
fnhum-16-974791 November 25, 2022 Time: 17:57 # 1

TYPE Original Research
PUBLISHED 01 December 2022
DOI 10.3389/fnhum.2022.974791

OPEN ACCESS

EDITED BY

Soledad Ballesteros,
National University of Distance
Education (UNED), Spain

REVIEWED BY

José Manuel Reales,
National University of Distance
Education (UNED), Spain
Patrick Darius Gajewski,
Leibniz Research Centre for Working
Environment and Human Factors
(IfADo), Germany

*CORRESPONDENCE

Marta Szewczyk
marta.ratomska@gmail.com

SPECIALTY SECTION

This article was submitted to
Cognitive Neuroscience,
a section of the journal
Frontiers in Human Neuroscience

RECEIVED 21 June 2022
ACCEPTED 16 November 2022
PUBLISHED 01 December 2022

CITATION

Szewczyk M, Augustynowicz P and
Szubielska M (2022) Implicit spatial
sequential learning facilitates
attentional selection in covert visual
search. An event-related potentials
study.
Front. Hum. Neurosci. 16:974791.
doi: 10.3389/fnhum.2022.974791

COPYRIGHT

© 2022 Szewczyk, Augustynowicz and
Szubielska. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Implicit spatial sequential
learning facilitates attentional
selection in covert visual search.
An event-related potentials
study
Marta Szewczyk*, Paweł Augustynowicz and
Magdalena Szubielska

Perception and Cognition Lab, Department of Experimental Psychology, Institute of Psychology,
The John Paul II Catholic University of Lublin, Lublin, Poland

Introduction: While most studies on implicit sequential learning focus on

object learning, the hidden structure of target location and onset time

can also be a subject of implicitly gathered knowledge. In our study, we

wanted to investigate the effect of implicitly learned spatial and temporal

sequential predictability on performance in a localization task in a paradigm

in which covert selective attention is engaged. We were also interested in

the neural mechanism of the facilitating effect of the predictable spatio-

temporal context on visual search processes. Specifically, with the use of an

event-related potential technique, we wanted to verify whether perceptual,

attentional, and motor processes can be enhanced by the predictive spatio-

temporal context of visual stimuli.

Methods: We analyzed data from 15 young, healthy adults who took part in

an experimental electroencephalographic (EEG) study and performed a visual

search localization task. Predictable sequences of four target locations and/or

target onset times were presented in separate blocks of trials that formed the

Space, Space- Time, and Time conditions. One block of trials with randomly

presented stimuli served as a control condition.

Results: The behavioral results revealed that participants successfully

learned only the spatial dimension of target predictability. Although spatial

predictability was a response-relevant dimension, we found that attentional

selection–instead of motor preparation–was the facilitation mechanism in

this type of visual search task. This was manifested by a shorter latency and

more negative amplitude of the N2pc component and the lack of an effect on

the sLRP component. We observed no effect of predictability on perceptual

processing (P1 component).
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Discussion: We discuss these results with reference to the current knowledge

on sequential learning. Our findings also contribute to the current debate on

the predictive coding theory.

KEYWORDS

selective attention, visual search, implicit learning, spatial predictability, temporal
predictability, sequential learning, N2pc

Introduction

Many events in our everyday lives occur sequentially.
During a single year, daytime varies in length for each day,
but the pattern–a sequence of 365 elements–repeats every year.
A typical car driver is used to the fact that green traffic light
appears shortly after the red and the amber are lit together.
Then, the green light stays on for slightly longer, until the
amber light appears briefly, followed by a longer red. These are
commonly known examples of temporal sequences. The Sun’s
position in the sky, as well as the traffic lights’ placement, are also
spatially sequenced. For instance, we always expect to see the red
light in the top part of the traffic signal, the amber in the middle,
and the green light at the bottom. According to the predictive
coding theory, our brain is equipped with a mechanism
for detecting repetitive patterns in order to facilitate action
in predictable circumstances. The need to better understand
the role of spatiotemporal sequential predictability in human
cognitive functioning became the inspiration for this study.

Sequential learning paradigm

Sequential learning (SL) refers to the learning of structured
patterns of stimuli presented in a non-random order (Conway
and Christiansen, 2005; Conway, 2012). The most popular
paradigm for studying SL in the spatial domain is the serial
reaction time task (SRTT), which was proposed by Nissen and
Bullemer (1987). This task usually consists of localizing single
targets that appear at four different locations. The sequence
of locations is predictable, but this fact is not revealed to the
participants. The more time that participants spend on this
task, the more their reaction times decrease. One of the last
blocks contains an interrupted sequence to differentiate the SL
effects from the task learning effects (i.e., decreasing reaction
time with increasing time on task). If the reaction time for
this new (unpredictable) sequence increases, this shows that
the participants have successfully learned the repetitive pattern
and are surprised by the new sequence. The paradigm has been
further developed to test not only on a specific stimuli features’
predictability, but also the predictability of a task set (see e.g.,
Heuer et al., 2001; Kleinsorge et al., 2003).

