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Leading Eigenvector Dynamics Analysis (LEiDA) is an analytic approach that

characterizes brain activity recorded with functional Magnetic Resonance

Imaging (fMRI) as a succession of discrete phase-locking patterns, or states,

that consistently recur over time across all participants. LEiDA allows for the

extraction of three state-related measures which have previously been key to

gaining a better understanding of brain dynamics in both healthy and clinical

populations: the probability of occurrence of a given state, its lifetime and

the probability of switching from one state to another. The degree to which

test-retest reliability of the LEiDA measures may be affected by increasing MRI

multiband (MB) factors in comparison with single band sequences is yet to

be established. In this study, 24 healthy older adults were scanned over three

sessions, on weeks 0, 1, and 4. On each visit, they underwent a conventional

single band resting-state fMRI (rs-fMRI) scan and three different MB rs-fMRI

scans, with MB factors of 4, with and without in-plane acceleration, and 6

without in-plane acceleration. We found test-retest reliability scores to be

significantly higher with MB factor 4 with and without in-plane acceleration

for most cortical networks. These findings will inform the choice of acquisition

parameters for future studies and clinical trials.

KEYWORDS
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Introduction

Traditionally, resting-state functional MRI (rs-fMRI)
studies have assumed that the functional connectivity (FC)
between different regions of the brain is constant over
time. However, over the last decades FC studies have begun
investigating variations in FC in the order of seconds and
have revealed that brain activity does fluctuate over time
(Hutchison et al., 2013; Preti et al., 2017) and that brain
regions can synchronize in activity even in the absence of any
specific task or stimulus (Biswal et al., 1995; Chang and Glover,
2010). Since these early discoveries, a significant number
of studies have emerged, aiming to specifically investigate
this so-called dynamic FC (Liegeois et al., 2017; Yue et al.,
2018; Lurie et al., 2020). Rs-fMRI research has demonstrated
that there exist meaningful functional networks, also called
resting-state networks (RSNs), that reflect spontaneous
patterns of coordinated activity at rest. Methods focusing
on the time-varying activation of RSNs have been shown
to be sensitive to disruption of healthy brain functioning
(Derome et al., 2018; Figueroa et al., 2019; Li et al., 2019;
Alonso-Martínez et al., 2020).

One common approach to studying dynamic FC is the
sliding-window method (Hutchison et al., 2013; Shakil et al.,
2016), which involves segmenting the resting-state time series
from different brain regions or voxels into shorter subsets of
consecutive volumes (windows), with connectivity estimated
for each of the truncated timeseries. This technique has
shed light on some of the fundamental properties of brain
network functions, such as revealing unique profiles of dynamic
connectivity for different subdivisions of the insula (Nomi et al.,
2016) and network dysfunction in several psychiatric disorders.
Indeed, atypical temporal variability of the FC of the amygdala
has been observed in schizophrenia (Yue et al., 2018) and altered
medial prefrontal cortex FC dynamics have been identified in
major depression (Kaiser et al., 2016). However, limitations of
this method include the initial choice of the window length and
the length of the steps by which the window moves, which may
affect statistical outcomes such as the sensitivity and specificity
of the results (Hindriks et al., 2016; Preti et al., 2017).

To address these issues, Cabral et al. (2017) introduced a new
method for studying dynamic FC called Leading Eigenvector
Dynamics Analysis (LEiDA). This approach aims to study brain
dynamics as a succession of discrete phase-locking states in
fMRI signals that recur over time across all subjects. More
specifically, LEiDA explores time-varying FC by examining the
instantaneous phase relationship between brain regions and
identifying specific epochs when a particular FC pattern, or
state, starts dominating the variance of the dynamic FC at
the brain level. This approach limits issues related to high
dimensionality of the data by calculating, at each timepoint,
the largest magnitude eigenvector of phase alignment across all
regions of interest (ROIs) and only examining the relative phase

of each ROI with respect to the leading eigenvector (Cabral et al.,
2017). This leads to the detection of meaningful BOLD phase-
locking patterns, or states, that have previously been shown
to closely overlap with functional subsystems described in the
literature (Yeo et al., 2011; Lord et al., 2019).

The LEiDA approach has been used in the past to
gain a better understanding of brain dynamics across a
range of healthy and clinical populations. It was initially
applied to a neuropsychology study, which demonstrated a
close relationship between the switching profile of resting-
state functional patterns in healthy older adults and their
performance on neuropsychological tests (Cabral et al., 2017).
The method has also contributed to providing a novel
neurobiological profile of trait self-reflectiveness (Larabi et al.,
2020), hedonic processing (Stark et al., 2019), and vulnerability
to major depressive disorders (Figueroa et al., 2019). Evidence
increasingly points toward the study of metastable phase
coupling and uncoupling as a solid and robust signature
of typical and atypical brain function that warrants further
investigation (Deco et al., 2019; Hancock et al., 2022).

It is worth noting that LEiDA allows for the extraction of
three measures: the probability of occurrence of a given state,
its lifetime and the probability of switching from one state to
another. Using an open-source fMRI dataset from 99 healthy
participants from the Human Connectome Project, Vohryzek
et al. (2020) explored the test-retest reliability of all three
measures over time using the Intraclass Correlation Coefficient
(ICC; Shrout and Fleiss, 1979). The ICC scores were derived
from two resting-state fMRI scans with a multiband (MB) factor
of 8 and a TR of 0.72 s, acquired on the same day within the same
session and differing only in the oblique axial acquisition phase
encoding (left to right in one run and right to left in the other
run). ICC scores for the probability of occurrence and lifetime
measures showed “fair” to “moderate” reliability scores overall,
while the switching probability matrix exhibited “poor” to
“substantial” reliability scores. Achieving satisfactory test-retest
reliability is crucial when considering LEiDA’s possible clinical
applications. Indeed, reliability of results ensures effective and
trustworthy contribution to scientific and clinical knowledge,
including the ability to replicate and integrate data into larger
investigations (Bennett and Miller, 2010).

