machine learning technique FBCSP + SVM in our study is
68.50%, which is comparable to 74.0% reported in Panachakel
et al. (2021b) using also traditional machine learning method, but
as discussed above our task is much more difficult. The inter-
subject classification accuracy for Raja yoga experts is greatly
improved from 74.0% in Panachakel et al. (2021b) to 79.1, 86.5,
91.0, and 94.1% in Panachakel et al. (2021a) for using alpha,
beta, low gamma, high gamma features, respectively, followed by
the CSP + LDA + LSTM deep learning framework. However,
the meditation state classification accuracy for our MBSR novices
using deep and shallow ConvNets does not improve over the
traditional FBCSP + SVM method but instead drops to around
chance levels of 48.34 and 50.60%, respectively. Though in this
study we use a CNN architecture ConvNet as the deep learning
architecture, which is different from the RNN architecture LSTM in
Panachakel et al. (2021a), the main reason accounting for the failure
of ConvNet in the inter-subject classification scenario should be
that ConvNet uses an end-to-end training architecture whereas in
Panachakel et al. (2021a) the LSTM architecture does not work
directly on raw EEG data but instead on EEG features extracted by
CSP + LDA.

4.1.2. Stage classification
Meditation expertise increases through training and practice,

and there will be both state and trait effects which can be
characterized in either behavioral data or brain activities such as
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TABLE 1 Classification accuracies for inter-subject classification.

Classification task Shallow ConvNet Deep ConvNet CSP FBCSP

State MBSR1/REST1 48.95% 52.65% 59.93% 68.49%

MBSR2/REST2 52.24% 44.02% 68.31% 70.17%

Stage MBSR1/MBSR2 45.14% 35.90% 88.66% 85.00%

REST1/REST2 60.66% 56.46% 63.35% 78.96%

Combined MBSR/REST 50.42% 49.96% 56.85 63.17%

4-class All four classes 30.12% 23.92% 40.69% 26.09%

FIGURE 4

Classification accuracies for inter-subject classification.

TABLE 2 Classification accuracies for mix-subject classification.

Classification task Shallow ConvNet Deep ConvNet CSP FBCSP

State MBSR1/REST1 98.33% 99.59% 72.01% 73.92%

MBSR2/REST2 92.53% 99.70% 92.56% 73.23%

Stage MBSR1/MBSR2 99.81% 99.95% 71.67% 91.16%

REST1/REST2 99.88% 99.78% 93.98% 95.13%

Combined MBSR/REST 87.79% 81.83% 67.63% 72.10%

4-class All four classes 96.72% 97.53% 79.32% 83.23%

resting EEG for trait effect and meditating EEG for state effect
(Cahn and Polich, 2006; Zarka et al., 2022). There is lack of studies
on classification of brain states for different training and practicing
stages longitudinally for individual meditation practitioners, but
some efforts have been spent on classifying subjects with different
levels of meditation expertise using EEG in either the meditating
states (Shaw and Routray, 2016; Lee et al., 2017; Pandey and
Miyapuram, 2021) or the resting states (Sharma et al., 2019),
as detailed in Table 6, where the results of our study in this
paper on meditation stage classification using meditation EEG
(MBSR1/MBSR2) and resting state EEG (REST1/REST2), are also
presented for ease of comparison.

In Pandey and Miyapuram (2021), expert and non-expert
Himalayan yoga meditators, along with non-meditator healthy
controls are classified by their meditation experience/expertise
according to the EEG data measured when they are asked to
do a focused-attention (to breath sensations) meditation, using a
variety of a variety of CNN deep learning architectures including
VGG16, ResNet50, MobileNet, MobileNet-2, and a lightweight
CNN, with high inter-subject classification accuracy of 97.27, 91.01,
90.57, 88.73, and 94.57%, respectively. The two stages of MBSR
training/practicing in our study are chosen as Weeks 1–2 and
Weeks 9–12 after the starting of MBSR training, for which the
meditation expertise of the subject is relatively higher in stage
2 than in stage 1, but reasonably far not as discriminable as
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FIGURE 5

Classification accuracies for mix-subject classification.

TABLE 3 Classification accuracies for intra-subject classification.