In a recent review, Conway (2020) proposed a unified
theory of statistical learning and outlined its ten principles.
In this view, sequential learning is considered one of three
paradigms for studying statistical learning. The other two
are artificial grammar learning (Reber, 1967) and the word
segmentation task (Saffran et al., 1996; Fiser and Aslin, 2001). In
contrast to previous conceptualizations (cf., e.g., Daltrozzo and
Conway, 2014), the unified theory (Conway, 2020) incorporates
orthogonal dimensions that underlie the construct of statistical
learning. These dimensions are: (1) the level of structure
present in the sequences; (2) the amount of exposure to the
sequenced information (3) the amount of explicit instructions
or overt feedback provided by the task situations. Ideal statistical
learning occurs when the following conditions are (jointly) met:
the information/input is highly structured, the exposition is
sufficiently long or intensive, and there is no overt instruction
or feedback provided. Though the author stipulates that the
coincidence of all these criteria is rarely possible, mapping
a specific situation onto these three dimensions may help
to determine what other factors should be considered for a
successful acquisition of implicit knowledge (e.g., how much
working memory or attentional resources are needed for a cross-
modal SL). The model comprises two learning systems: implicit
(attention-independent) and explicit (attention-dependent).
They potentially act competitively, although, under certain
conditions, they may also cooperate. Detailed reference to all ten
principles is beyond the scope of this article, although some of
them provide essential background for our research problem.

According to the unified theory (Conway, 2020), cortical
plasticity and top-down modulatory control are the two
mechanisms that govern statistical learning. In this regard,
cortical plasticity enables perceptual and associative learning.
It is “an ever-present and obligatory mechanism, instantiated
over multiple, hierarchically-embedded networks” (Conway,
2020, p. 293). The top-down executive system is responsible
for learning more complex patterns. It recruits attentional and
working memory resources (Fuster and Bressler, 2012; Hasson
et al., 2015), localized in the prefrontal cortex. Conway (2020)
postulates that the two mechanisms operate independently and
in parallel. Prediction and expectation–regarded as fundamental
human cognitive functions (Friston, 2005; Dale et al., 2012), are
the key triggers of statistical learning. Additionally, “learning
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can occur for a variety of input structures that vary in
complexity” (Conway, 2020, p. 293). Within this perspective,
space and time can be equally regarded as important dimensions
of predictability as other types of input.

Nature of sequential learning

Numerous pieces of research on implicit sequential learning
that were conducted in the SRTT paradigm have sought
answers concerning the nature of SL: is it perceptual, motor
or hybrid? (Praamstra et al., 2006; Abrahamse et al., 2010;
Schwarb and Schumacher, 2012; Guo et al., 2013; Verwey
et al., 2014). However, only a few studies have addressed
the nature of sequential learning in the spatial and temporal
domains. Howard et al. (1992) suggested that spatial SL
is primarily based on perceptual learning. In turn, Mayr
(1996) argued that SL depends on both perceptual and motor
processes. The author concluded that perceptual processes–
especially attentional control of visual stimuli–and motor
processes, i.e., response selection, are engaged in SL equally
but independently. In other words, each type of sequential
learning can be triggered alone (i.e., regardless of the presence
of another dimension of predictability), but each type of SL
independently contributes to the overall learning benefits. In
one of their two experiments on motor sequence learning,
Willingham et al. (2000) found evidence of motor learning
but with regard to the cognitive process of response selection
and not the muscular process of movement execution. Based
on a literature review, Schwarb and Schumacher (2012) stated
that the mechanism of spatial sequence learning is stimulus-
response (S-R) associative learning. In order to effectively gain
knowledge on a specific sequence, the process of response
selection is crucial. Nevertheless, not all studies allow such a
conclusion. Associative learning of S-R mapping is not engaged
in the learning process in the auditory domain, especially when
selective attention is at play (see: Goschke, 1998). According to
Abrahamse et al. (2010), sequential learning is not limited to one
specific type of information but gradually emerges as a result of
processes activated by specific task demands. The representation
that participants acquire in the process of incidental learning
is the regularity of the events that are part of the ongoing
task. Thus, building associations between subsequent stimuli’s
features is just as possible as both building associations between
reactions’ features and linking stimuli’s and reactions’ features.

