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varies with sleep stage, but does
not seem to track dream
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Nils Kauppi1, Benjamin Thürer1, Johan Frederik Storm1 and
Bjørn Erik Juel1*
1Brain Signalling Lab, Division of Physiology, Faculty of Medicine, Institute of Basic Medical
Sciences, University of Oslo, Oslo, Norway, 2National Centre for Epilepsy, Oslo University Hospital,
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In a recent electroencephalography (EEG) sleep study inspired by complexity

theories of consciousness, we found that multi-channel signal diversity

progressively decreased from wakefulness to slow wave sleep, but failed

to find any significant difference between dreaming and non-dreaming

awakenings within the same sleep stage (NREM2). However, we did find

that multi-channel Lempel-Ziv complexity (LZC) measured over the posterior

cortex increased with more perceptual ratings of NREM2 dream experience

along a thought-perceptual axis. In this follow-up study, we re-tested our

previous findings, using a slightly different approach. Partial sleep-deprivation

was followed by evening sleep experiments, with repeated awakenings and

immediate dream reports. Participants reported whether they had been

dreaming, and were asked to rate how diverse, vivid, perceptual, and thought-

like the contents of their dreams were. High density (64 channel) EEG was

recorded throughout the experiment, and mean single-channel LZC was

calculated for each 30 s sleep epoch. LZC progressively decreased with

depth of non-REM sleep. Surprisingly, estimated marginal mean LZC was

slightly higher for NREM1 than for wakefulness, but the difference did not

remain significant after adjusting for multiple comparisons. We found no

significant difference in LZC between dream and non-dream awakenings,

nor any significant relationship between LZC and subjective ratings of dream

experience, within the same sleep stage (NREM2). The failure to reproduce

our own previous finding of a positive correlation between posterior LZC and

more perceptual dream experiences, or to find any other correlation between

brain signal complexity and subjective experience within NREM2 sleep, raises

the question of whether EEG LZC is really a reliable correlate of richness of

experience as such, within the same sleep stage.
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1. Introduction

According to minimal forms of physicalism, there can be
no change in the mental properties of the world, without
some change in the physical properties of the world1. More
narrowly, assuming that your brain encompasses the part of
the physical world directly2 relevant to your consciousness, it
follows that the vast range of distinct experiences available to
you must supervene on a similarly rich repertoire of possible
configurations of your brain.3

While conscious experience may be incredibly diverse, each
experience is nevertheless perceived as a unified whole. If we
commit to stronger physicalist assumptions linking properties
of phenomenology to properties of the physical world, it seems
plausible that our integrated subjective experience must be
supported by physical integration of information in the brain.

Perhaps inspired by intuitions like these, many
researchers and theories of consciousness have (to varying
degrees) emphasized phenomenological integration and/or
differentiation as important features of our experience that
should be accounted for by scientific theories of consciousness,4

and have attempted to formalize these intuitions in terms of
information, entropy, complexity, and causality (Baars, 1988;
Chalmers, 1995; Tononi and Edelman, 1998; Dehaene and
Naccache, 2001; Edelman, 2003; Seth and Baars, 2005; Tononi,
2005; Seth et al., 2006, 2008; Barrett, 2014; Carhart-Harris et al.,
2014; Ruffini, 2017; Sarasso et al., 2021).

More specifically, there seem to be a convergence of
opinions and evidence toward the hypothesis that conscious
experience is supported by complex dynamics of the thalamo-
cortical system, a part of the brain argued to be particularly
suited to integrate information (across multiple cortical areas
and modalities) (Crick and Koch, 1990; Llinás et al., 1998;
Mashour, 2004; Baars, 2005; Seth et al., 2005, 2006; Tononi,
2005; Baars et al., 2013; Sarasso et al., 2021) [but see Merker
(2007)].

1 Paraphrasing a global formulation of non-reductive supervenience
physicalism (although this statement alone is arguably too weak to
exclude substance dualism) (Internet Encyclopedia of Philosophy, 2002).

2 In the sense that changes in the physical world outside your brain
alone are insufficient to allow a change in your experience. Note
that there are theories of consciousness that emphasize the external
environment as “its own representation,” see for example O’Regan and
Noë (2001).

3 Here, the configuration of your brain should be understood to mean
the full set of physical facts about the brain. The argument presented
here does not tell us exactly what physical changes are relevant to
conscious experience, how easy they are to observe, or how they differ
from physical changes in the brain that are not (directly) relevant to
conscious experience.

4 Note that while the argument above suggests that integration and
differentiation may be necessary conditions for (much of) everyday
human experience, it does not suggest they are sufficient, and some
theories emphasize different aspects of consciousness, see for example
Brown et al. (2019).

Observations supporting this hypothesis goes back to
the very beginnings of human electroencephalography (EEG)
(Gibbs et al., 1935), as reflected by the classical distinction
between the “activated” (Moruzzi and Magoun, 1949) chaotic,
low-amplitude, fast EEG of wakefulness and the regular, high-
amplitude, slow EEG of deep sleep, anesthesia, and coma (Seth
and Baars, 2005).

More recently, complexity theories of consciousness, such
as the Integrated Information Theory (IIT) (Tononi, 2004;
Oizumi et al., 2014) and the Entropic Brain Hypothesis
(EBH) (Carhart-Harris et al., 2014; Carhart-Harris, 2018),
have received considerable support from systematic between-
states comparisons. For example, the Perturbational Complexity
Index (PCI), inspired by IIT, has shown an impressive ability
to distinguish and stratify different brain states such as
wakefulness, REM-sleep, deep sleep, anesthesia, and different
disorders of consciousness (DOCs) according to the “level”
of consciousness ascribed to each of these states (Casali
et al., 2013; Casarotto et al., 2016). By measuring the LZC
of the average cortical response to repeated electromagnetic
stimulation, PCI aims to average out ongoing activity and
capture the complexity of the “deterministic” effects of the
perturbation, thus quantifying the capacity of the system for
both integration and differentiation.