Classification task Shallow ConvNet Deep ConvNet CSP FBCSP

State MBSR1/REST1 99.01% 97.05% 82.50% 94.60%

MBSR2/REST2 97.99% 83.85% 80.24% 94.83%

Combined MBSR/REST 99.26% 98.60% 85.12 87.40%

among experts, non-experts, and non-meditators. Nevertheless,
our traditional machine learning method FBCSP + SVM, and
the deep learning methods shallow and deep ConvNets for
MBSR1/MBSR2 classification all perform almost perfectly on non-
inter-subject classification scenarios, with respective classification
accuracy as 91.16, 99.81, and 99.95% for mix-subject classification.
As a comparison, in the mix-subject classification scenario,
the classification of senior/junior/novice Tibetan Nyingmapa
meditation expertise attains an average accuracy of 99.05% as
reported in Lee et al. (2017), and the classification of expert/novice
Kriya yoga meditation experience using SVM and kernel SVM (k-
SVM) has classification accuracy of 85.54 and 90.83%, respectively,
as reported in Shaw and Routray (2016). However, for inter-subject
classification, the two deep learning ConvNets do not perform
satisfactorily, while the traditional machine learning methods
CSP + SVM and FBCSP + SVM still perform reasonably well
with classification accuracy of 88.66 and 85.00%, respectively,
comparable to 91.01, 90.57, and 88.73% reported in Pandey and
Miyapuram (2021) for a theoretically more discriminative task of
experts/non-experts/non-meditators classification.

For EEG-based classification of meditation experience using
trait characteristics, in Sharma et al. (2019) an ANN is designed
to recognize combined Yoga and Sudarshan Kriya meditation
experience from resting state EEG data and its mix-subject
classification accuracy is 87.2%, which is much inferior to the
resting state EEG based stage classification performance for MBSR
practitioners, where the REST1/RESR2 mix-subject classification
accuracy is 93.98, 95.13, 99.88, and 99.78% for the classification

methods CSP, FBCSP, shallow ConvNet, and deep ConvNet,
respectively. However, as expected, since trait characteristics are not
as discriminative as state characteristics, inter-subject classification
of REST1/REST2 by FBCSP can attain the accuracy of only 78.96%,
lower than 85.00% in the case of using meditation EEG.

4.2. Classification tasks

In addition to binary classifications of meditation states from
resting states at each of the two stages and their combinations as
well as stage combination using meditation and resting EEG, we
also perform a multi-class classification on all the four different
brain states across the two training stages. Both the traditional
machine learning method FBCSP + SVM and the deep learning
method shallow ConvNet perform quite well for mix-subject and
intra-subject classification scenarios, demonstrating that there are
both state and trait effects for the short-term MBSR training and
such two kinds of effects are also discriminable from each other.
Since no such longitudinal combined trait and state meditation
recognition has ever been investigated in any previous research
project, we could not find a proper previous study for comparison.
One related study is a three-class (meditation/rest/attention)
classification reported in Han et al. (2020) where the mix-subject
classification accuracy is 74.31% for experts and 62.16% for novices,
whereas in our study of novice MBSR practitioners, the four-
class (MBSR1/REST1/MBSR2/REST2) mix-subject classification
accuracy is 83.23% using FBCSP and 96.72% using shallow
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TABLE 4 Classification accuracies for subject-transfer classification.

Classification
task

Shallow
ConvNet

Deep
ConvNet

State MBSR1/REST1 99.64% 96.84%

MBSR2/REST2 98.06% 95.15%

Combined MBSR/REST 99.05% 98.29%

ConvNet, and this demonstrates the effectiveness of both our MBSR
training program and our classification methods.

As shown in Tables 1–4, in total we have six classification
tasks in this study, and statistical tests show that for each and
all of the four classification scenarios, difference in classification
accuracy among the six tasks is significant. This difference happens
in part by the fact that the two classification tasks MBSR/REST
and MBSR1/REST1/MBSR2/REST2 are more difficult than the
other four binary classification tasks, and in part by the fact
that meditation state is more discriminable from resting state
at Stage 2 than at Stage 1 (MBSR1/REST1 is more difficult
than MBSR2/REST2) and state meditation characteristics is more
discriminative than trait meditation characteristics (REST1/REST2
is more difficult than MBSR1/MBSR2), which is well demonstrated
by the inter-subject classification results of the CSP and FBCSP
methods shown in Table 1.