Spatial and temporal dimensions of
predictability

Another important yet unanswered question is whether
the spatial and temporal dimensions of predictability act
independently or in synchrony. This issue was examined by

O’Reilly et al. (2008), who used the localization task in the
no-search SRTT paradigm. Although temporal predictability
did not have an independent effect on the efficiency of
the localization task, it significantly improved the facilitation
effect of spatial predictability. O’Reilly et al. (2008) conclude
that implicit learning of temporal sequences requires the
presence of motor predictability, i.e., reaction predictability.
Nevertheless, they point to instances when learning of complex
rhythms occurs with reference to sequences not necessarily
correlated with a specific action. For instance, the rhythm
of a musical composition can be reproduced with a hand, a
foot, or any other part of the body. Shin and Ivry’s (2002)
study aimed to verify whether (1) a temporal sequence can
be implicitly learned together with a motor sequence, i.e.,
with a spatial sequence in a localization task; (2) whether
a temporal sequence can be implicitly learned independently
from sequential motor learning; and (3) whether the presence
of a temporal sequence facilitates sequential motor learning.
The results of their experiment showed that knowledge of
the spatial sequence was acquired regardless of whether the
sequence was presented in isolation or in combination with
the temporal sequence. The temporal sequence was learned
only when it was presented together with the spatial sequence.
The authors conclude that acquisition of implicit knowledge
about the hidden temporal structure of the presentation of
visual stimuli primarily serves motor facilitation but not
perceptual facilitation, since the effects of temporal sequential
predictability were only observed when knowledge about a
predictable structure was useful for target localization, but not
when the elements of a given sequence were unrelated to any
specific reaction. Shin and Ivry (2002) further speculate that a
sequence of eight elements was too long to be integrated as a
unified mental representation of a predictable whole. Moreover,
conclusions based on simple chronometric analysis with no
neuroimaging data are limited to motor performance, while
little can be said regarding the early perceptual and attentional
processes. A similar study by Heideman et al. (2018) showed
that target localization was significantly faster for spatially and
temporarily predictable stimuli than with randomly presented
targets. What is more, a specific pattern of the behavioral
costs of a sequence change was observed mainly for short
intervals. In other words, the reaction time difference (between
temporally predictable and unpredictable targets) was bigger
for short intervals since the predictability of the long intervals
was always high on the basis of the hazard function (i.e.,
the probability of a target appearing increases with increasing
waiting time).

Studies (Shin and Ivry, 2002; O’Reilly et al., 2008; Heideman
et al., 2018) consistently show that temporal predictability
can be implicitly learned only when high spatial predictability
is present. With the use of magnetoencephalography (MEG),
Heideman et al. (2018) also showed that beta suppression in
the motor cortex areas is the neural mechanism that drives
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motor facilitation in predictable circumstances. These authors
emphasize the similarity of this result to the outcomes of
studies where predictability is elicited by external symbolic
cues. However, since the authors did not test a condition
of single spatial or temporal predictability, their experiment
does not make it possible to state whether the effects of
sequential predictability in temporal and spatial domains
are interdependent or whether they can form a synergy
effect. Such a synergy would consist of a stronger facilitation
(bigger reaction time benefits) of spatio-temporal predictability
than unidimensional predictability. This synergy effect was
nevertheless detected by O’Reilly et al. (2008) and Shin and Ivry
(2002). Heideman et al. (2018) note that in comparison to the
effect of spatio-temporal predictability on motor preparation
and response execution, a relatively small effect is observed
with relation to perceptual and attentional processes. This, in
turn, is typical of the predictability evoked by external symbolic
cues or by a constant rhythm. Thus, given the limitations
of the previous studies, there is a need to further explore
the interplay between the spatial and temporal dimensions of
predictability and their influence on perceptual, attentional, and
motor processing.

Spatial predictability in the visual
search paradigm

Three studies on spatial predictability in the visual search
paradigm were done by McDonnell et al. (2014) and Coomans
et al. (2011, 2014); note that predictability in two of these
studies, [i.e., McDonnell et al. (2014) and Coomans et al.
(2011), was not based on sequential learning]. The results
obtained by Coomans et al. (2011) are important for our
research question as they provide some insight into the
functioning of implicit learning in visual search tasks. The
authors focused on the effect of perceptual load on the
efficiency of acquiring and expressing implicit knowledge about
a predictable target’s location. Spatial predictability was based
on probabilistic sequential learning, meaning that a target
in trial n could appear in the same place as in trial n-1
or in a different but non-random place. Participants had to
discriminate between two types of targets: XO vs. OX. Three
other locations contained distractors representing a low (MN,
NM) or high (QX, XQ, YQ, QY) perceptual load. The first
experiment showed that no transfer effect was observed in
conditions of no perceptual load in the testing blocks. Although
reaction time gradually decreased as time on the task increased,
reactions in the block, which contained a new sequence, were
not significantly longer. The second experiment revealed that
the effects of implicit learning are only seen in conditions of
high perceptual load in the testing phase. The third experiment
showed that acquisition of implicit knowledge does not require
any perceptual load.

McDonnell et al. (2014) wanted to determine whether the
pattern of oculomotor reactions plays a crucial role in the
learning of a predictable spatial structure of visual stimuli
presentation, or whether this type of implicit learning affects
visual search processes independently from eye movements.
The facilitation mechanism might, for instance, affect the
response criterion. The authors used a detection task in which
the position of the target, which was presented amongst
distractors, was predictable based on the previous target
position. Unsurprisingly, participants reacted faster in the
spatially predictable context. However, faster reactions did not
result from faster first saccades directed toward the part of
the visual field where the target was most expected. Similar
results were observed by Beck et al. (2014) with regard to the
predictable frequency rule. Coomans et al. (2014), based on their
study on implicit learning in the visual search paradigm, found
that eye movement is not necessary for implicit knowledge
consolidation. Since all these studies contradict the oculomotor
facilitation hypothesis, they may support the perceptual and
attentional speed-up account. More direct investigation of
the facilitation mechanism of predictable stimuli processing
is possible with the use of the event-related potential (ERP)
technique. The specific electroencephalographic indexes of each
stage of stimulus processing are outlined in the next paragraphs.