While LZC and other measures of signal diversity applied
to spontaneous brain activity do not capture (the capacity
of the system for) causal integration in the same way,5 they
are easier to use, and have also been found to be lower
in deep sleep and anesthesia compared to wakefulness and
REM sleep, and elevated in psychedelic states, associated with
reports of an increased range or richness of conscious contents
(Schartner, 2017; Timmermann et al., 2019). Importantly,
measures of spontaneous signal diversity seem more likely
than PCI to reflect ongoing experience. Indeed, the LZC
of EEG and magnetoencephalography (MEG) recordings
has been found to correlate with self-reported intensity of
drug-induced psychedelic experience (Schartner et al., 2017a;
Timmermann et al., 2019).

However, there are a lots of differences between distinct
global physiological states, many of which may have little or
no direct relation to conscious experience. Ideally, we would
like measures of consciousness to capture changes in experience
within (approximately6) the same global state. It is not yet
clear whether signal diversity measures are able to do this. For
example, while Timmermann et al. (2019) observed that the
variation in LZC over time mirrored the self-reported intensity

5 There exists other measures based on ongoing activity that in fact
attempt to capture causal connections, see for example (Seth et al.,
2006).

6 Of course, global states such as wakefulness or slow wave sleep
are never truly uniform, and even within the “same” state there could
be ongoing variation in brain activity that has little or no connection to
conscious experience.
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of the ongoing psychedelic experience, Bola et al. (2018) found
LZC to be unaffected by the presentation rate of audio stimuli
(recordings of book excerpts).

Inspired by these developments, and a promising serial
awakening paradigm (Siclari et al., 2013, 2017), we recently
conducted a small study of EEG signal diversity [multi-
channel Lempel Ziv complexity, amplitude coalition entropy
and synchrony coalition entropy (Schartner, 2017)] in sleep and
dreaming (Aamodt et al., 2021). Participants slept in the lab
in the morning after a full night of sleep deprivation, while
we recorded their EEG, and intermittently woke them up for
an immediate dream report. We found that signal diversity
decreased with increasing depth of non-REM sleep, but failed
to find any significant difference between dreaming and non-
dreaming within the same state (stage NREM2 sleep). However,
we did find that multi-channel LZC measured over the posterior
cortex increased with more perceptual (as opposed to thought-
like) ratings of dream experience.

In this follow up study, we wanted to re-test our previous
findings using a slightly different paradigm. In order to
adhere more closely to the natural circadian rhythm, full sleep
deprivation and morning sleep was replaced by partial sleep
deprivation and evening sleep. The dream questionnaire was
updated to ask for explicit ratings of dream experience diversity
and vividness, and the rating of dream experience along a single
axis as more thought-like versus more perceptual was replaced
by two separate ratings of how perceptual and how thought-like
the dream experience was. Instead of the three multichannel
diversity measures used in the first study we chose to focus on
single-channel LZC (based on promising results from earlier
research (Schartner et al., 2017a; Timmermann et al., 2019) and
suggestions from reviewers of our first sleep study), and take
a simple average over all channels included in each channel
selection.

Starting from the idea that–under certain conditions–
complexity of brain activity may correlate with richness of our
subjective experience, and the conjecture that the complexity of
brain activity may correlate with the LZC of EEG signals,7 we
derived and tested four hypotheses about how EEG complexity
varies with sleep stages and dream experience (within the same
stage):

1. Mean EEG complexity over all channels should be higher
for wakefulness (and REM sleep), and progressively
decrease with increasing depth of non-REM sleep.

7 This is an important supposition that is not always made explicit. First,
LZC is calculated from the binarized EEG signal (as an approximation to
algorithmic complexity), and second, it is unclear to what extent signals
recorded from the outside of a system should be expected to reflect the
internal dynamics of that system. Arguably, the second part of this issue
goes beyond both consciousness studies and EEG complexity measures,
see for example (Jonas and Kording, 2017).

2. Within the same sleep stage, EEG complexity measured
over the posterior hot zone (PHZ), suggested to most
directly support conscious experience (Koch et al., 2016;
Boly et al., 2017; Siclari et al., 2017; Storm et al., 2017),
should:

a. Be higher for awakenings following an epoch of
dreaming, versus awakenings following an epoch
without dreaming.

b. Increase with richness of dream experience, as
measured by subjective ratings of diversity and
vividness of dream contents.

c. Increase with ratings of dream experience as
more perceptual.

In addition to testing these four hypotheses, we checked
how the results for mean single-channel LZC compared to those
for the multi-channel LZC measure used in our previous study
(Aamodt et al., 2021), and we explored how variation in LZC
compared to changes in the slope of the frequency spectrum,
quantified by the aperiodic spectral exponent [which has itself
been suggested as a measure of consciousness (Colombo et al.,
2019)]. We analyzed topographical patterns in EEG complexity,
related to sleep and dreaming, and briefly explored how ratings
of dream content vary with sleep stages.

2. Materials and methods

The experimental paradigm and the overall methodological
approach were largely similar to our previous study of morning
sleep in fully sleep-deprived participants (Aamodt et al., 2021),
except for the differences briefly summarized in the Section “1
Introduction.” For readability and completeness, this section
includes some repetitions of the description in Aamodt et al.
(2021).

2.1. Experimental paradigm

Inspired by Siclari et al. (2013), we employed an evening
sleep paradigm with remotely monitored sleep EEG and
repeated awakenings, each followed by an immediate dream
report.

Before the day of the sleep experiment, we met with
the participants, explained the experiment, and showed
them the sleep lab.

Participants were told to go to bed at their usual bedtime,
and to get up 3 h earlier than their usual rising time, before
meeting in the lab (partially sleep-deprived) at 19:30 in the
evening. They were instructed to avoid alcohol (and drugs) the
last 48 h before the experiment, and caffeine the last 12 h before
the experiment. Prior to the experiment, the questionnaire
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used for the dream reports was emailed to all participants,
together with detailed explanations of how to interpret each
question. Participants were reminded to read the descriptions
and instructions, and to practice answering the questions.

After meeting in the lab on the day of the experiment,
the EEG cap was mounted on the participant’s head while we
went through the dream questionnaire, cleared up any lingering
uncertainties and did a practice run through the questions. We
also reassured the participants that we had already accounted
for the fact that some participants will not be able to sleep while
planning the experiment, and that there were no wrong answers
to the questions, as long as they were honest. Toward the end of
the preparation, we made sure to start dimming the lights and
instructed the participants to try to go to the bathroom.