Across all the four classification scenarios and all the four
classification methods under investigation, there is a general
and consistent trend that stage tasks (MBSR1/MBSR2 and
REST1/REST2) are classified with higher accuracy than the state
tasks (MBSR1/REST1 and MBSR2/REST2). This may imply that the
short-term MBSR training is very effective that the brain functional
networks have been greatly modulated to produce significantly
different EEG characteristics in both the meditation and the resting
state, as compared to the pre-training period. However, the EEG
differences between the two stages may also be caused by some
other meditation unrelated changes in either measurement or
cognition environment that affect the EEG features. This may be
investigated further in some future research.

4.3. Classification methods

4.3.1. Deep learning vs. traditional machine
learning

For relatively larger dataset, in the mix-subject classification
scenario, both shallow and deep ConvNets outperform greatly
CSP and FBCSP, and for small dataset in the intra-subject
classification scenario, the performance of shallow ConvNet is even
more outstanding while the deep ConvNet performs comparably
to FBCSB and better than CSP. However, for inter-subject
classification, the pre-trained shallow and deep ConvNets fail to
generalize to unseen subjects, while the performance of CSP and
FBCSP work still reasonably well.

Within the two traditional machine learning methods, for all
the three classification scenarios, FBCSP in general have overall
performance better than CSP. This is expected since FBCSP
extract EEG rhythms which contribute to the neuro-mechanisms
of meditation so can better discriminate meditation states from

resting states, while CSP mixes these rhythms into a wideband
continuous signal so may not be as discriminative as FBCSP.

As for the two deep learning methods, their performance
depends on the size of data available for model training. The more
complex the network, the more data are needed. On one hand, for
intra-subject, statistical test on the performance of deep ConvNet
over shallow ConvNet find the statistics Z = −1.923 which is
marginally significant (p = 0.05), where the negative Z shows the
shallow ConvNet performs better than deep ConvNet. A possible
reason is that for intra-subject classification we have training EEG
data only from a single subject with a sample size not big enough
for deep ConvNets to achieve sufficient optimization for better
classification than shallow ConvNet which is simpler and requires
less data for effective training, and this is also demonstrated by the
subject-transfer learning where the classification accuracy for deep
ConvNet is slightly but consistently improved for almost all the six
classification tasks due to the additional data used for pre-training
the network. On the other hand, for mix-subject classification, the
statistical test gets Z = 2.795 and p = 0.005, which means deep
ConvNet is significantly better than shallow ConvNet. It may be
because the sample size in the mix-subject scenario is large enough
for the more complex deep ConvNet to get sufficiently optimized to
outperform the shallow ConvNet. Moreover, for inter-subject and
subject-transfer classification, the statistical test gets Z = −0.665
(p = 0.512) and −1.590 (p = 0.112), respectively, meaning in such
two cases the shallow ConvNet performs better but not to the level
of statistical significance, implying that more data are needed in
order to improve inter-subject classification using either shallow
ConvNet or deep ConvNet.

4.3.2. End-to-end learning tries to catch
subject-dependent features

The deep learning ConvNet architecture, especially the
shallow ConvNet, performs much better than the traditional
machine learning methods CSP and FBCSP for both mix-subject
classification and intra-subject classification, where in the latter
we have very few EEG samples for training the networks. This
good performance is due to the extreme simplicity of shallow
ConvNet which mimics a very simple FBCSP + ANN architecture
with a small number of model parameters. Different from a two
steps approach of first FBCSP and then ANN where each step
is trained separately, the two blocks in the shallow ConvNet are
jointly optimized through an end-to-end learning strategy. In the
deep ConvNet, the single layer ANN in the shallow ConvNet is
replaced by a deep CNN architecture with three more CNN-max-
pooling blocks, and the whole network is also jointly optimized
through end-to-end learning.

The better performance of shallow ConvNet than that of FBCSP
in the intra-subject classification scenario is definitely due to this
joint optimization, and better performance of deep ConvNet than
shallow ConvNet in the mix-subject classification scenario is due
to the availability of larger data that makes a deeper architecture
get more discriminative features. However, the end-to-end joint
optimization is a mixed blessing, which on the one hand gets very
individualized subject-dependent features so as to attain superior
intra-subject and mix-subject classification performance for that
specific subject or population, but on the other hand is difficult to
generalize to unseen subjects with big individual difference. This
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TABLE 5 Comparison to the literatures on mediation state classification; the accuracy of our methods on meditation/resting classification is the
average for MBSR1/REST1 and MBSR2/REST2; SCNN and DCNN represent shallow and deep ConvNets, respectively.