It is important to note that MB acquisitions were first
introduced by Larkman et al. (2001) in 2001 and have since
become increasingly used due to their ability to increase the
temporal resolution of fMRI scans and therefore accelerate
scanning time. MB sequences consist of simultaneously exciting
and acquiring multiple slices of the brain by using a MB
radiofrequency pulse, instead of exciting only one slice of the
brain at a time as observed with conventional single band
acquisitions. They are typically acquired using a high number
of channels in the head coil, such as a 32-channel head coil
with a higher number of rows of coils along the z-axis. The
number of slices simultaneously excited is referred to as the MB
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factor and, for a given period of acquisition time, the number of
volumes collected increases by the MB factor. For this reason,
MB protocols can significantly improve temporal resolution
[i.e., decreased the repetition time (TR) needed] for whole-
brain imaging. However, they may also lead to reduced temporal
signal-to-noise ratio because of signal dropout (Chen et al.,
2015). To mitigate issues associated with susceptibility-related
distortions as well as signal dropouts, in-plane acceleration
has also been used in recent studies (Todd et al., 2016). In-
plane acceleration typically consists in combining data in image
space as it is typically performed with “Sensitivity Encoding”
or “SENSE” acceleration or combining data in k-space as
it is commonly achieved with “Generalized Auto-calibrating
Partial Parallel Acquisition” (GRAPPA). Previous studies have
suggested that a total acceleration of 4 (i.e., MB factor 2 with
in-plane acceleration of 2) allows for an optimal detection of
common RSNs and is associated with a negligible decrease in
signal to noise ratio in comparison with a total acceleration of 2,
6, and 8 (Preibisch et al., 2015). Additionally, recent research has
also demonstrated the key role of MB sequences in improving
the test-retest reliability of FC measures for cortical structures
in the context of commonly used static, as opposed to dynamic,
FC measures (Cahart et al., 2022). More specifically, MB 4 with
no in-plane acceleration was the MB sequence that yielded the
highest reliability scores for cortical structures, while MB 4
with an in-plane acceleration of 2 displayed the lowest values.
In contrast, single band acquisition was recommended when
the experimental focus was specifically on subcortical regions.
However, it is not yet known how different MB factors combined
with different levels of in-plane acceleration influence test-retest
reliability of metrics of dynamic FC.

Additionally, recent research suggests that the number of
scanning sessions, as well as the time frame within which the
scans occur, are important experimental components that can
significantly influence test-retest reliability (Bennett and Miller,
2010). Indeed, within-subject factors such as attention, arousal,
physiological, and cognitive changes are known to have an
impact on test-retest reliability across sessions. In particular, it
has been suggested that the greater the amount of time between
the initial scan and the subsequent retest scan, the larger these
changes are likely to be, thus potentially lowering ICC scores
(Bennett and Miller, 2010).

The present study aimed to address gaps in the literature by
investigating the test-reliability of all three LEiDA measures over
three runs acquired at the same time of day on weeks 0, 1, and
4, across both single band and MB modalities with and without
in-plane acceleration.

Based on the previous research described above, we
hypothesized that (1) ICC scores would be significantly higher
for MB compared to single band and (2) MB ICC scores would
be highest with a total acceleration of 4 (i.e., MB 4 with no
in-plane acceleration) and lowest with a total acceleration of

8 (i.e., MB 4 with an in-plane acceleration of 2) across all
three LEiDA measures.

Materials and methods

Participants

Twenty-four healthy older adults (M = 16, F = 9) aged
between 52 and 73 took part in the study after providing written
informed consent (ethics number HR-17/18-5720; King’s
College London Research Ethics Committee). All participants
were right-handed, with no history of psychiatric disorder or
neurological disease and were not taking any psychoactive
treatments such as antidepressants.

Procedure

Each participant attended three scanning sessions at the
Centre for Neuroimaging Sciences (Institute of Psychiatry,
Psychology and Neuroscience; King’s College London), on
weeks 0, 1, and 4, at the same time of day,± 1 h,± 1 day.

Magnetic resonance imaging data
acquisition

All participants were scanned in the same 3T MR scanner
(Discovery MR750, General Electric, Milwaukee, WI, USA).
On each visit, they underwent an anatomical T1-weighted
MRI with the following parameters: repetition time = 8.23 ms;
echo time = 3.25 ms; flip angle = 12◦; field of view = 230
mm2; matrix size = 256 × 256; slice thickness = 0.9 mm;
1 mm isotropic resolution. Participants also underwent four
resting-state FC sequences: (1) standard Echo-Planar Imaging,
in-plane acceleration 2 (SB, ASSET = 2); (2) MB 4, no in-
plane acceleration (MB = 4, ARC = 1); (3) MB 4, in-plane
acceleration 2 (MB = 4, ARC = 2); and (4) MB 6, no
in-plane acceleration (MB = 6, ARC = 1). In this paper,
ASSET (“Array Coil Spatial Sensitivity Encoding”) refers to the
methodology we employed for the single band sequence. It is
the General Electric commercial name for SENSE acceleration.
It consists in parallel imaging with in-plane acceleration,
combining data in image space as it is commonly done
when using SENSE acceleration. For MB sequences, because
ASSET is not compatible with MB, we employed ARC (“Auto-
calibrating Reconstruction for Cartesian Imaging”), which refers
to parallel imaging with data combination in k-space as
performed by GRAPPA. ARC is the General Electric commercial
name for GRAPPA.

The parameters for each of the rs-fMRI runs are presented
in Table 1. The order of the four sequences was counterbalanced
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TABLE 1 Parameters of resting-state fMRI sequences.