The researchers then left the room, and lights were turned
off. Via a remote audio connection, participants were first told to
lie still with eyes open (EO) for 5 min of awake EEG recording.
Second, they were told to repeat the exercise with eyes closed
(EC), for another 5 min of awake EEG recording, interrupted by
an electronic alarm and subsequent awake (baseline) experience
report using the dream questionnaire.8 Finally, they were told
that they were free to fall asleep.

While the participants slept, EEG was remotely monitored
from another room. Participants were intermittently awakened,
followed by immediate dream experience reports. In order
to get many awakenings within the same sleep stage and
increase the statistical power of the within-state analysis,
most awakenings were performed during NREM2 sleep.9 In
our previous morning sleep study, we focused on NREM2
sleep in an attempt to optimize the balance of dream
and non-dream awakenings. While we in fact had very
few non-dream awakenings in our first study, other sleep
stages were not much better, and our experience was that
many participants were able to reach the (intermediate
depth) sleep stage NREM2 fairly quickly, wake up easily
enough and give clear reports, and fall back asleep
without too much trouble. Hence, we chose to keep the
focus on NREM2 sleep.

2.2. Participants and data

We recruited 27 participants for the sleep experiment. Five
minutes of EO/EC resting EEG trials were recorded before the
start of the sleep experiment (28 EO trials, 28 EC trials).10

8 For the first experiment, the EO/EC recordings were done with
researchers in the room and the participant (S20) sitting up.

9 We tried to allow at least 1 min of NREM2 sleep before awakening,
but sometimes woke up the participant in other sleep stages because
they had trouble sleeping, or because they quickly transitioned to NREM3
sleep.

10 For S20 we recorded additional EO and EC trials at the end of the
experiment.

We recorded 164 sleep trials using the intermittent awakening
paradigm described above, where sleep trial refers to the period
from the participant was told to go to sleep until they were
awakened by the alarm.11 From all the recordings, we obtained
a total of 6,071 scored 30-s sleep epochs (Wake = 2,070,
NREM1 = 1,469, NREM2 = 2,130, NREM3 = 356, REM = 46,
see Figure 1A), used for the analysis of how LZC varied
with sleep stage. There were 27 subjective reports from the
eyes closed trials at the start of the experiment (Wake = 18,
NREM1 = 7, NREM2 = 2, see Figure 1B), and 161 reports
from the subsequent sleep trials (Wake = 7, NREM1 = 10,
NREM2 = 97, NREM3 = 45, REM = 2, see Figure 1B).12

For the analysis of whether LZC, within the same sleep stage,
was different between awakenings with no reported experience
(NE), dream experience without recall (DEWR), and dream
experience (DE) with explicit recall of contents, we used the 99
awakenings from NREM2 sleep (NE = 10, DEWR = 16, DE = 73,
see Figure 1C). Finally, for the 73 NREM2 DE awakenings, we
analyzed the relationship between LZC and subjective ratings of
dream experience diversity and vividness, as well as ratings of
how perceptual the dream was (see Figure 1D for distribution
of NREM2 dream content scores).

2.3. Recording and processing of EEG

A total of 62 EEG channels and two electrooculogram
(EOG) channels, referenced to an electrode placed medially
on the forehead, were recorded at a 1,000 Hz sampling rate
using two 32 channel amplifiers (BrainAmp DC, Brain Products
GmbH, Gilching, Germany). EOG channels were placed in the
American Academy of Sleep Medicine (AASM) recommended
E1 and E2 positions below and above the outer canthi (Berri
et al., 2018). Two separate bipolar electrodes on either side of
the mentalis muscle on the front of the chin were used to record
the electromyogram (EMG).

The time of the electronic alarm was recorded during the
experiment by manually pressing a button to insert a marker
into the EEG recording right before triggering the alarm, and
an adjusted (if necessary) time of awakening was determined
by offline inspection of the EEG recording. The beginning of
the recording was then cropped to get a whole number of
sleep epochs, here used to denote the 30 s segments of EEG
conventionally used for scoring of sleep stages.

11 To avoid saturation of channels, the recording was not always
started immediately at the beginning of each sleep trial (for some trials, it
was still necessary to perform DC correction after starting the recording).

12 Participants sometimes fell asleep during the EC trials, or had
trouble sleeping during sleep trials, which is why some EC reports are
from NREM1/NREM2, and some sleep trial reports are from a period of
wakefulness.
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FIGURE 1

Distribution of sleep stages, dream experience classifications, and subjective ratings. (A) Total number of scored 30 s sleep epochs from each
sleep stage (summed over all participants and trials). (B) Number of subjective reports collected from each sleep stage (stage of last epoch
before alarm) for eyes closed (EC) and sleep trials (reports were not collected from EO trials). (C) Number of subjective reports from each sleep
stage classified as no experience (NE), dream experience without recall of contents (DEWR) and dream experience with recall of contents (DE).
(D) Distribution of subjective ratings from NREM2 DE awakenings, showing how diverse, vivid, perceptual, and thought-like NREM2 dream
contents were, on a scale from 0 to 10 (see section “2.4. Dream report questionnaire” for detailed explanation of the scale).
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For the purpose of sleep scoring, we exported a separate
copy of the recording with the recommended (F4-M1, C4-M1,
O2-M1) and backup (F3-M2, C3-M2, O1-M2) AASM bipolar
leads. Sleep scoring was performed (by RM) according to “The
AASM Manual for Scoring of Sleep and Related Events version
2.5” (Berri et al., 2018), and the hypnograms were then reviewed
by another researcher (AAa).

After cropping the original EEG recording to a whole
number of sleep epochs before time of awakening, bad segments
of the data (e.g., containing large muscle artifacts, movement,
etc.) were identified by manual inspection and marked. Some
recordings contained large jumps due to DC correction
performed mid-recording. These jumps were interpolated to
avoid large ringing artifacts from subsequent temporal filters,
and the segment of EEG containing the jump was excluded from
subsequent analysis. Data was then exported for automatic pre-
processing using the EEGLAB MATLAB toolbox (Delorme and
Makeig, 2004).

First, data was down-sampled to 250 Hz using a mild anti-
aliasing filter. Bad channels were automatically detected and
interpolated, and robust average re-referencing was performed
using the EEG-Clean-Tools EEGLAB-plugin (PREP-pipeline)
(Bigdely-Shamlo et al., 2015).