References Meditation Tasks Experience Strategy Method Accuracy

Panachakel et al., 2021a Raja yoga Med/rest Expert Inter-subj LSTM-α 79.1%

β 86.5%

Low γ 91.0%

High γ 94.1%

Panachakel et al., 2021b Raja yoga Med/rest Expert Inter-subj LDA 74.0%

Intra-subj 97.9%

Han et al., 2020 Yoga Med/rest/attention Expert Mix-subj SVM 74.31%

Novice 62.16%

Ahani et al., 2014 Mindfulness Med/rest Novice Mix-subj SVM 78%

Ours MBSR Med/rest Novice Inter-subj SCNN 50.60%

DCNN 48.34%

FBCSP 68.50%

CSP 64.12%

Mix-subj SCNN 95.43%

DCNN 99.65%

FBCSP 73.58%

CSP 82.29%

Intra-subj SCNN 98.40%

DCNN 90.45%

FBCSP 94.72%

CSP 81.37%

Transfer SCNN 98.85%

DCNN 96.00%

is why deep and shallow ConvNets perform badly in our study
for inter-subject classification while FBCSP still has reasonably
good performance.

To overcome this disadvantage of end-to-end ConvNets on
inter-subject classification, we may either enlarge the dataset by
collecting data from a large number of subjects for better covering
broad individual features so as to reduce the problem of individual
difference, or try not to use end-to-end learning for the case where
only a small number of subjects are available, as demonstrated in
Panachakel et al. (2021a).

4.4. Classification strategies

The performance of mindfulness meditation state classification
by deep learning methods deep and shallow ConvNets as well as
traditional machine learning methods CSP and FBCSP is evaluated
in four different application scenarios, each having its own practical
applications on either meditation level evaluation or meditation
training through neurofeedback.

For intra-subject classification, shallow ConvNet attains
excellent classification performance with classification accuracy
not less than 98.0% for all the five binary classification tasks,
while the performance of both deep ConvNet and FBCSP is also
quite promising. The intra-subject classification strategy requires

the target subject to perform the whole MBSR training program
first in order to use the EEG data collected at the two stages to
train the meditation state classifiers. Though the trained classifier
can be used to assist the practice of MBSR for the target subject
subsequently, it cannot be used at the beginning of the MBSR
training. In addition, the performance of subsequent application
of the same target subject may still cannot be guaranteed despite
the excellent intra-subject classification performance, since there
may be inter-session variability that might significantly degrade
or corrupt the classification ability for data from new sessions,
similar to the degradation in the inter-subject classification scenario
demonstrated in this study.

The mix-subject classification strategy relaxes the requirement
to collect data from the target subject to data from a relatively
homogeneous population covering the target subject. If this
homogeneous population requirement is fulfilled, then a classifier
trained from EEG data of a subset of the population can be
evaluated on the training subject and applies directly to the
unseen target subject from the same population, expecting similar
performance as already evaluated in the mix-subject setting. The
mix-subject classification performance in our study is also quite
good for deep and shallow ConvNets, and therefore if we do
have such kind of homogeneous population for application, then
the classifier trained this way may generalize well for unseen
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TABLE 6 Comparison to the literatures on mediation experience/expertise classification using meditation and resting EEG; in our study, meditation
EEG and resting EEG based classifications are corresponding to MBSR1/MBSR2 and REST1/REST2, respectively; SCNN and DCNN represent shallow
and deep ConvNets, respectively.

References Meditation Tasks Strategy Method Accuracy

Meditation Resting

Pandey and Miyapuram, 2021 Himalayan Yoga Expert/non-expert/non-meditator (S/J/N) Inter-subj VGG16 97.27%