TR TE FA FoV Matrix
size

Time
points

SB-ASSET2 2,000 ms 30 ms 82◦ 211× 211× 126 64× 64 240

MB4-ARC1 750 ms 30 ms 63◦ 211× 211× 145 64× 64 644

MB4-ARC2 750 ms 30 ms 63◦ 211× 211× 145 64× 64 645

MB6-ARC1 550 ms 30 ms 57◦ 211× 211× 138 64× 64 873

TR, repetition time; TE, echo time; FA, flip angle; FoV, field of view. Each run was 8-min
long and carried out using a 32-channel head coil from Nova.

across imaging sessions and subjects. Each run was 8-min long.
For this study, we used the Nova 32-channel head coil.

During the acquisition of the resting-state sequences, the
participants were asked to look at a white cross on a dark
screen in a wakeful resting state and were provided with
headphones and earplugs in order to reduce the acoustic noise
generated by the scanner.

Magnetic resonance imaging data
pre-processing

Statistical Parametric Mapping (SPM12; Wellcome Trust
Centre for Neuroimaging, London, UK) and the CONN
toolbox Version 18b (Whitfield-Gabrieli and Nieto-Castanon,
2012) were used to pre-process the data. Pre-processing of
the functional data included realignment (motion correction),
registration to structural images, spatial normalization into
the Montreal Neurological Institute (MNI) standardized space
and smoothing with a Gaussian filter of 5.0 mm spatial
full width at half maximum value. As slice timing effects
are considerably larger for single band sequences compared
to MB, slice-timing correction was performed only on the
standard echo-planar imaging sequence. The artifact rejection
tool (ART), implemented in CONN,1 was used to identify
outliers based on subject movement and changes in the fMRI
signal. Volumes with a framewise displacement (FD) above 0.9
mm or global BOLD changes above 5 standard deviations were
flagged as potential outliers. One covariate per outlier volume
was entered in the denoising regression step so as to limit the
influence of those scans on the analyses. In particular, FD is
computed by the ART toolbox and is calculated by considering
a 140 × 180 × 115 bounding box around the brain for each
timepoint, and estimating the maximum brain displacement
across six control points placed at the center of each face of
the bounding box (Nieto-Castanon, 2020). Furthermore, the
anatomical CompCor method (aCompCor; component-based
noise correction method; Behzadi et al., 2007) was used to
estimate and regress out physiological and other irrelevant
sources of noise. More specifically, a binary mask with values

1 http://www.nitrc.org/projects/artifact_detect

higher than 50% in white matter and CSF posterior probability
maps was applied in order to define potential confounding
effects from the observed BOLD signal within each of those two
areas. Within each area, a principal component decomposition
was carried out on the subspace orthogonal to the mean BOLD
signal and to all other known potential confounding factors. Five
potential noise components (Chai et al., 2012) were estimated:
the first one was calculated as the average BOLD signal, and
the other four were computed as the first four components in
a Principal Component analysis of the covariance within that
subspace. A conventional bandpass filter over a low-frequency
window of interest (0.008–0.09) was then applied to the resting-
state time series for the four rs-fMRI modalities.

In order to check that aCompCor had successfully reduced
motion artifacts, given that head motion may distort rs-fMRI
data, the distribution of the correlations between FD and percent
signal change [as measured by the Derivative of root mean
square VARiance over voxelS (DVARS)] for each participant
was plotted for run 1 for each rs-fMRI modality (Hallquist
et al., 2013; Muschelli et al., 2014) using MATLAB R2020a
(MathWorks, Natick, MA, USA). The FD timeseries were
extracted from the CONN toolbox for each rs-fMRI modality
and each subject. The DVARS timeseries for each rs-fMRI
modality and each subject were calculated before and after
denoising using a script provided by Afyouni and Nichols
(2018). In order to further explore how much variability in
DVARS is explained by FD, the Coefficients of Determination
were also calculated for each rs-fMRI modality and each subject,
using the mdl.Rsquared MATLAB command. Finally, in line
with previous work by Muschelli et al. (2014), Wilcoxon’s
signed-rank tests were performed to formally assess differences
in group medians with regards to the distribution of the
correlations FD-DVARS and the Coefficients of Determination.
We used false discovery rate (FDR) correction (Benjamini and
Hochberg, 1995) to adjust for all four rs-fMRI modalities.

Dynamic analysis

The analysis of dynamic connectivity was carried out in
MATLAB R2020a (MathWorks, Natick, MA, USA) using LEiDA
scripts adapted from Cabral et al. (2017). The scripts can be
found here: https://osf.io/xy4gm/.

N = 105 ROIs were extracted from the CONN toolbox
(Whitfield-Gabrieli and Nieto-Castanon, 2012) and were
anatomically defined based on the Harvard-Oxford cortical
atlas. The BOLD signals were averaged over all voxels belonging
to each ROI. The cerebellar ROIs were not included in line
with previous work (Cabral et al., 2017) due to the absence of
cerebellar networks in the Yeo parcellation used as part of our
analyses (Yeo et al., 2011).

In order to capture recurrent phase-locking patterns, we first
estimated the phase of the fMRI BOLD signals over time for each
brain region (N = 105) for each of the four rs-fMRI modalities
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using the Hilbert transform. More precisely, the timeseries were
first demeaned and then transformed into an analytic signal
which, unlike the real, measured, signal, has an associated phase.
The Hilbert transform expresses the signal as the product of the
time-varying amplitude A(t) and the cosine of a time-varying
phase angle θ(t) as follows:

x(t) = A(t) cos θ(t)

Indeed, it computes an imaginary component of the real
signal assuming that the signal oscillates over time: the real
signal is represented by the cosine of the phase angle, while the
imaginary signal is represented by the sine. Since the signal is

analyzed in the complex domain, the analytic signal results from
adding together the real and imaginary components:

A∗ cos(θ)+ li∗A∗ sin(θ)

Once the analytic signal was computed and the BOLD
phases were identified for each ROI, the second step consisted
in identifying the degree of synchrony between pairs of
brain regions at each timepoint t. First, we computed a
symmetric BOLD phase-lockingmatrix [dPL(t)], which shows
phase alignment, or degree of BOLD synchrony, between pairs
of ROIs across the entire brain for each participant at each
timepoint t, as illustrated in Figure 1A. For every pair of ROIs