Afterward, bad segments were (temporarily) removed from
the recording, and data was high-pass filtered at 0.75 Hz,
before running independent component analysis (ICA) using
the extended infomax algorithm (Bell and Sejnowski, 1995). The
ICLabel EEGLAB plugin (Pion-Tonachini et al., 2019) was used
to automatically assign probable sources (brain, muscle, eye,
heart, line nose, channel noise, or other) to each independent
component. Independent components were then rejected based
on their ICLabel-assigned probabilities if they met any of the
following three criteria:

1. The most likely heart component of the recording and
assigned probability of heart being the source of the
component higher than 10%,

2. Less than 15% assigned probability of brain being the
source of the component, or

3. Combined assigned probability of stemming from non-
brain sources was more than half the assigned probability
that the component came from brain sources.

After ICA-cleaning, bad segments were re-inserted into
the recording (this was only done to keep original length
of recording and timing of events, as calculation windows
intersecting bad segments were later dropped), and data was
low-pass filtered at 40 Hz.

Electroencephalography recordings were re-imported into
MNE Python, and cleaning performance was manually
inspected. A few recordings still had very pronounced heart
artifacts, probably because the heart artifact had been split into
several independent components during ICA-cleaning, and only

one of these had been rejected by the heuristic rules above. For
these recordings, IC-components were manually re-inspected
and remaining heart components were rejected. Finally, any
remaining bad segments of the recordings were marked for
rejection, and remaining bad channels were interpolated.

2.4. Dream report questionnaire

Immediately after each awakening, participants were asked
to report and rate any dream experience they might have had.
To keep awakenings brief, we used only the abbreviated short
form prompts shown in parentheses in the dream questionnaire
below (see Supplementary materials for the full text sent to
participants before the experiment):

1. What was the last thing going through your mind? (Last
experience?)

Describe the most recent experience (for example image,
thought or emotion) which you had before the alarm sound (but
after falling asleep), if you experienced anything at all–it is just
as fine if you did not experience anything. By experience we
mean “any kind of mental activity,” including thoughts, dreams,
perceptions, emotions, etc. (e.g., if asked while being awake, the
last thing going through your mind might just be the scene you
see in front of you).

2. What was the last emotion you had? (Last emotion?)
Describe your most recent feelings or emotions (for example

anger, disgust, fear, happiness, sadness, surprise etc.) which you
had before the alarm sound (but after falling asleep), if you
experienced any emotions at all–it is just as fine if you did not
experience any emotions.

3. How diverse was your experience on a scale from 0 to 10?
(Diversity 0–10?)

Please rate your experience from 0 to 10, where 0 means “I
did not experience anything at all” and 10 means “my experience
was just as diverse or more diverse than my normal waking
experience.” The more different emotions, sensory impressions,
objects, actions, thoughts, your experience consists of, the more
diverse (rich, varied) we consider the experience to be.

4. How vivid was your experience on a scale from 0 to 10?
(Vividness 0–10?)

Please give a rating of your experience from 0 to 10,
where 0 means “I did not experience anything at all” and 10
means “my experience was just as vivid or more vivid than my
normal waking experience.” The clearer and more life-like your
experience, the more vivid (as opposed to blurry and diffuse) we
consider the experience to be.

5. How perceptual was your experience on a scale from 0 to
10? (Perceptual 0–10?)

Please rate the extent to which your experience
was perceptual in character. In this context, perceptual
refers to any visual, auditory, olfactory, or bodily
experience/imagery that you had.
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6. How thought-like was your experience on a scale from 0
to 10? (Thought-like 0–10?)

Please rate how thought-like your experience was. Thought-
like refers to reasoning or other mental processes not necessarily
related to/accompanied by perceptual experiences/imagery
(or inner speech).

Based on the answer to Question 1, awakening reports were
classified as indicating no experience (NE), dream experience
without recall (DEWR), or dream experience (DE). Subjective
reports that included explicit recall of any dream contents at
all, were scored as DE. If the participant reported having had
a dream, but were unable to remember any specific contents,
the report was scored as DEWR. If necessary, participants
were asked to disambiguate between NE and DEWR, before
continuing the awakening interview.

While interesting, we chose to exclude Question 2 about the
last emotion before awakening from further analysis, because
we were unsure whether all (or even most) of these answers
referred to the period right before the awakening, rather than the
time of questioning (a large portion of the answers mentioned
feeling tired and annoyed). Question 6 was only included in the
exploratory analysis, since we did not feel that a clear hypothesis
could be derived about how thought-like dream experiences
should relate to EEG complexity.

2.5. Lempel-Ziv complexity

The EEG recording was divided into 8 s windows, with
7 s overlap, for calculation of single-channel LZC. Any
window containing stretches of the recording marked as bad
was excluded from further analysis. For each window and
each channel, LZC calculation was based on the complex-
valued analytical representation of the signal. The analytical
representation of the signal has the original EEG signal as its real
component, and the Hilbert transformed signal as its imaginary
component. This analytical representation of the EEG signal can
be expressed as the (pointwise) product of a time varying real-
valued, positive amplitude, and a time varying complex-valued
phase angle. The analytical signal was binarized by thresholding
on the median value of its amplitude (within the window), and
the complexity or compressibility of the resulting binary string
was estimated by the LZC algorithm.

Roughly speaking, the LZC algorithm works by splitting
a binary string into distinct substrings that together allows
reconstruction of the whole string. Starting from the beginning
of the binary string, the algorithm iteratively builds a dictionary
representation of the string in terms of unique substrings. The
length of this dictionary serves as a measure of how complex or
incompressible the string is. Here, we normalized the length of
the dictionary produced by LZC, by the length of the dictionary
produced by LZC on a randomly shuffled version of the original
string, yielding a measure that is (almost always) between 0

and 1. Intuitively, a simple string with stereotyped patterns will
allow a very simple representation, while completely random
strings will be (among) the most difficult ones to represent.
See for example (Lempel and Ziv, 1976; Schartner, 2017) for
further details, and Figure 2 in Schwartzman et al. (2019) for
a schematic representation of how the LZC value of the EEG
signal is calculated.13

2.6. Aperiodic spectral exponent

For each 8 s window and each channel, we also calculated
the exponent of the aperiodic component of the EEG power
spectrum. The FOOOF algorithm (version 1.0.0) was used to
parameterize EEG power spectra by a model composed of
an aperiodic power law component, together with a periodic
component consisting of zero or more oscillatory Gaussian
peaks (Donoghue et al., 2020). We limited peak width to 3–
8 Hz, and we set a relative threshold for peak detection to
three standard deviations of the input data. Power spectra were
parameterized across the frequency range 0.75–40 Hz.