ResNet50 91.01%

MobNet 90.57%

MobNet2 88.73%

LightCNN 94.57%

Lee et al., 2017 Tibetan S/J/N Mix-subj ANN 99.05%

Shaw and Routray, 2016 Kriya Yoga Expert/novice Mix-subj SVM 85.54%

k-SVM 90.83%

Sharma et al., 2019 Yoga and SK Train/control Mix-subj ANN 87.2%

Ours MBSR Stage 1/Stage 2 Inter-subj SCNN 45.14% 60.66%

DCNN 35.90% 56.46%

FBCSP 85.00% 78.96%

CSP 88.66% 63.35%

Mix-subj SCNN 99.81% 99.88%

DCNN 99.95% 99.78%

FBCSP 91.16% 95.13%

CSP 71.67% 93.98%

target subjects. As a matter of fact, in our study, for inter-
subject classification, which can be regarded as an application
of mix-subject classification to unseen subjects, performs poorly
for the ConvNets as well as significantly inferior to mix-subject
classification for CSP and FBCSP. This implies that the subjects in
our study are far from homogeneous, which is true since for the 11
subjects in our study we have 6 males and 5 females, with 7 of them
are Asians and 4 Caucasians.

If collecting in advance the EEG data from the target subject
is either inconvenient or impractical and the requirement for
mix-subject classification cannot be fulfilled, then in order to
get a good classifier generalizable to unseen target subjects, the
classifier should be trained and evaluated using the inter-subject
classification strategy. Though in our study deep and shallow
ConvNets fail for inter-subject classification, the performance of
FBCSP is reasonably good for both state and stage classification
tasks, especially when considering that our tasks of meditation state
classification for short-term training of novices are considerably
more difficult than what is reported in the literatures where expert
meditators are involved and compared to non-meditator controls.

For deep learning networks, if data available for model
training is not sufficiently large to guarantee effective parameters
optimization, then transfer learning may get more data to improve
the training. Data shortage may be a problem of intra-subject
classification since only a single subject is used for training.
Though both shallow and deep ConvNets in our study perform
excellently for intra-subject classification since they are relatively
much simpler than those popular models such as VGG16 and
ResNet50, more complex deep learning models may have degraded
performance due to data shortage in the intra-subject setting, and

then subject-transfer learning may help improve the intra-subject
classification performance. In our study, most of the intra-subject
classification accuracies of deep ConvNet for the six classification
tasks are indeed significantly elevated by subject-transfer learning.
Subject-transfer learning may also help inter-subject classification
when we use only a small part of the unlabeled EEG data of the
target subject to finetune the classifier so as to reduce the effect of
inter-subject variability as demonstrated in for applications using
speech and electrocardiogram (ECG) signals (Xu et al., 2022).

For meditation state/experience classification, the intra-subject
classification strategy has been used in Panachakel et al. (2021b),
the mix-subject classification strategy has been used in Ahani et al.
(2014), Khoury et al. (2015), Shaw and Routray (2016), Lee et al.
(2017), Sharma et al. (2019), and Han et al. (2020), and the inter-
subject classification strategy has been used in Panachakel et al.
(2021a,b) and Pandey and Miyapuram (2021). The inter-subject
classification strategy is most suitable for the general case but it
is the most difficult due to inter-subject variation. Mix-subject
classification may avoid the over-fitting problem of intra-subject
classification with the use of more data for training, and it may
closely approximate the inter-subject classification if the subjects
are from a homogenous population. In the case of this paper,
the 11 subjects are quite non-homogeneous, therefore the inter-
subject classification accuracies are much lower than those of
mix-subject classification. Moreover, since the early and late stage
of mindfulness meditation may be different for individual subjects,
that is to say, the time accumulation effect of meditation may not
be the same for all subjects, making the classification of meditation
experience more challenging. Though intra-subject classification
may have some narrowly limited application scenario as discussed
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FIGURE 6

Power variation network-prediction correlation topographies of five frequency bands for deep ConvNet at the four different mental states.

above for meditation states classification, it can hardly have
any practical application for meditation experience classification.
Finally, the subject-transfer classification strategy combines both
intra-subject and mix-subject classification strategies in order to
overcome the limitations of each of the two individual strategies.

4.5. Feature analysis

To demonstrate that the CNN network is reliable for identifying
meditative and resting EEG features, we visualized PSD topologies
of raw EEG data in Figure 6 and reviewed the relevant literature.
By referring to the results of traditional analysis methods and
previous conclusions, we conduct correlation analysis between
CNN network features and PSD features.