Event-related potentials related to
different stages of stimulus processing

The P1 component is a positive deflection recorded from
the occipital cortex. It has an onset latency of approx. 60–
100 ms, and is considered an electrophysiological correlate
of the early sensory stage of visual stimuli analysis (Mangun
and Hillyard, 1991). It shows sensitivity to the involvement of
spatial attention–its amplitude is respectively higher or lower
in response to stimuli presented in an attended or unattended
part of the visual field. Luck et al. (1990) showed that the P1 is
associated with facilitation of the early stages of sensory analysis
of a stimulus, starting even before its occurrence. Thus, P1
reflects the directing of attention to a given part of the visual
field in anticipation of the upcoming stimulus (see also Heinze
et al., 1990). If perceptual processing is in fact facilitated by
implicit spatial and temporal SL, we expect to observe shorter
latency and higher amplitude of the P1 component for stimuli
following the predictable spatial, temporal, and spatio-temporal
sequence(s).

The N2pc component is an electrophysiological correlate
of the attentional selection process, acquired as a difference
wave between the activity recorded from the contralateral and
ipsilateral electrodes, respective to the target-containing part
of the visual field. Such a difference wave makes it possible
to obtain a component that is free from the contamination
of other non-lateralized components, such as P3 or CNV
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(Luck, 2012). It is recorded from the parieto-occipital cortex
(PO3/PO4, PO7/PO8, O1/O2 electrodes) in the time window
that is approx. 200–300 ms after the presentation of a set
of visual stimuli. Its onset latency is shorter for more salient
stimuli (Luck et al., 2006) and correlates positively with reaction
times, although it does not fully determine them (Wolber
and Wascher, 2005). Unlike bottom-up visual components
(e.g., P1), even highly salient stimuli do not trigger the N2pc
component if they are task-irrelevant (Luck and Hillyard,
1994). This proves that N2pc is a correlate of top-down
spatial selective attention; it is not just a side effect of the
asymmetrical processing of physically different stimuli (Eimer,
2013). Töllner et al. (2012a) showed that the prevalence of a
specific target affects the attentional selection process in the
detection task in a visual search paradigm. The amplitude
of the N2pc component was less negative for frequent as
compared to infrequent targets. In a study that manipulated
the predictability of target modality (visual vs. acoustic), a more
negative N2pc amplitude was observed for visual predictable
stimuli compared to the amplitude for unpredictable visual
stimuli (Töllner et al., 2012b). Additionally, longer N2pc latency
was observed for unpredictable compared to predictable targets
with a short (150 ms) time interval and shorter latency of
N2pc for predictable compared to unpredictable targets with
a long (600 ms) time interval. However, neither of these two
studies manipulated the predictability of the target’s location or
onset time. It remains an open question whether the attentional
selection process is facilitated by predictability in the spatial and
temporal dimensions in a similar way that it is facilitated by the
predictability of other dimensions of stimuli’s features.

Another potential mechanism of the influence of spatio-
temporal predictability on the localization of visual stimuli
may be related to motor processes, i.e., response selection,
as measured by the lateralized readiness potential (LRP).
This component is recorded from the sensorimotor cortex
area (C3/C4 electrodes), ipsilateral to the reaction-executing
hand. Similarly to N2pc, it is subtracted from the more
negative potential recorded by the electrode contralateral to
the responding hand (Coles, 1989). In this view, the LRP
component is an indicator of the extent to which one hand is
more activated than the other during the reaction execution.
The time between the presentation of the stimulus and the onset
of the LRP component is considered the stimulus processing
time, as lateralization of the electrophysiological response in
the form of the LRP wave is not possible until the motor
cortex receives a signal concerning which hand should react
in a given trial. Thus, the LRP onset latency reflects the time
needed to register a stimulus, recognize it, and initiate the
reaction-selection process (Hackley and Valle-Inclán, 2003).
Consequently, the LRP component calculated with respect to
the timing of stimulus exposure is termed sLRP (stimulus-
locked LRP) and is interpreted as a response selection correlate.
Even though it is recorded from the same electrodes as the