FIGURE 1

Identification of recurrent BOLD phase-locking patterns (or states) in fMRI signals. (A) (left) Instantaneous BOLD phases represented in cortical
space for each of the 105 ROIs. Each arrow represents the phase orientation of each ROI at timepoint t and is centered around the center of
gravity of each ROI. Here, first volume (t = 1) for MB4-ARC1. (right) The 105 × 105 dynamic phase-locking matrix dPL(t) captures the degree of
synchrony between pairs of ROIs at time t. Red entries reflect full synchrony between pairs of ROIs (phase difference of 0◦◦) while blue entries
indicate a phase difference of 180◦. (B) At each timepoint t, the leading eigenvector V1(t) is a 105 × 1 vector which captures the dominant
pattern of the dPL matrix, or main orientation of all BOLD phases, at time t. Each element in the bar plot represents the contribution of each ROI
to V1(t) and is colored depending on its relative direction with respect to V1(t). Red means that the contribution is positive, while blue means it is
negative. (C) K-means clustering divides the sample of all leading eigenvectors V(t) into a reduced number of k clusters, or states. Here, the
Dunn score identified k = 5 as the optimal number of states to best explain the MB4-ARC1 data. (D) Each sphere represents the center of gravity
of a ROI, and each color represents the direction of the projection of the ROI’s phase onto the leading eigenvector V1 of that state. Here, k = 5
for MB4-ARC1. (E) Three measures are then extracted for each of these states: the probability of occurrence of each state, its lifetime and the
probability of switching from one state to another.
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a and b at time t, the dPL was calculated as the cosine of the
difference in phases of two regions, as follows:

dPL(b, a, t) = cos(θ(b, t)− θ(a, t))

At a given timepoint, two brain regions will have a phase-
locking value of 1 if their BOLD signals are in full synchrony,
or their phases are fully aligned, with no phase difference
in complex plane [i.e., cos(0) = 1]. In contrast, a value of
−1 reflects a phase difference of 180◦, or anti-phase. Phase-
locking measures synchronization by preserving the positive
and negative weights in the data and is bound between−1 and 1
(Hancock et al., 2022). An illustration of phase-locking patterns
between two signals is provided in Supplementary Figure 1.

To capture the phase-lockingpatterns of the dPL at
every timepoint t with reduced dimensionality, the leading
eigenvector V1(t) was then calculated for each dPL(t). More
specifically, for each dPL(t), the leading vector V1(t), of
dimension Nx1, captures the main orientation of the phases
across all 105 ROIs (Figure 1B). LEiDA considers only the
eigenvector with the largest magnitude eigenvalue rather than
considering all upper triangular elements of the dPL. This
approach allows for the dimensionality of the data to be
reduced from N(N-1)/2 to N. The NxN dominant connectivity
pattern of phase-locking can be retrieved by multiplying the
eigenvector with its transpose [V1(t)∗V1

T(t)] (Cabral et al.,
2017). The sign (positive or negative) of each element in V1(t)
represents the direction of the projection of each phase onto
V1(t) and can thus be used to separate the ROIs into two
groups according to their phase relationship and the direction
their phase projects onto V1(t) (Newman, 2006). Although the
relative sign of the elements in the eigenvector is arbitrary, a
convention setting most of the elements in V1(t) to negative
values has previously been established for consistency (Alonso-
Martínez et al., 2020; Vohryzek et al., 2020). A positive sign
highlights the network of ROIs whose phases project onto the
opposite direction from the leading eigenvector. It is worth
noting that this group of areas with a positive sign has previously
been shown to represent meaningful functional brain networks
dominating at a timepoint t, and significantly overlapping with
functional networks identified in the literature (Lord et al., 2019;
Vohryzek et al., 2020).

For each of the four rs-fMRI modalities, k-means partition
was then applied to all leading eigenvectors V1(t) in order to
divide the phase-space into an optimal number of clusters, or
states, k. The k-means algorithm relies on an iterative process
to find the solution that minimizes the distance between each
observation and the closest cluster centroid. In the present
study, k-means partition was used in order to iteratively cluster
the leading eigenvectors into k = 5 to k = 10 clusters, repeating
each calculation 1,000 times to ensure stability of the results.
The number of states initially chosen for the k-means clustering
analysis (i.e., k = 5–10) was based on a trade-off between
more-fined grained analysis made possible with higher k and

the robustness of the state solutions achieved with lower k
(Vohryzek et al., 2020). Finally, the Dunn score was calculated
in order to identify which optimal number of clusters k best
explains the number of states the brain travels across over the
entire duration of the scan (Figures 1C,D). The number of
clusters that yielded the highest Dunn index was selected, since a
higher index reflects more optimal clustering defined by smaller
variance within each cluster and higher inter-cluster distance
(Dunn, 1973). As such, the Dunn score is calculated as the ratio
between the minimal inter-cluster distance and the maximal
intra-cluster distance as follows:

DunnK = min
1<i,j<K

{ minx∈Ci,y∈Cj d(x, y)
max1<k<K maxx,y∈Ck d(x, y)

}
where d(x,y) represents the Euclidean distance between the
vectors x and y (Salehi et al., 2018).

Following the cluster partition into k states, three measures
were then extracted for each cluster or state: the probability of
occurrence, which represents the fraction of timepoints in which
a state is active during the scan; the lifetime, which refers to
the mean number of consecutive timepoints in which a state
is active during the scan; and the switching probability, which
represents the probability of switching from one state to another,
normalized by the probability of the occurrence of the state from
which the transitioning is taking place (Figure 1E).