While we calculated the exponent of the aperiodic
component of the frequency spectrum because we wanted to
get a sense of the extent to which LZC offers advantages beyond
measures based on gross characteristics of the power spectrum,14

the spectral exponent has also been suggested as a measure of
consciousness in its own right (Colombo et al., 2019).

2.7. Statistical analysis

Statistical analysis was performed using IBM SPSS version
28. The relationship between sleep stage and whole-brain LZC
was assessed using a linear mixed model (LMM)15 with sleep
stage as a fixed factor (including intercept), and participant and
trial (nested within participants) as random intercepts. Sleep
epochs were entered as repeated measures with first-order auto
regressive residual variance-covariance.

13 Note that a = abs(hilbert (x)) in the referenced figure refers to the
amplitude of the complex valued analytical representation of the EEG
signal. The notation in the figure is consistent with the naming of SciPy’s
hilbert function, which despite its name, returns the analytical signal, and
not the Hilbert transform of the EEG signal (SciPy, 2022).

14 See Schwartzman et al. (2019) for an approach to assess how much
of the difference in EEG LZC between conditions is associated with
spectral changes (or phase changes), and Mediano et al. (2021) for a
general decomposition of the difference in some observable between
two time series datasets into a component associated with spectral
changes, a component associated with with phase changes and a
component associated with changes in phase-spectrum interaction.

15 In this study we used LMMs, rather than the more complicated
generalized linear mixed models (GLMMs) used in Aamodt et al. (2021),
because there was not much of a problem with LZC values close to 1.0
(we did however check that the different choice of models did not matter
to the results of the analysis of posterior multichannel LZC as a function
of dream experience classification and ratings).
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For awakenings in NREM2 sleep, the relationship between
experience report (NE, DEWR, or DE) and posterior LZC of
the last sleep epoch before awakening was assessed using a
LMM with experience classification as the fixed factor (including
intercept) and subject as random intercept.

For NREM2 awakenings with reported dream experience
(DE), the correlation between subjective ratings of richness
of experience and posterior LZC values was assessed using a
LMM with the subjective ratings of diversity and vividness as
fixed continuous covariates (including intercept, but without
interaction term) and subject as random intercept.

For NREM2 awakenings with reported dream experience
(DE), the correlation between subjective ratings of how
perceptual experience was and posterior LZC values were
assessed using a LMM with the subjective rating as a fixed
continuous covariate (including intercept) and subject as
random intercept.

We used the inheritance procedure (Goeman and Finos,
2012) to adjust for multiple comparisons and control the family-
wise error rate. Starting with significance level α = 0.05, this
yielded an adjusted significance level α/4 = 0.05/4 = 0.0125
for models of whole-brain/posterior LZC as functions of
sleep stage, experience classification, subjective rating of
experiential richness and subjective ratings of how perceptual
the experience was and α/(4∗10) = 0.05/(4∗10) = 0.00125 for
each of the 10 pairwise comparisons between different sleep
stages (adjustments for other more detailed tests ended up
being irrelevant).

3. Results

3.1. Hypothesis testing

3.1.1. Does LZC decrease with depth of NREM
sleep?

For the analysis of how LZC varied with sleep stage, we
averaged single-channel LZC over all available channels (whole-
brain channel selection in Figure 2A), and over all 8 s sliding

calculation windows (7 s overlap) fully contained within each
30 s sleep epoch, to yield a single LZC value per sleep epoch.
We included all available scored sleep epochs in the analysis,
from both EO/EC and sleep trials. Figure 3 shows how whole-
brain mean LZC values were distributed across sleep stages,
plotted for all participants together (A) and for each participant
separately (B). Table 1 summarizes the results of the statistical
analysis.

Sleep stage was a significant factor in the model for between-
states variation in whole-brain mean LZC [F(4,3809) = 490,
p < 0.001]. The estimated marginal mean LZC for NREM3
was lower than for wake, and the difference (1 = 0.090) was
about three times the estimated between-participant standard
deviation (s = 0.0269), and four times the estimated between-
trials standard deviation (s = 0.0220). Estimated marginal
mean LZC was progressively lower for increasing depth of
NREM sleep, but were (slightly) higher for NREM1 than wake
and REM, in contrast to expectations (raw means were still
higher for Wake than for NREM1 for most participants).
All pairwise contrasts between different sleep stages were
significant, except the REM-wake and REM-NREM1 contrasts.
However, the difference between NREM1 and wakefulness
was no longer significant after multiple comparison correction
(adjusted significance level α/(4∗10) = 0.00125, see Section “2
Materials and methods” for details).

3.1.2. Is posterior LZC higher for dreaming than
non-dreaming?

For the analysis of how LZC of the last epoch before
awakening from NREM2 sleep varied with dream experience
classification and dream content ratings, we used a posterior
channel selection (Figure 2B) covering most of the temporo-
parietal-occipital lobes (see Figure 2C). There were 99
awakening reports immediately following an epoch of NREM2
sleep. Figure 4 shows the distribution of posterior LZC values
for each dream experience class, and Table 2 summarizes the
results of the statistical analysis. There was no significant (or
near significant) difference in posterior mean LZC between NE
and DE awakenings from NREM2 sleep.

FIGURE 2

EEG channel selections. Whole-brain (A) and posterior (B) channel selections. Electrode fill color indicates associated cortical lobe (C) [adapted
from illustration by Laurens R. Krol, distributed under a CC0 1.0 license (Krol, 2020)].
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FIGURE 3

Variation in whole-brain average single-channel Lempel-Ziv complexity (LZC) with sleep stage. (A) Average single-channel LZC vs. sleep stage
for the whole-brain channel selection (all channels, see Figure 2A). Each data point corresponds to one 30 s sleep epoch. Observations are
randomly scattered along the x-axis to reduce overlap, and participant number is indicated by marker fill color. Overall mean values for each
sleep stage are indicated by black diamond markers. (B) Whole-brain average single-channel LZC vs. sleep stage (0 = W, 1 = NREM1,
2 = NREM2, 3 = NREM3, 4 = REM), plotted separately for each study participant. Each data point corresponds to one 30 s sleep epoch. Fill color
indicates sleep stage, and black diamond markers indicate participant mean values for each stage.