N2 and P3 components, LRP is free from their contamination
thanks to the use of the subtraction technique (Luck, 2012).
The LRP amplitude depends on the complexity level of the
prepared reaction (e.g., Hackley and Miller, 1995), but not on
its strength (e.g., Sommer et al., 1994) or the task in which
it is to be performed (Miller and Low, 2001). It has been
shown that the sLRP component is sensitive to target intensity
(Miller et al., 1999) and the quality (Smulders et al., 1995) of
visual stimuli. Visual objects that are attentionally prioritized
because of their selection history are also associated with faster
response selection. In the study by Töllner et al. (2012a), the
high predictability of a specific target type evoked an sLRP with
shorter latency and smaller amplitude (when compared to the
less probable targets). This may indicate that a lowered decision
threshold is needed for a specific reaction to be performed
(Chun and Wolfe, 1996). In other words, high predictability
means that the cognitive system needs little perceptual evidence
in order to make a decision about the reaction required in a
given trial. More evidence would be needed to react to targets
whose key features are less predictably distributed. Therefore, if
the lowered response selection threshold phenomenon concerns
not only the predictable target type (Töllner et al., 2012a)
but also the spatio-temporal structure of its exposure, targets
presented in accordance with the subject’s expectations should
trigger sLRP with a shorter latency and lower amplitude than
randomly presented stimuli.

The present study

Although sequential learning has been extensively studied,
it does not cease to inspire new research questions. Previous
research has consistently shown that implicit sequential learning
does not occur for a single temporal dimension in a no-search
paradigm. However, the problem of predictable sequential
learning in temporal and spatio-temporal dimensions in a visual
search paradigm has not yet been addressed. High perceptual
load can create optimal conditions for implicit knowledge to be
expressed, since there are indications that this type of knowledge
might only be relevant in such demanding conditions (Navon,
1979; Coomans et al., 2011). Therefore, it is crucial to know
more about the (in)dependence of a predictable sequence in
spatial and temporal dimensions in a visual search task.

Previous studies on the mechanism of sequential learning
found that it mainly involves S-R associations (Schwarb and
Schumacher, 2012), although other mechanisms can be also
engaged (c.f., Abrahamse et al., 2010), especially when selective
attention is at play (e.g., Goschke, 1998). The learning of spatial
sequences is driven by perceptual learning and occurs even
without predictability in all other dimensions (e.g., temporal or
related to a target feature, see Mayr, 1996). On the other hand,
the learning of temporal sequences depends on motor processes
since knowledge about a sequence is observed only when a
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repetitive stimulus-reaction association is established (e.g., Shin
and Ivry, 2002; O’Reilly et al., 2008). In such cases, temporal
predictability enhances the effect of spatial predictability (Shin
and Ivry, 2002; O’Reilly et al., 2008; Heideman et al., 2018).

What we wanted to explore in our research is not the
mere mechanism of implicit spatial and temporal learning but
the facilitation mechanism of predictable stimuli processing
when knowledge of the predictable spatio-temporal structure
of stimuli occurrence has already been acquired. To our
knowledge, no previous studies have yet comprehensively
tackled this issue. A study by Goschke (1998) suggests that the
mechanism of sequential learning with distractors is different
from sequential learning in the single stimulus exposition
paradigm. Since Goschke’s findings concerned the auditory
modality, the functioning of visual processes in a predictive
spatio-temporal context is still an open question. Therefore, the
aim of the present study was to verify whether a predictable
order of a target’s place and time of appearance facilitates
its localization in a visual search task. Additionally, by using
the ERP technique, we wanted to determine the stage of
the facilitated processing, i.e., whether this type of implicit
knowledge about the structure of a target’s exposure enables
faster perception, attentional selection, or response-related
processes.

As regards the hypotheses, on the behavioral level we
expected faster reactions for spatially, temporally, and spatio-
temporally predictable stimuli, compared to the randomly
exposed stimuli. Additionally, based on the O’Reilly et al. (2008)
and Shin and Ivry (2002) findings, we expected to observe a
larger facilitation effect caused by the spatio-temporally targets,
in comparison to the stimuli predictable in one dimension.
To this end we used a paradigm in which participants were
supposed to implicitly learn short (four-element) sequences of
a target’s location and/or target onset time while performing
a visual search localization task. We tested each dimension of
predictability in a separate block of trials. In order to separate the
processes that underlie the stage of acquiring implicit knowledge
from the processing stage, when this knowledge could already
serve as an attentional cue, we divided trials in each block
into the learning phase and the testing phase (c.f., Schwarb
and Schumacher, 2012). To verify the effectiveness of implicit
learning, the testing phase was followed by trials with a broken
sequence (c.f., Coomans et al., 2011). The old predictable (i.e.,
recovered) sequence was presented in the final trials of each
block. Effective implicit learning should be manifested by a
reaction time decrease throughout the learning and testing
phases, followed by a reaction time increase for stimuli in the
“broken sequence” phase, and then by a reaction time decrease
when the old predictable sequence reappears (c.f., Coomans
et al., 2011).