Comparing clusters across all four
resting-state functional magnetic
resonance imaging modalities and in
relation to reference functional
networks

In order to be able to formally compare ICC scores across
all four rs-fMRI modalities, given that networks identified for
one fMRI sequence may be differently ordered in the k-means
output compared to the other three fMRI sequences, we
calculated, for each of the 105 ROIs, the proportion of ROIs that
shared spatial similarities between pairs of states across all four
rs-fMRI modalities using the Pearson’s correlation coefficient.
We then compared each state to seven reference functional
networks as defined by Yeo et al. (2011), which include the
visual, somato-motor, dorsal attention, ventral attention, limbic,
fronto-parietal, and DMN networks. In order to do so, each
of the seven networks was transformed into a vector with
N = 105 elements which represented how much each of the
N = 105 ROIs contributed to each of the seven Yeo networks. We
then calculated the Pearson’s correlation coefficients between
each Yeo network and each state across all four resting-state
modalities. Significance was set at p < 0.01/k, k being the
optimal number of states identified by the Dunn score for
each resting-state modality. Only networks where a significant
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correlation (p < 0.01/k) was observed across all four MRI
sequences were taken forward to the reliability analysis.

Intraclass correlation coefficient
analysis

We then calculated the ICC score (Landis and Koch, 1977)
of each of the extracted measures (i.e., probability of occurrence,
lifetime, and switching probability) for each state across all
sessions for each rs-fMRI modalities (i.e., SB-ASSET2, MB4-
ARC1, MB4-ARC2, and MB6-ARC1). The ICC scores were
calculated using a Matlab code developed by Salarian (2016).
The ICC score describes the proportion of within-subject
variability vs. between-subject variability as follows, where MSEb

and MSEw are the between-subject and within-subject mean
squared errors, respectively (Charman et al., 2017):

ICC =
MSEb−MSEw
MSEb+MSEw

MSE =
SStotal−MSR ∗ (n− 1)−MSC ∗ (k− 1)

(n− 1) ∗ (k− 1)

SStotal = var(x(:))∗(n∗k− 1)

MSR = var(mean(x, 2))∗k
MSC = var(mean(x, 1))∗n

where x is the data matrix.
ICC scores typically range between −1 and 1. However,

in this manuscript the values have been scaled to a range of
−100 and 100, resulting in the following categorization: poor
(ICC < 21), fair (20 < ICC < 41), moderate (40 < ICC < 61),
substantial (60 < ICC < 81), and almost perfect (ICC > 80)
(Landis and Koch, 1977).

In order to formally compare ICC scores across modalities,
F-tests were run for each LEiDA metric, testing the null
hypothesis that the ICC score of a given modality was equal to
that of another modality, in line with previous work by McGraw
and Wong (1996). FDR correction (Benjamini and Hochberg,
1995) was used for adjusting for all four LEiDA states and all
six contrasts (i.e., SB-ASSET2 compared to MB4-ARC1, MB4-
ARC2, and MB6-ARC1; MB4-ARC1 compared to MB4-ARC2
and MB6-ARC1; and MB4-ARC2 compared to MB6-ARC1.

Results

Motion characteristics of the sample

In line with previous studies (Hallquist et al., 2013;
Muschelli et al., 2014), there was a significant reduction in the
median correlation between FD and DVARS after denoising

compared to before within all four rs-fMRI modalities, FDR-
corrected. Plots of the distributions across subjects before and
after denoising are provided in Supplementary Figure 2. With
regards to the Coefficients of Determination, there was also
a significant reduction in how much variability in DVARS is
explained by FD after denoising compared to before, for each
of the four rs-fMRI modalities, FDR-corrected (Supplementary
Figure 3).

Dynamic analyses

The Dunn score revealed an optimal solution with
k = 6 clusters for single band and k = 5 clusters for all
three MB modalities.

Comparing clusters across all four
resting-state functional magnetic
resonance imaging modalities and in
relation to reference functional
networks

Pearson’s correlation coefficients between clusters, or states,
across all four modalities are provided in the Supplementary
Figure 4. A significant correlation (p < 0.01/k) was observed
across all four fMRI sequences only for the somato-motor and
ventral attention networks, the visual network, the DMN and
the frontoparietal and dorsal attention networks, and therefore
only these networks were taken forward to the ICC analysis.
The rendering of each of these states on the cortex across all
four modalities, in addition to Pearson’s correlation coefficients
between each of these states and each of the seven Yeo
networks, is presented in Figure 2. Colored areas represent the
brain regions whose phase positively projects onto the leading
eigenvector of that state. Because the k-means clustering was
run separately for each of the four modalities, the networks were
ordered differently in the k-means output across modalities.
This explains why the number attributed to each state varies
across modalities. In the rest of the paper, we will refer to
each state by the Yeo reference network (Yeo et al., 2011) they
most correlate with in order to make figures and tables easier
to interpret.

For each of the four states taken forward to the ICC analyses,
there were a few differences across the four modalities in terms
of which ROIs positively contributed to each state. First, for the
somato-motor and ventral attention network, the left posterior
temporal gyrus and the frontal operculum cortex positively
contributed only to all three MB modalities; the left anterior
supramarginal gyrus positively contributed only to SB-ASSET2,
MB4-ARC1, and MB6ARC1; and the anterior temporal fusiform
cortex positively contributed only to SB-ASSET2.
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FIGURE 2

Consistency of cluster centroids detected across modalities. The four panels represent the patterns detected in each fMRI acquisition modality,
namely SB-ASSET2 (A), MB4-ARC1 (B), MB4-ARC2 (C), and MB6-ARC1 (D). Bar graphs at the top of each panel report the Pearson’s correlation
coefficients between the patterns representative of each state and seven functional networks used as reference defined by Yeo et al. (2011).
Each state is represented by rendering the subset of brain areas with positive values in the leading eigenvector of that state on a transparent
cortex displayed in axial and saggital views. Vis, visual network; SMot, somato-motor network; DorAtt, dorsal attention network; VenAtt, ventral
attention network; FrPar, frontoparietal network. *Represents a significant correlation between a given state and a Yeo network.

With regards to the visual network, the superior parietal
lobule positively contributed only to MB6-ARC1; and the
posterior parahippocampul gyrus positively contributed only to
SB-ASSET2, MB4-ARC1, and MB4-ARC2.