Region of Interest (ROI) were defined with the occipital lobe
(channels N19, N20, N21, N41, N42, N43, N44, N45, N46, N67,
N68, N69, N70, N71, N72, N96, N97, N98, N99, and N100), the
middle frontal lobe (channel N53, N54, N55, N56, N57, N58,
N59, N60, N61, N79, N80, N81, N82, and N83) and the middle
parietal lobe (channels N48, N49, N50, N64, N65, N66, N74, N75,
and N76). The selected EEG channels have been proved to be
mindfulness-related (Gao et al., 2016). Alpha waves (8–12 Hz)
and beta waves (12–30 Hz) are enhanced and delta waves (1–
4 Hz) are decreased during mindfulness-based stress reduction
exercises compared to resting states. The increase in alpha waves
was significant throughout the brain, especially in the frontal and
occipital lobes. The increase in beta waves is mainly concentrated
in the frontal lobe. Delta waves are reduced in the centro-parietal
region.

For analysis of the features learned by the CNN models and to
illustrate that these features are mindfulness-related, the canonical
correlation analysis (CCA) (Hardoon et al., 2004) between two

feature groups including CNN-based and handcraft-based features
were conducted. CNN-based features are extracted by the two CNN
models from the data of each subject (also mixed subjects) at each
MBSR and REST tasks, they are the output of the layer before the
classification layer of the CNN networks. Handcraft-based features
include the ratio of PSD value between delta and alpha bands of
certain channels, also the ratio of PSD value between delta and beta
bands of region of interest of the recorded EEG data.

The r-value of CCA between the CNN-based features and
each sub-feature set in handcraft-based features is shown in
Table 7, including two sub-tables for deep and shallow ConvNet,
respectively. The first eleven columns demonstrate the correlation
and significance between network feature of each subject at each
task and one of the sub-feature sets of the handcraft-based
features, the last column shows the correlation and significance
between network feature of mixed subjects at each task and
the handcraft-based features. In Table 7, the chance level is
the r-value between CNN-based features and random white
noise.

As we can see from Table 7, after the CCA analysis, the r-value
between CNN-based features and the handcraft-based features
shows a high correlation (r-value ranging from 0.54 to 0.99) and
significance (p < 0.05), and they are all higher than the chance
level, demonstrating the features learned by the CNN models
are correlative to mindfulness-related features in EEG. Besides,
the r-values between the CNN-based features and the handcraft-
based feature at MBSR1 are around 0.82, the r-values between the
CNN-based features and the handcraft-based feature at MBSR2
are around 0.95, the r-values between the CNN-based features and
the handcraft-based feature at REST1 are around 0.62, the r-values
between the CNN-based features and the handcraft-based feature
at REST2 are around 0.72, showing that the features learned by the
CNN models are MBSR tasks related features.
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TABLE 7 Correlation values (r) of canonical correlation analysis (CCA) between deep and shallow ConvNet derived features and handcraft-based features (band power ratios δ/α and δ/β) for each subject (also
mixed subjects) at the four mental states, with * indicates significant correlation (p < 0.05) when compared to the corresponding chance level correlations.

Deep 1 2 3 4 5 6 7 8 9 10 11 Ave Mix

MBSR1 δ/α 0.91* 0.82* 0.82* 0.82* 0.76* 0.77* 0.85* 0.83* 0.74* 0.8* 0.81* 0.81 ± 0.05 0.76*

δ/β 0.88* 0.82* 0.84* 0.83* 0.8* 0.76* 0.81* 0.78* 0.88* 0.8* 0.85* 0.82 ± 0.04 0.75*

Chance 0.14 ± 0.02 0.34 ± 0.01 0.12 ± 0.02 0.38 ± 0.01 0.35 ± 0.01 0.31 ± 0.01 0.12 ± 0.02 0.17 ± 0.02 0.38 ± 0.01 0.18 ± 0.01 0.12 ± 0.02 0.24 ± 0.11 0.24 ± 0.01

MBSR2 δ/α 0.97* 0.94* 0.94* 0.98* 0.98* 0.95* 0.77* 0.94* 0.81* 0.98* 0.99* 0.93 ± 0.07 0.95*

δ/β 0.97* 0.98* 0.91* 0.97* 0.98* 0.92* 0.92* 0.94* 0.85* 0.98* 0.99* 0.95 ± 0.04 0.95*