3.1.3. Does posterior LZC correlate with dream
content ratings?

For the analysis of how posterior LZC varies with subjective
ratings of dream content, we used the 73 DE awakenings from
NREM2 sleep. Figure 5 shows the variation in posterior LZC
with subjective ratings of how diverse, vivid, and perceptual
the dream experience was. Table 3 summarizes the results of
the two statistical models of variation in posterior LZC with

dream experience richness (diversity and vividness) and ratings
of how perceptual the experience was. There was no significant
(or near significant) relationship between posterior mean LZC
and subjective ratings of NREM2 dream experience.16

16 Replacing ratings of how perceptual the dream was by the
difference between perception and thought ratings gave similar results.
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TABLE 1 Whole-brain average single-channel Lempel-Ziv complexity (LZC) as function of sleep stage.

Response Fixed
effect

df1 df2 F Sig.

LZC Intercept 1 27 8,285 <0.0001

Sleep stage 4 3,809 490 <0.0001 Sig. (pairwise comparison)

EMMs Estimate Std. err. CIlower CIupper NREM1 NREM2 NREM3 REM

Wake 0.541 0.006 0.529 0.552 0.008 <0.001 <0.001 0.214

NREM1 0.544 0.006 0.532 0.555 <0.001 <0.001 0.081

NREM2 0.496 0.006 0.485 0.508 <0.001 <0.001

NREM3 0.451 0.006 0.439 0.463 <0.001

REM 0.532 0.008 0.516 0.549

Random effect
covariance

Estimate Std. err. Z Sig. CIlower CIupper

Variance (participant) 7.23e-4 2.33e-4 3.10 0.002 3.85e-4 0.0014

Variance (participant * trial) 4.85e-4 7.48e-5 6.49 <0.001 3.59e-4 6.56e-4

Summary of results from the linear mixed model (LMM) of whole-brain average single-channel LZC as a function of sleep stage (see section “2. Materials and methods” for further details).

FIGURE 4

Posterior average single-channel Lempel-Ziv complexity (LZC) versus NREM2 dream experience classification. Average single-channel LZC vs.
NREM2 dream experience class (NE, no experience; DEWR, dream experience without recall of contents; DE, dream experience), for the
posterior EEG channel selection (see Figure 2B). Each data point corresponds to the last 30 s sleep epoch before an awakening from NREM2
sleep. Observations are plotted on top of corresponding boxplots. Participant number is indicated by marker fill color, and observations are
displaced slightly along x-axis to avoid overlap.
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TABLE 2 Posterior average single-channel Lempel-Ziv complexity (LZC) as a function of NREM2 dream experience class.

Response Fixed
effect

df1 df2 F Sig.

LZCposterior Intercept 1 40.6 11,251 <0.0001

Experience class 2 93.4 0.233 0.793 Sig. (pairwise comparison)

EMMs Estimate Std. err. CIlower CIupper DEWR DE

NE 0.461 0.008 0.445 0.478 0.527 0.523

DEWR 0.468 0.007 0.455 0.481 0.900

DE 0.467 0.004 0.459 0.475

Random effect
covariance

Estimate Std. err. Z Sig. CIlower CIupper

Variance (participant) 1.73e-4 8.68e-5 1.99 0.046 6.46e-5 4.62e-4

Summary of results from the linear mixed model (LLM) of posterior average single-channel LZC as a function of dream experience class (see section “2. Materials and methods” for further
details), for awakenings from NREM2 sleep. The data for the DEWR category contained an outlier (see Figure 4). Excluding this data point gave estimated marginal mean posterior LZC
for DEWR between the values for NE and DE, but results were otherwise similar.

3.2. Controls and exploratory analysis

3.2.1. Multi-channel LZC
In our previous study (Aamodt et al., 2021), instead

of average single-channel LZC, we used multi-channel
LZC (binarized signals were concatenated first over
channels and then over time), calculated from one
central and one posterior selection of 12 EEG channels
(Supplementary Figure 1). To check the extent to which
the choice between these two measures changed the
results, we redid the analysis of the previous section, using
multi-channel LZC. Results were largely the same (see
Supplementary Figures 2–4 and Supplementary Tables 1–3
for details).

3.2.2. LZC versus the aperiodic spectral
exponent

As a comparison to a more traditional frequency-based
approach, we repeated the analysis above to see how the
aperiodic spectral exponent varied with sleep stage, NREM2
dream experience classification and NREM2 dream content
ratings. Results were broadly similar to those for LZC,
except that the estimated marginal mean spectral exponent
for wake was (significantly) higher than for NREM1 (see
Supplementary Figures 5–7 and Supplementary Tables 3–
6 for details).

Values of LZC and the aperiodic spectral exponent
were also correlated to each other, as assessed by a linear
mixed model of average LZC over all channels, with
average aperiodic spectral exponent over all channels
as a fixed covariate, participant and trial (nested within
participants) as random intercepts, and epoch as a repeated
measures variable with first-order autoregressive residual
variance-covariance structure (Supplementary Table 7 and
Figure 6).

3.2.3. Topographic patterns in single-channel
LZC

We explored whether there were any topographical
patterns in how LZC related to sleep stage, NREM2 dreaming
and NREM2 dream content ratings. While there were clear
differences between wakefulness and NREM2/NREM3 sleep
(Figure 7), no channels were significantly different between
dreaming and non-dreaming, or correlated significantly
with any of the subjective ratings of dream experience,
even before any adjustment for multiple comparisons
(Figures 8, 9).

3.2.4. Variation in ratings of dream contents
with sleep stage

Broadly speaking, subjective ratings of how diverse, vivid,
and perceptual dream contents were seemed to decrease with
depth of NREM sleep, in line with expectations and consistent
with the hypothesis that LZC should decrease with increasing
depth of NREM sleep (distribution of ratings of how thought-
like dream experiences were are included for completeness)
(Figure 10).