For the DMN, the right frontal pole, the right superior
frontal gyrus, the inferior frontal gyrus triangularis, the frontal
operculum cortex, the thalamus and the caudate positively
contributed positively contributed only to all three MB

modalities, while the temporal pole, the parahippocampal
gyrus, the temporal fusiform cortex, the hippocampus and the
amygdala positively contributed only to SB-ASSET2.

Finally, for the frontoparietal and dorsal attention networks,
the superior frontal gyrus, the left anterior inferior temporal
gyrus and the paracingulate gyrus positively contributed only
to SB-ASSET2; the frontal pole, the occipital fusiform gyrus
and the caudata positively contributed only to SB-ASSET2 and
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MB6-ARC1; and the superior parietal lobule, the inferior lateral
occipital cortex, the posterior temporal fusiform cortex and the
temporooccipital part of the inferior temporal gyrus positively
contributed only to MB4-ARC1 and MB4-ARC2.

Intraclass correlation coefficient
analysis

In order to identify the test-retest reliability of all three
LEiDA metrics (i.e., probability of occurrence, lifetime, and
switching probability), we calculated the ICC scores of each
measure across all three runs for each network and each
modality. Full details of the ICC scores and associated
confidence intervals are provided in Table 2 and Figure 3.
Overall, ICC scores ranged between “fair” and “substantial”
for the probability of occurrence and between “poor” and
“substantial” for the lifetime and switching probability measures
across all four modalities.

More specifically, for the probability of occurrence metric,
6 out of 12 ICC values fell into the moderate range
(40 < ICC < 61) and 2 out 12 fell into the substantial range
(60 < ICC < 81) for MB, while 2 out of 4 values fell into the
moderate range for single band. For the lifetime, 10 out 12 values

TABLE 2 Reliability of probabilities and lifetimes across three time
points for the four modalities.

Yeo networks SMot and
VenAtt

Visual DMN FrPar and
DorAtt

SB-ASSET

ICC_probability
(LB−UB)

39 (14–64) 52 (28–73) 24 (0–51) 51 (27–73)

ICC lifetime
(LB−UB)

25 (1–53) 33 (7–59) 33 (8–59) 51 (27–72)

MB4-ARC1

ICC probability
(LB−UB)

40 (16–64) 59 (37–76) 57 (34–76) 40 (15–63)

ICC lifetime
(LB−UB)

48 (24–69) 38 (14–62) 59 (37–77) 42 (18–65)

MB4-ARC2

ICC probability
(LB−UB)

54 (30–73) 77 (60–87) 50 (25–70) 52 (28–72)

ICC lifetime
(LB−UB)

49 (26–69) 65 (45–81) 41 (16–64) 49 (26–70)

MB6-ARC1

ICC probability
(LB−UB)

38 (13–62) 60 (37–77) 57 (34–76) 32 (7–57)

ICC lifetime
(LB−UB)

42 (17–65) 56 (33–75) 47 (23–69) 47 (23–69)

ICC scores (lower bound of the 95% confidence interval—upper bound of the 95%
confidence interval) for the probability of occurrence and the lifetime for each of the
four modalities across the three visits for single band (SB-ASSET2) and Multiband MRI
acquisitions (MB4-ARC1, MB4-ARC2, and MB6-ARC1); color-coded based on Landis
and Koch (1977)’s ICC categorization: poor in blue, fair in green, moderate in orange,
substantial in red, and almost perfect in brown; FDR-corrected.

fell into the moderate range and 1 score fell into the substantial
range for MB, while only 1 out of 4 values fell into the moderate
range for single band. For the switching probability, 7 out 36
values fell into the moderate range and 1 fell into the substantial
range for MB, and 3 out of 12 values fell into the moderate range
for single band.

Formal comparison of the ICC scores across modalities
revealed different patterns of reliability across networks and
LEiDA measures (see Table 2 and Figure 4).

With regards to the somato-motor and ventral attention
networks, there was no significant difference across modalities
for the probability of occurrence. For the lifetime, the F-test
revealed significantly higher reliability scores MB4-ARC2 (state
1) compared to SB-ASSET2 (state 2), however, it did not survive
pFDR correction [F(23, 46) = 3.66; p = 0.02, pFDR > 0.05].
The ICC score for switching probability from these networks
to the DMN was significantly more reliable for MB4-ARC2
compared to all other three modalities (F = 4.8; p = 0.00006
with SB-ASSET2; F = 2.94; p = 0.0007 with MB4-ARC1;
F = 3.66; p = 0.00006 with MB6-ARC1). No significant difference
across modalities was found for the transition from these
networks to the visual networks and the frontoparietal and
dorsal attention networks.

Additionally, the visual network yielded significantly higher
ICC scores with MB4-ARC2 (state 4) compared to SB-ASSET2
for the probability of occurrence measure [F(23, 46) = 2.53,
p = 0.002, pFDR < 0.05] and MB4-ARC1 [F(23, 46) = 2.02,
p = 0.01, pFDR < 0.05]. The F-test also revealed significant
differences between the ICC scores for MB4-ARC2 and MB6-
ARC1, however, it did not survive FDR correction [F(23,
46) = 1.95, p = 0.02, pFDR > 0.05]. With regards to the lifetime
measure, the visual network showed significantly increased
reliability with MB4-ARC2 compared to SB-ASSET2 [state 4,
F(23, 46) = 2.70, p = 0.001, pFDR < 0.05] and MB4-ARC1
[state 4, F(23, 46) = 2.35, p = 0.004, pFDR < 0.05] only. The
switching probability from the visual network to the DMN
was significantly more reliable with MB4-ARC2 compared to
SB-ASSET2 [F(23, 46) = 2.72; p = 0.001, pFDR < 0.05] and
MB4-ARC1 [F(23, 46) = 3.32; p = 0.0001, pFDR < 0.05].
Furthermore, the switching probability from this network to the
somato-motor and ventral attention networks was significantly
more reliable with MB4-ARC2 compared to MB6-ARC1 [F(23,
46) = 3.70, p = 0.00005, pFDR < 0.05] and also significantly
more reliable compared to SB-ASSET2 [F(23, 46) = 2.1, p = 0.01]
and MB4-ARC1 [F(23, 46) = 2.04, p = 0.01] but did not survive
FDR correction for these latter two modalities (pFDR > 0.05).