With reference to the facilitation mechanism, on the basis
of studies showing that SL relies on perceptual learning (e.g.,
Howard et al., 1992; Mayr, 1996), we expected enhanced

perceptual processing for spatially and temporally predictable
stimuli. In terms of electrophysiological measures, enhanced
perceptual processing should be exhibited as shorter latency
and higher amplitude of the P1 component. Additional support
for this hypothesis comes from research that showed no
evidence for oculomotor learning in a predictable spatio-
temporal context (Coomans et al., 2011, 2014; McDonnell et al.,
2014). These studies also suggest that attentional selection
might be facilitated by the presence of spatial or temporal
predictability. As the N2pc component is a well-established
ERP correlate of attentional selection, we expected to detect
its shorter latency and enhanced amplitude for spatially and
temporally predictable targets. Since motor learning is another
important component of implicit sequential learning (especially
in the temporal domain), we expected speeded motor processing
(i.e., faster response selection manifested in the form of shorter
latency of the sLRP component) for spatially and temporally
predictable targets (cf., Mayr, 1996; Willingham et al., 2000;
O’Reilly et al., 2008; Heideman et al., 2018). Since P1 is a
visual component, spatial more than temporal predictability
should facilitate this early perceptual stage of processing. Based
on the findings by Töllner et al. (2012b) and Töllner et al.
(2012a), we expect a similar facilitation of attentional selection
(N2pc component) by both spatial as well as the temporal
domain. Response selection (sLRP component), on the other
hand, will hypothetically be more affected by temporal than
spatial predictability (c.f., Shin and Ivry, 2002; O’Reilly et al.,
2008; Heideman et al., 2018). Only stimuli from the testing phase
were included in the electroencephalographic analyses.

Materials and methods

Participants

A priori power analyses using G∗Power Software revealed
that 10 participants would be needed to detect a within-
participant effect in a repeated measure analysis of variance
(rmANOVA) with one group and four comparisons (Random
vs. Space vs. Space-Time vs. Time blocks), assuming large effect
size (f = 0.40, which equals to the ηp

2 = 0.14), significance
level of p < 0.05, and a power of 0.80. Taking into account that
some participants could be excluded from the analyses because
of the excessive electroencephalographic (EEG) artifacts, our
sample initially included 20 participants (aged 20 to 28 years).
They were recruited via an on-line questionnaire published
in local social media groups. All participants were paid 50
PLN (ca. 11 euros) for their contribution. Six participants were
excluded from the analyses due to noisy EEG data. The final
sample included 14 subjects aged 20 to 26 years (M = 22.13;
SD = 2.07). All participants gave an informed consent prior to
participation. The study was conducted in accordance with the
ethical standards of the Declaration of Helsinki (1964).
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Stimuli and task

The set of stimuli consisted of one target square and three
distracting circles. All stimuli (sized 2.4o × 2.4o of the visual
angle, see Figure 1) were filled with black and blue horizontal
or vertical stripes [0.3o of the visual angle, Red Green Blue
(RGB) values for blue (0 0 164), for black (0 0 0)]. The stimuli
were displayed simultaneously 4.6o from the center of the
screen against a black background in such a way that each
shape was placed in one of the four corners of an imaginary
square. The stripes’ orientation changed randomly across trials,
independently for each stimulus (see Figure 2). Half of the
stimuli contained vertical stripes, and the other half contained
horizontal stripes.

Participants had to press the left/right key of the keyboard
(A/L letter key) with their index fingers if they saw a target
square located in the left/right part of the screen, respectively.
Each trial began with a presentation of a white fixation cross
(0.76o × 0.76o). After a variable time period–depending on
the experimental condition–a set of four stimuli (i.e., one
target square and three distracting circles) was displayed for
200 ms. Right after participants gave a correct response (or
after 1,200 ms in the case of no reaction), a white dot (0.67o)
appeared in the center of the screen, and the next trial began
(see Figure 1 for an exemplary trial flow visualization). The
stimuli presentation time (i.e., 200 ms) was intended to prevent
saccadic eye movements. In the case of an erroneous response,
a red minus sign (0.80o) appeared in the center of the screen for
1,500 ms.

Design

The task consisted of four big blocks: Space, Space-Time,
Time and Random. In the three big predictable blocks (Space,
Space-Time, Time), the target’s place, onset time or place and
onset time were predictable based on the rule explained below.
The fourth big block was a control condition, in which the
target’s place and onset time were pseudo-randomized. Each big
predictable block was further sub-divided into ten mini-blocks
(48 trials in each). The random block consisted of six mini-
blocks (48 trials in each). In total, there were 1,728 trials in the
whole experiment: 480 trials in each big predictable block and
288 trials in one random block.