Chance 0.17 ± 0.01 0.26 ± 0.01 0.18 ± 0.02 0.15 ± 0.01 0.19 ± 0.01 0.34 ± 0.01 0.35 ± 0.01 0.14 ± 0.02 0.26 ± 0.01 0.23 ± 0.01 0.19 ± 0.01 0.22 ± 0.07 0.28 ± 0.01

REST1 δ/α 0.66* 0.68* 0.61* 0.67* 0.64* 0.66* 0.57* 0.54* 0.64* 0.61* 0.56* 0.62 ± 0.05 0.65*

δ/β 0.68* 0.67* 0.63* 0.64* 0.6* 0.61* 0.58* 0.55* 0.67* 0.62* 0.59* 0.62 ± 0.04 0.63*

Chance 0.15 ± 0.02 0.19 ± 0.01 0.13 ± 0.02 0.16 ± 0.02 0.38 ± 0.01 0.27 ± 0.01 0.24 ± 0.01 0.21 ± 0.01 0.32 ± 0.01 0.12 ± 0.01 0.14 ± 0.02 0.21 ± 0.08 0.25 ± 0.01

REST2 δ/α 0.74* 0.76* 0.73* 0.69* 0.72* 0.61* 0.58* 0.7* 0.73* 0.76* 0.7* 0.7 ± 0.06 0.73*

δ/β 0.78* 0.77* 0.76* 0.7* 0.74* 0.66* 0.59* 0.71* 0.69* 0.71* 0.73* 0.71 ± 0.05 0.71*

Chance 0.11 ± 0.03 0.26 ± 0.01 0.21 ± 0.01 0.22 ± 0.01 0.35 ± 0.01 0.22 ± 0.01 0.39 ± 0.01 0.14 ± 0.02 0.13 ± 0.02 0.15 ± 0.01 0.17 ± 0.01 0.21 ± 0.09 0.21 ± 0.01

Shallow 1 2 3 4 5 6 7 8 9 10 11 Ave Mix

MBSR1 δ/α 0.82* 0.87* 0.86* 0.83* 0.81* 0.78* 0.87* 0.79* 0.84* 0.8* 0.82* 0.82 ± 0.03 0.85*

δ/β 0.87* 0.85* 0.88* 0.84* 0.87* 0.8* 0.85* 0.8* 0.78* 0.82* 0.81* 0.83 ± 0.03 0.83*

Chance 0.35 ± 0.01 0.12 ± 0.02 0.37 ± 0.01 0.33 ± 0.01 0.31 ± 0.01 0.14 ± 0.02 0.32 ± 0.01 0.35 ± 0.01 0.37 ± 0.01 0.17 ± 0.03 0.35 ± 0.01 0.29 ± 0.09 0.28 ± 0.01

MBSR2 δ/α 0.97* 0.97* 0.98* 0.97* 0.95* 0.89* 0.97* 0.96* 0.97* 0.95* 0.98* 0.96 ± 0.03 0.94*

δ/β 0.98* 0.97* 0.97* 0.98* 0.96* 0.9* 0.96* 0.95* 0.95* 0.97* 0.98* 0.96 ± 0.02 0.95*

Chance 0.24 ± 0.01 0.29 ± 0.01 0.31 ± 0.01 0.32 ± 0.01 0.2 ± 0.01 0.17 ± 0.02 0.19 ± 0.01 0.29 ± 0.01 0.32 ± 0.01 0.35 ± 0.01 0.34 ± 0.01 0.27 ± 0.06 0.26 ± 0.01

REST1 δ/α 0.63* 0.69* 0.62* 0.69* 0.69* 0.66* 0.71* 0.68* 0.67* 0.7* 0.67* 0.67 ± 0.03 0.65*

δ/β 0.67* 0.64* 0.69* 0.63* 0.71* 0.67* 0.68* 0.65* 0.68* 0.68* 0.66* 0.67 ± 0.02 0.64*

Chance 0.34 ± 0.01 0.12 ± 0.03 0.35 ± 0.01 0.37 ± 0.01 0.22 ± 0.01 0.11 ± 0.01 0.32 ± 0.01 0.24 ± 0.01 0.26 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.27 ± 0.09 0.21 ± 0.01

REST2 δ/α 0.77* 0.76* 0.79* 0.77* 0.79* 0.75* 0.8* 0.77* 0.73* 0.77* 0.71* 0.76 ± 0.03 0.74*