Furthermore, the probability of occurrence of the DMN
was significantly more reliable for SB-ASSET2 compared to
MB4-ARC1 [F(23, 46) = 2.55, p = 0.002, pFDR < 0.05],
MB4-ARC2 [F(23, 46) = 2.01, p = 0.01, pFDR < 0.05] and
MB6-ARC1 [F(23, 46) = 2.46, p = 0.003, pFDR < 0.05]. In
contrast, only MB4-ARC1 exhibited significantly higher ICC
scores compared to SB-ASSET2 for the lifetime, however, it
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FIGURE 3

Reliability of switching probabilities between states for the 4 modalities. ICC scores (lower bound of the 95% confidence interval- upper bound
of the 95% confidence interval) for the switching probability measure from and to each of the states for SB-ASSET2, MB4-ARC1, MB4- ARC2,
and MB6-ARC1; color-coded based on Landis and Koch (1977)’s ICC categorization: poor in blue, fair in green, moderate in orange, substantial
in red, and almost perfect in brown. SM, somato-motor network; VA, ventral attention network; FP, frontoparietal network; DA, dorsal attention
network; Vis, visual network.

did not survive FDR correction [F(23, 46) = 2.13, p = 0.01,
pFDR > 0.05]. Additionally, the switching probability from the
DMN to the somato-motor and ventral attention networks was
significantly more reliable with MB6-ARC1 compared to SB-
ASSET2 [F(23, 46) = 2.30; p = 0.007, pFDR < 0.05]. In contrast,
the switching probability from the DMN to the visual network
was significantly more reliable with MB4-ARC2 compared to
SB-ASSET2 [F(23, 46) = 2.91; p = 0.0007, pFDR < 0.05] and
MB4-ARC1 [F(23, 46) = 2.04; p = 0.01] but did not survive FDR
correction for MB4-ARC1 (pFDR > 0.05).

Finally, with regards to the frontoparietal and dorsal
attention networks, there were no differences across all four

modalities for the probability of occurrence, the lifetime or the
switching probability from and to these states.

Discussion

To our knowledge, this study was the first to compare
the test-retest reliability of all three LEiDA measures (i.e.,
the probability of occurrence, the lifetime, and the switching
probability) across a conventional single-band fMRI and
three different MB acquisitions, with and without in-plane
acceleration, across three visits. Previous research has suggested
that an acceleration factor of 8 yields satisfactory ICC scores
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FIGURE 4

Formal comparison of the ICC scores and associated confidence intervals for the probability of occurrence and lifetime measures across all four
rs-fMRI modalities. n.s., non-significant; (∗), significant F-test, FDR-uncorrected (did not survive FDR correction); ∗, significant F-test,
FDR- corrected (survived FDR correction).

across all three measures (Vohryzek et al., 2020). However, no
study to date had explored which combination of MB and in-
plane acceleration factors give the best results in comparison
with single band sequences.

The main finding of this study is that, for all three LEiDA
measures, ICC scores were higher for all three MB modalities
compared to single band. These findings concur with our first
hypothesis that ICC scores would be significantly higher across
all three MB modalities compared to single band and may
reflect MB sequences’ key contribution to faster sampling rate
leading to the acquisition of a greater number of timepoints
and increased detection of subtle changes in dynamic spatio-
temporal patterns of brain activity. Improved reliability with
MB was observed for the visual network, the DMN and the
somato-motor and ventral attention networks. It is worth noting
that all these networks are cortical networks. These findings
therefore accord with previous studies emphasizing the key role
of MB sequences in improving test-retest reliability of activity
in cortical structures (Cahart et al., 2022). Additionally, in the
present study, the limbic network, which includes subcortical
structures such as the amygdala and the nucleus accumbens,
correlated with single band’s state 6 but did not correlate with
any of the MB states and therefore was not included in our
subsequent ICC analyses. It is important to mention that, even
when we imposed six states (e.g., k = 6) during state selection
for the MB sequences, the limbic network still represented the
only network that did not correlate with any of the states. This

suggests that MB sequences reduce LEiDA’s ability to detect the
limbic network, which is consistent with a large body of evidence
showing that subcortical structures are more prone to reduced
signal to noise ratio in the context of MB compared to single
band (Risk et al., 2021; Cahart et al., 2022). This could also
explain why the limbic network was not successfully detected in
previous MB studies using LEiDA, unless the number of states
(k) was strictly higher than 8 (Vohryzek et al., 2020).

Furthermore, for the probability of occurrence and lifetime
measures, it is important to mention that most MB ICC scores
exceeded 40 (i.e., 0.40) and fell into the moderate range, which
is in line with previous findings (Vohryzek et al., 2020), except
for MB4-ARC2 where values reached the substantial range
(60 < ICC < 81) for some of the states. Overall, these results
outperform ICC values reportedly obtained with other dynamic
FC methods such as sliding windows (Choe et al., 2017). Indeed,
approximately 75% of ICC values derived from the variance
of ROI-to-ROI connectivity across short sliding windows of
fixed length of time have previously been observed to fall below
40 when the data was acquired with a standard single band
sequence and up to 100% of the ICC values fell under 40 for
sequences with an acceleration factor of 8, depending on the
window length (Choe et al., 2017). These results support the
key role of LEiDA as an alternative to other dynamic approaches
when it comes to reliably detecting brain dynamics.