Spatio-temporal sequential predictability was implemented
with the use of sequences of target locations and onset times.
Each sequence consisted of four elements: e.g., in the Space
block, the first target appeared in quarter I, the second target
appeared in quarter II, the third target appeared in quarter III,
and the fourth quarter appeared in quarter IV. The fifth target
appeared again in quarter I, and all subsequent stimuli followed
the same order. To prevent learning of spatial and temporal
sequences between blocks, the combinations of sequences
were counterbalanced in such way that participants with odd

numbers were presented with the following sequence of target
locations in the Space block: quarter I–quarter II–quarter III–
quarter IV, and the following sequence of target locations in the
Space-Time block: quarter IV–quarter III–quarter II–quarter
I. In the Time block they were presented with the following
sequence of TOTs: 800–1,200 ms, 1,600–2,000 ms (see Figure 2),
while in the Space-Time the TOTs followed the sequence: 2,000–
1,600 ms, 1,200–800 ms. Participants with even numbers were
presented with the following sequence of target locations in the
Space block: quarter IV–quarter III–quarter II–quarter, and the
following sequence of target locations in the Space-Time block:
quarter I–quarter II–quarter III–quarter IV. The sequence of
TOTs for these participants in the Time block was the following:
2,000–1,600 ms, 1,200–800 ms, and in the Space-Time block
TOTs followed the sequence: 800–1,200 ms, 1,600–2,000 ms.
These sequences were repeated in a loop. Twelve repetitions of
a sequence formed one mini-block (48 trials). After each mini-
block, there was a 15-second break. After three mini-blocks
(i.e., after 144 trials), participants could take a longer break, the
duration of which was dependent on their needs. The second
round of three mini-blocks was followed by three mini-blocks
of trials with a broken sequence. The first two elements of
the broken sequence were identical to those from the standard
sequence (e.g., quarter I–quarter II in the Space block), but
the last two elements were different (e.g., quarter IV–quarter
III) and were randomly changing from trial to trial. After each
mini-block with a broken sequence, there was a 15-s. break.
The last mini-block with a broken sequence was followed by
one mini-block with the standard predictable sequence. The
three mini-blocks with a broken sequence were supposed to
evoke a reaction time increase when compared to the standard
predictable blocks due to the surprise effect. The last mini-
block with the old predictable sequence should in turn evoke
a reaction time decrease relative to the reaction times in the
broken mini-blocks (cf. Coomans et al., 2011). The above-
described design (2 × 3 mini-blocks with predictable sequence,
1 × 3 mini-blocks with a broken sequence and one mini-
block with the old predictable sequence) was only applied for
the big predictable blocks, i.e., Space, Space-Time, and Time.
The control block consisted of six mini-blocks (x 48 trials)
in which the stimuli were exposed randomly but with equal
probability of each target’s location and TOT occurrence. This
procedure was designed to, first, enable implicit sequential
learning during the first three mini-blocks (i.e., 36 repetitions
of a four-element sequence); second, to compare the indexes of
attentional functioning in mini-blocks 4–6 between predictable
blocks vs. the control block; third, to distinguish between the
effects of implicit learning and the task learning effect.

Procedure

All participants were tested individually. They were
comfortably seated in a dimly lit experimental room at a distance

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2022.974791
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-974791 November 25, 2022 Time: 17:57 # 8

Szewczyk et al. 10.3389/fnhum.2022.974791

FIGURE 1

The schema of the trial flow (For ease of the presentation, the size of the stimuli in the picture does not correspond to their real size on the
computer screen).

FIGURE 2

Examples of the spatial and temporal sequences (The red circles and arrows were not displayed on the screen).

of ca. 65 cm from the computer screen. After the EEG cap
montage and impedance adjusting, they read the instructions
displayed on the computer screen and performed a short
training session (30 trials of a random block) to get familiar
with the localization task. 90% accuracy was needed to proceed
to the main task. Participants were instructed to keep a stable
body and head position during the task and to use between-
block breaks to have a rest. They were additionally asked to rely
on their peripheral visual field to perform the visual search task,
i.e., to keep central gaze fixation and to avoid any eye movements
which could distort the EEG data. The experiment took

approximately 90 min, excluding time for the cap preparation,
impedance adjustment and instructions (ca. 45 min).

Apparatus

The electroencephalogram was recorded with the use of
a 64-channel EEG system (ActiCap system, Brain Products,
Munich, Germany) and an amplifier by Electrical Geodesic
Inc. (Eugene OR, USA). The stimuli were displayed on
a 24-inch computer screen (refresh rate 60 Hz, resolution
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1,920 × 1,080). The experimental procedure was written in
PsychoPy. NetStation 4.4 software was used for the signal
registration. EEG data were analyzed in EEGlab (Matlab
Toolbox) ver. 13.2.2.b. Statistical analyses were performed in
IBM SPSS Statistics v.23.

EEG recording and data analysis

Continuous EEG data were registered with a frequency rate
of 500 Hz. The signal was filtered with a 0.1–250 Hz bandpass
filter. 64 electrodes were mounted on an elastic cap according
to the 10–20 system. The FCz electrode served as an on-line
reference. Impedance < 5 k Ohm was kept throughout the whole
experiment. Prior to the statistical analyses, the EEG signal
underwent an artifact subspace reconstruction (see: Mullen
et al., 2013). An independent component analysis (ICA) was
subsequently run to detect and reject artifactual components
of non-brain origin. The signal was subsequently re-referenced
to the averaged mastoid electrodes. Next, a bandpass filter was
used (0.1–40 Hz, Butterworth infinite impulse response). The
signal was then segmented separately for each of the big blocks
(Space, Space-Time, Time, Random) into epochs from −200
to 1,000 ms with reference to the moment when the set of
stimuli appeared on the screen. Only correct responses were
considered for the Random segments and for predictable stimuli
in the Space, Space-Time, and Time segments. After the baseline
correction, automatic rejection was applied for signals exceeding
±60 µV. Next, the ERP components were defined according to
the following steps.