δ/β 0.78* 0.74* 0.71* 0.73* 0.82* 0.77* 0.74* 0.78* 0.79* 0.72* 0.75* 0.76 ± 0.03 0.78*

Chance 0.31 ± 0.01 0.21 ± 0.01 0.36 ± 0.01 0.28 ± 0.01 0.17 ± 0.01 0.18 ± 0.02 0.19 ± 0.01 0.33 ± 0.01 0.35 ± 0.01 0.32 ± 0.01 0.35 ± 0.01 0.28 ± 0.07 0.22 ± 0.01
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5. Limitations and future research

This study has some noticeable limitations. First, the study is
based on a small EEG dataset of only 11 non-homogeneous subjects
covering both Asians and Caucasians, resulting great inter-subject
variability which is difficult to be sufficiently represented by both
deep learning and traditional machine learning methods. Future
studies should collect EEG data from a large number of subjects
participating MBSR training with no meditation experience, and
this may require a multi-center collaboration. Second, in this
study for the first time we perform recognition of both state and
trait effect of short term MBSR training through investigating
the EEG measurements at two stages of early and late training,
but only a single session of EEG measurement is performed for
each stage, which limits us to investigate inter-session variability
and distinguish it from trait effect of the MBSR training. In
future research multi-session EEG data should be collected and
utilized for classification of resting and meditation states at different
stages. Finally, due to the availability of only a small dataset,
we use only a very simple deep learning network of shallow
ConvNet and its modification with a slightly deeper architecture,
deep ConvNet. Future studies may consider more complex deep
learning architectures which can cope with small data and inter-
subject variability in various ways. We may use a GAN structure
for intrinsic data augmentation (Fu et al., 2022), use i-vector
to reduce the effect of inter-subject variability for inter-subject
classification (Xu et al., 2022), and use large amount of publicly
available meditation independent EEG data for self-supervised
learning (SSL) to assist deep learning with small data and inter-
subject variability (Rafiei et al., 2022). SSL has been demonstrated
effective in speech analysis using the wave2vec (Baevski et al.,
2020) architecture, which has been recently adapted as neuro2vec
(Wu et al., 2022) and eeg2vec (Bethge et al., 2022) for EEG signal
analysis.

6. Conclusion and implications

This study has examined the state and trait (stage) effect
of short term MBSR training using CNN based deep learning
methods of deep and shallow ConvNets as well as traditional
machine learning methods of CSP + SVM and FBCSP + SVM,
through investigating the EEG measurements of eleven MBSR
practitioners during resting and meditation at early and late
training stages, supporting previous findings that short-term
meditation training has EEG-recognizable state (Ahani et al., 2014)
and trait (Sharma et al., 2019) effects. The classifiers are trained
and evaluated using inter-subject, mix-subject, intra-subject, and
subject-transfer classification strategies, each according to a specific
application scenario. Results show that in the intra-subject and
mix-subject classification scenarios, our deep learning classifiers
have classification performance superior to related EEG-based
meditation state classification studies reported in the literatures for
state effect classification as well as trait effect classification using
EEG data during either resting or meditation, for both novice and
expert meditators with a variety of meditation types including yoga,
Tibetan, and mindfulness, whereas comparing to the literatures for
inter-subject classification the performance of FBCSP for novice
MBSR meditators is superior for state effect recognition of novice

meditators and slightly inferior but still comparable for both state
and trait effects recognition of expert meditators.

Studies on clinical interventions using mindfulness meditation
suggest that MBSR may reduce various mental disorders such
as anxiety (Beauchemin et al., 2008), depression (Hofmann
et al., 2010), ADHD (Zylowska et al., 2008), and social disorder
(Beauchemin et al., 2008). EEG-based mindfulness meditation
state classification can serve as a quantitative evaluation of MBSR
training effectiveness and level/expertise of mindfulness of the
practitioner, and then can be used as online or offline feedback
to assist the practitioners for improved training and practicing
performance. Our study demonstrates excellent mix-subject and
intra-subject classification performance as well as reasonably
good inter-subject classification. When our mindfulness state
classification methods are integrated with wearable EEG sensors
(Anwar et al., 2018; Álvarez Casado et al., 2021) and virtual reality
(Mistry et al., 2020; Viczko et al., 2021) in future research, a
neurofeedback assisted MBSR training system may be developed
and can help make MBSR more effective and accessible to the
general populations.
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