Additionally, for the probability of occurrence and lifetime,
the pattern of reliability values across rs-fMRI modalities varied
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by networks. More specifically, with regards to the lifetime of
the DMN, scores were significantly higher with MB4-ARC1
compared to the single band modality, which fits in with our
second hypothesis, even though the difference did not survive
FDR correction. In contrast, and contrary to our expectations,
MB4-ARC2 yielded higher scores compared to SB-ASSET2 and
MB4-ARC1 across both metrics for the visual network. In the
context of the switching probability measure, scores also tended
to be significantly higher with MB4-ARC2 compared to the
other sequences for transitions across most states except for
transitions from and to the frontoparietal and dorsal attention
networks where no significant differences were observed across
modalities. These findings suggest that the combination of
increased MB factor (i.e., MB4) with in-plane acceleration
(i.e., ARC2) may not only capture time-varying patterns of
transitions more accurately through faster sampling compared
to SB-ASSET2 but also limit susceptibility distortions, thus
improving reliability scores.

Taken together, the present results demonstrate that MB
acceleration does improve ICC scores across all LEiDA measures
and most cortical networks. In particular, MB acceleration
might benefit studies exploring task-negative networks (i.e.,
DMN) which have been shown to be implicated in psychiatric
disorders such as major depressive disorder (Wise et al.,
2017), post-traumatic stress disorder (Fu et al., 2019), and
schizophrenia (Weber et al., 2020). MB sequences might also
improve reliability scores for other networks such as the somato-
motor and ventral attention networks which are known to be
involved in reorienting one’s attention toward salient stimuli
and have previously been implicated in Alzheimer’s Disease
(Gu et al., 2020), eating disorders (Spalatro et al., 2019), trait
impulsivity (Herman et al., 2020), and adolescent depression
(Liu et al., 2019).

Another key finding of this study is that the probability
of occurrence and lifetime measures showed reliability scores
ranging between fair and substantial across all four modalities
while the switching probability exhibited a more heterogeneous
profile of ICC scores ranging between poor and substantial
across all four modalities. It is worth highlighting that a
few factors might influence the ability of dynamic fMRI
measures to reliability detect meaningful patterns of brain
activity and disease biomarkers. Here, substantial ICC scores
for the probability of occurrence and lifetime of some of
the states might not only indicate that these LEiDA metrics
reliably capture dynamic FC patterns of brain activity over time
but may also suggest that the participants’ psychological and
physiological states were fairly stable across the three sessions. In
contrast, poor ICC scores observed for the switching probability
measure suggest that participants transitioned between states
in a highly different manner from one scan to the next,
thus increasing within-subject variability across visits. These
findings indicate that future studies using this LEiDA metric
may interpret findings with caution.

Limitations

One limitation of our study is that the cerebellar ROIs
were excluded from our analyses due to their absence in
the Yeo parcellations (Yeo et al., 2011). Future studies could
consider using different parcellations that include the cerebellar
networks, as cerebellar dysfunction is known to play a key role
in some neurodevelopmental and psychiatric disorders (Phillips
et al., 2015).

Additionally, for this study, aCompcor was carried out
before band-pass filtering, rather than simultaneously, which
we are aware may be accompanied by higher nuisance-related
variability in the resting-state frequencies of interest (Hallquist
et al., 2013). Recent studies have shown that neither of these
approaches (i.e., regression followed by bandpass filtering or
simultaneous execution of both processes) have been associated
with a poor attenuation of nuisance signals; and connectivity
estimates for both models have been shown to be very similar,
with no evidence of global signal changes of large magnitude
that would appear to be in temporal synchrony with head
motion (Hallquist et al., 2013). However, it has been suggested
that carrying out high-pass filtering after motion regression
may reintroduce artifacts into the data, and performing a
simultaneous regression on all nuisance covariates may limit
these issues (Lindquist et al., 2019). Considering these findings,
future studies should consider using the “Simult” option
implemented in CONN.

Furthermore, several studies have shown that head motion
and physiological artifacts such as cardiac and breathing
variations tend to be strongly linked to the variance in the
global fMRI signal (Power et al., 2017) and correlate with
patterns in time-varying FC (Xifra-Porxas et al., 2021), thus
affecting FC measures. Physiological corrections have been
shown to decrease ICC scores, suggesting that subject specificity
in FC measures is partly due to the presence of subject-specific
motion and physiological artifacts which complicates somewhat
the assessment of data quality based on test-retest reliability
measures. For this study, quality control metrics revealed a
significant reduction in the median correlations between FD and
DVARS after denoising compared to before for most of the runs
within all four rs-fMRI modalities using a standard aCompCor
approach. However, despite reducing the median FD-DVARS
correlations more effectively than when regressing out the mean
signals, the standard aCompCor approach has been shown to be
outperformed by pre-processing strategies such as aCompCor50
where a higher number of principal components are included
in the regression (Muschelli et al., 2014). Future studies may
consider using more aggressive pipelines to further remove
physiological noise and increase the validity of FC measures.

Finally, participants in this study were healthy and
neurotypical and therefore we can’t generalize our findings
to clinical populations. It could be argued that ICC scores
for some of the LEiDA measures could be different, and
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potentially higher, in clinical populations that tend to exhibit
repetitive thoughts, ritualistic behaviors or inflexible autonomic
responding such as individuals with depression, autism or
obsessive-compulsive behaviors (Borkovec, 1994; Thayer et al.,
1996; Kashdan, 2010). Future studies would benefit from
investigating the contribution of specific psychological and
physiological processes in modulating the test-retest reliability
of each of the LEiDA metrics in the context of psychiatric
disorders compared to healthy controls.

Conclusion

In conclusion, this study was the first, to our knowledge,
to compare ICC scores across four different rs-fMRI modalities
and across three visits in the context of the LEiDA measures.
We found strong evidence that MB modalities yield significantly
higher reliability scores compared to single band across all three
functional measures for several cortical networks. Finally, our
findings also revealed that MB acquisition hinders the detection
of subcortical networks in the context of LEiDA, which suggests
that studies with a specific focus on subcortical structures might
consider choosing single band acquisition over MB sequences.
Future research exploring other combinations of acceleration
and different brain parcellations would further shed light on the
different factors at play in the context of the reliability of all
three LEiDA measures.
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