4. Discussion

Sleep stage was a significant factor in the linear mixed model
for between-stages variation in EEG complexity. Estimated
marginal mean LZC was significantly lower for NREM2 than
for wake, REM and NREM1, and significantly lower for NREM3
than for NREM2. These findings are in line with our own
previous findings (Aamodt et al., 2021), as well as previous
reports of how complexity of spontaneous (Shaw et al., 1999;
Abásolo et al., 2015; Andrillon et al., 2016; Schartner et al.,
2017b) and TMS-evoked (Casali et al., 2013) EEG signals varies
between wakefulness and (deep) sleep.
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FIGURE 5

Average posterior single-channel Lempel-Ziv complexity (LZC) versus subjective ratings of NREM2 dream experience. Posterior LZC vs. ratings
of how diverse (A), vivid (B), and perceptual (C) NREM2 dream experience was. Each data point corresponds to the last 30 s sleep epoch before
an awakening from NREM2 sleep. Participant number is indicated by marker fill color, and observations are displaced slightly along x-axis to
avoid overlap. Linear trend for each participant (for which there is more than one data point) is indicated by background line segments (visual
aid only).

The results for NREM1 were less clear. Estimated marginal
mean LZC was higher for NREM1 than for wake, in contrast
to expectations, but the difference was no longer significant
after correcting for multiple comparisons. It is also worth
noting that distinguishing between wakefulness and NREM1
during sleep scoring can be quite difficult, and hallmarks of
both these sleep stages can often be present within the same

30 s sleep epoch. The contrast between wakefulness and light
sleep should be investigated further, particularly since many
studies on EEG complexity and sleep have focused (mainly) on
deeper sleep stages.

Estimated marginal mean LZC for REM was lower than
expected, although not significantly different from wake (and
NREM1). There was only limited data from REM sleep, some

Frontiers in Human Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2022.987714
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-987714 January 3, 2023 Time: 14:0 # 13

Aamodt et al. 10.3389/fnhum.2022.987714

TABLE 3 Posterior average single-channel Lempel-Ziv complexity (LZC) as a function of subjective ratings of NREM2 dream contents.

Response Fixed
effect

df1 df2 F Sig. Estimate Std. err. t CIlower CIupper

LZCposterior Diversity 1 68.9 0.044 0.835 0.0033 0.0160 0.209 −0.0286 0.0352

Vividness 1 70.0 0.527 0.470 0.0133 0.0183 0.726 −0.0232 0.0497

(Intercept) 1 57.9 2,243 <0.0001 0.4592 0.0097 47.4 0.4398 0.4787

Random effect
covariance

Estimate Std. err. Z Sig. CIlower CIupper

Variance (participant) 0.0002 0.0001 1.58 0.114 5.21e-5 0.0006

Response Fixed
effect

df1 df2 F Sig. Estimate Std. err. t CIlower CIupper

LZCposterior Perception 1 46.8 0.007 0.936 −0.0013 0.0162 −0.081 −0.0337 0.0311

(Intercept) 1 58.1 3,176 <0.0001 0.4673 0.0083 56.4 0.4506 0.4840

Random effect
covariance

Estimate Std. err. Z Sig. CIlower CIupper

Variance (participant) 0.0002 0.0001 1.53 0.127 4.56e-5 0.0006

Summary of results from a linear mixed model (LLM) of posterior average single-channel LZC as a function of subjective ratings of dream experience diversity and vividness, and a
similar model of posterior LZC as a function of ratings of how perceptual dream experience was (see section “2. Materials and methods” for further details). Data from DE awakenings
from NREM2 sleep.

FIGURE 6

Lempel-Ziv complexity (LZC) versus the aperiodic spectral exponent within each sleep stage. Average LZC over all channels plotted against
average aperiodic spectral exponent for Wake, NREM1, NREM2, NREM3, and REM sleep. Marker color indicates participant number. Overall
mean LZC and overall mean aperiodic spectral exponent (calculated across participants) for each sleep stage is indicated by a black cross.

of which stemmed from brief episodes of REM sleep within
NREM sleep. As with NREM1, REM can be challenging to
score accurately, which in this study was in some cases further
exacerbated by poor chin-EMG signal (some of the AASM
scoring rules for REM sleep relies on chin-EMG).

We failed to find any significant difference in posterior LZC
between NREM2 awakenings with and without reported dream
experiences, and therefore cannot reject the null hypothesis
that there is no difference in posterior LZC between NREM2
awakenings with and without reported dream experience. This
result is in line with negative findings from our previous
study (Aamodt et al., 2021). Other studies have reported
differences in TMS-evoked response between dream and
non-dream awakenings from NREM sleep, indicating altered
connectivity in posterior cortical areas (Nieminen et al., 2016;

Lee et al., 2019) (reliable calculation of the perturbational
complexity index (PCI) was not possible due to insufficient
number of TMS-pulses associated with each awakening). Siclari
et al. (2017) found a reduction in posterior low-frequency
activity for DE awakenings relative to NE awakenings, and
even found that high-frequency power in specific cortical
areas (source re-constructed EEG) correlated with specific
dream contents, whereas Wong et al. (2020) was unable to
distinguish dreaming from non-dreaming based on power
of the EEG frequency spectrum. Using a serial-awakening
paradigm with immediate report, Casey et al. (2022) found that
classifiers of unconsciousness and disconnectedness established
by machine learning on source-reconstructed EEG data from
dexmedetomidine sedation successfully generalized to propofol
sedation and natural sleep (while occipital delta power did not).
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FIGURE 7

Channel-wise differences in Lempel-Ziv complexity (LZC) in different sleep stages compared to wakefulness. Topoplot of channel-wise
differences in estimated marginal mean LZC for stages NREM1 (A), NREM2 (B), NREM3 (C), and REM (D) versus Wake. For each EEG channel, we
fit a linear mixed model (LMM) with sleep stage as a fixed factor (including intercept), and participant and trial (nested within participants) as
random intercepts. Epochs were entered as repeated measures with first-order auto regressive residual variance-covariance (same as the
model for average LZC over all channels as a function of sleep stage). Approximate EEG electrode positions are indicated by black dots, and
channels for which LZC was significantly different from wake at the un-adjusted 0.05 level are marked by white circles.

It should be noted that data availability, especially the
low number of NE awakenings, is a limitation of the analysis
of dreaming versus non-dreaming. There are also inherent
uncertainties in how accurately reported dream experience
captures actual experience right before the awakenings (alarm).
Although we took great care to instruct the participants, it
is impossible to rule out that some dream reports may refer
to earlier periods of dreaming during the sleep trial, or brief
experiences during awakening, after the alarm. Indeed, we chose
to exclude the question about any emotions the participant may
have had right before the alarm from further analysis, because
of considerable doubt as to whether the answers referred to
the intended period of time. Memory failure and positivity bias
may also potentially influence whether a participant reports no
dream experience, dream experience without recall or dream
experience with explicit recall of contents.

There was no significant correlation between posterior
LZC and subjective scores of dream experience diversity and
vividness. While some promising results in this direction have
been reported earlier, particularly in studies of psychedelics

(Schartner et al., 2017a; Timmermann et al., 2019) and
“meaningfulness” of presented stimuli (Boly et al., 2015), LZC
has also been found to be unresponsive to the information rate
of auditory stimuli (Bola et al., 2018).

Similarly, subjective scores of how perceptual (or thought-
like) the dream experience was, did not significantly correlate
with posterior LZC for NREM2 awakenings with reported
dream experience, meaning that we failed to reproduce the
significant positive correlation that we found in our previous
study (Aamodt et al., 2021).

As for reports of dreaming more generally, content ratings
can in principle refer to experiences outside of the intended
time period. How the scales are used can be affected by
each participant’s interpretation. Even though we gave detailed
written and oral explanations of the dream questionnaire,
during awake practice rounds before the experiment there
were still sometimes lingering misunderstandings that needed
to be cleared up.

Furthermore, we cannot exclude the possibility that
confounds that were not included in the analysis might in
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FIGURE 8

Channel-wise differences in Lempel-Ziv complexity (LZC) in NREM2 awakenings without (explicit recall of) dream experience compared to
awakenings with dream experience. Topoplot of channel-wise differences in estimated marginal mean LZC for awakenings without dream
experience (A) and awakenings without recall of dream experience contents (B), versus awakenings with (explicit recall of) dream experience.
For each EEG channel, we fit a linear mixed model (LLM) with dream experience classification as a fixed factor (including intercept) and
participant as a random intercept (same as the model for average LZC over posterior channels as a function of dream experience classification).
Approximate EEG electrode positions are indicated by black dots, and channels for which LZC was significantly different from dream experience
(DE) at the un-adjusted 0.05 level are marked by white circles (there are none).

FIGURE 9

Channel-wise correlation between dream experience content ratings and Lempel-Ziv complexity (LZC) for NREM2 awakenings with dream
experience. Channel-wise correlation between LZC and subjective ratings of how diverse (A), vivid (B), perceptual (C), and thought-like
(D) NREM2 dream experiences were. For each subjective rating, and for each EEG channel, we fit a linear mixed model (LMM) with the
subjective rating of dream contents as a fixed covariate (including intercept) and participant as a random intercept. Approximate EEG electrode
positions are indicated by black dots, and channels for which the subjective ratings were significant covariates at the un-adjusted 0.05 level are
marked by white circles (there are none).
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FIGURE 10

Distribution of subjective ratings of dream experience for each sleep stage. Distribution of subjective ratings of how diverse (A), vivid (B),
perceptual (C), and thought-like (D) dream experiences were for each of the five sleep stages (Wake, NREM1, NREM2, NREM3, and REM). Each
data point corresponds to the report from one dream experience (DE) awakening. Observations are plotted on top of corresponding boxplots.
Participant number is indicated by marker fill color, and observations are displaced slightly along x-axis to avoid overlap.

principle camouflage an actual relationship between LZC and
dreaming, e.g., time from the start of the experiment, since the
start of the sleep trial or since entering NREM2 sleep.

Results for both multi-channel LZC and for the aperiodic
spectral exponent were mostly similar to those for single-
channel LZC, except that the estimated marginal mean
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spectral exponent, in contrast to LZC, was higher for
Wake than for NREM1.

Given the similar results between LZC and the aperiodic
spectral exponent,17 it is natural to ask whether changes in
complexity between sleep stages may just reflect changes in the
slope of the power spectrum, and more broadly, whether LZC
offers any practical advantage over traditional approaches to the
classification of consciousness based on EEG. Indeed, the LZC
of stochastic (random) signals has been found to increase with
signal bandwidth (Aboy et al., 2006) and (signed) slope of the
power spectrum [Supporting Information, (Toker et al., 2022)].
Furthermore, previous studies have illustrated that spectral
changes may account for (a major) component of the observed
difference in EEG/MEG LZC between different experimental
conditions. However, some component of the difference in
LZC (or any other similar measure) between datasets may
also be attributed to changes in phase and in phase-spectrum
interaction (Schwartzman et al., 2019; Mediano et al., 2021).
Finally, both LZC and the spectral exponent could be correlated
to other variables, such as excitatory-inhibitory balance (Gao
et al., 2017; Lombardi et al., 2017).

From a theoretical point of view, EEG LZC may in any
case be considered a more clearly motivated measure of
consciousness than the slope of the EEG power spectrum,
which could potentially be more directly linked to subjective
experience, compared to features of the power spectrum
(although it is important to keep in mind that EEG LZC itself
does not directly measure complexity of neural activity either).

Exploratory analysis of topographical patterns in how LZC
varies with sleep stage, NREM2 dreaming and ratings of
NREM2 dream experience did not suggest that LZC for any
other selection of channels was significantly different between
dreaming and non-dreaming, or correlated significantly with
subjective ratings of dream contents.

Ratings of how diverse, vivid, and perceptual dream
experience generally seemed to decrease with depth of NREM
sleep, in line with expectations and previous results (Siclari et al.,
2013).

While a null result in itself does not allow us to reject
the alternative hypothesis, the clear null results for every
single one of the within-state tests used here suggest there
may not be any (strong) relationship between (mean single-
channel) LZC and (aspects of) dream experience within the
same state (NREM2 sleep).

However, it is important to note the limitations mentioned
above. This study should thus be seen as an incremental
addition to other studies in the field. Taken together, the

17 We did not analyze the relationship between multi-channel LZC and
the aperiodic spectral exponent (or between single-channel LZC and
multi-channel LZC), but see Supplementary Figures 9, 10, and results
from Schartner et al. (2017b), which indicates that changes in multi-
channel complexity measures did not only reflect spectral changes.

available evidence underscores the conclusion that much further
research is needed.
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