For the P1 individual peak amplitude and its latency was
found (separately for each subject) in the 80–140 ms time-
window from electrodes PO7/O1 and PO8/O2. The amplitude
was computed as average of ±5 sample points around the
peak value. The signal was then averaged across participants to
acquire the final P1 component.

The N2pc component was computed as the difference wave
between the contra- and the ipsilateral signal, with reference
to the target-containing visual hemifield, recorded from the
PO7/PO8 electrodes. We chose the electrodes based on studies
using similar paradigms (Mazza et al., 2007; Töllner et al.,
2012a,b). Before averaging, we additionally applied the 8 Hz
low-pass filter, according to the procedure proposed by Hackley
et al. (2007). The difference waves were averaged separately for
left and right targets, and the individual peak amplitudes as well
as their latencies were defined in the 150–350 ms time-window
after the presentation of the search display. Then, ±5 sample
points were averaged to acquire the amplitude value, and the
grand average was computed.

The sLRP component was computed similarly to the N2pc
difference wave, but for the signal recorded from the C3/C4
electrodes. Then, the jackknife method was applied (Miller
et al., 1998; Ulrich and Miller, 2001) i.e., the component

for each subject was obtained by averaging the signal for all
the participants except the person for which the component
was computed. Next, for each person, peak amplitudes were
found in the 200–600 ms time window after the visual stimuli
presentation. Onset latency was defined as 50% of the peak onset
value. The signal was then averaged across participants for the
final sLRP component acquisition.

Results

Accuracy and reaction times

Reactions faster than 200 ms and slower than 1,000 ms
were excluded from the analyses. Mean accuracy was 98.48%
(SD = 0.58%). Only correct responses were included in the
analyses. Out of all trials, 1.97% was excluded (2.02% in the
Space block, 1.89% in the Space-Time block, 1.84% in the Time
block, and 2.15% in the Random block).

Verification of the implicit learning
effects

For each big predictable block, a separate rmANOVA was
run with a 10-level within-subject factor of “mini-block” for
reaction time as the dependent variable.1 This aimed to verify
(1) the tendency toward faster reactions from mini-blocks 1 to
6, (2) a RT increase in the “broken” mini-blocks from 7 to 9,
and (3) an RT decrease between mini-blocks 9 (broken) and 10
(recovered). In case of violations of the sphericity assumption,
the Greenhouse-Geiser correction was used for the values of the
degrees of freedom in this and the following analyses.

For the Space block, the main effect of mini-block was
significant, F(2.74, 38.42) = 6.00, p = 0.002; ηp

2 = 0.30, observed
power = 0.92 see Figure 3). Repeated contrasts showed that
there was a significant reaction time decrease in mini-block 2
relative to mini-block 1, F(1,14) = 5.09; p = 0.04, ηp

2 = 0.27,
observed power = 0.56, a similar decrease between mini-blocks
3 and 4, F(1,14) = 11.16; p = 0.005, ηp

2 = 0.44, observed
power = 0.87, a reaction time increase between mini-blocks
6 and 7, F(1,14) = 7.22; p = 0.02, ηp

2 = 0.34, observed
power = 0.71, and a reaction time decrease between mini-
blocks 9 and 10, F(1,14) = 9.19; p = 0.009, ηp

2 = 0.40, observed
power = 0.80.

For the Time block, the main effect of mini-block was
significant, F(3.28, 45.94) = 5.94, p< 0.001; ηp

2 = 0.30, observed

1 Hypothetically, RTs registered by the PsychoPy software might differ
from the RTs extracted from the EEG data due to the fact that after the
EEG artifacts’ rejection procedure a smaller number of trials could be
included. Nevertheless, the analogous analyses conducted on the EEG-
extracted data provided the same results. Thus, all subsequent behavioral
analyses were conducted on the PsychoPy-extracted data.

Frontiers in Human Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2022.974791
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-974791 November 25, 2022 Time: 17:57 # 10

Szewczyk et al. 10.3389/fnhum.2022.974791

FIGURE 3

Reaction times in each mini-block of the big Space block. Error bars represent ±1 standard error. ∗Stands for p < 0.05, ∗∗stands for p < 0.01.

power = 0.95. However, the pattern of reaction times showed
a gradual increase in reaction time instead of a learning curve
(see Figure 4; the linear function was significant and best
described the pattern of results, F(3.28, 45.94) = 13.49, p = 0.002;
ηp

2 = 0.41).
For the Space-Time block, the main effect of the mini-block

was significant, F(2.68, 37.55) = 2.18, p = 0.03; ηp
2 = 0.13,

observed power = 0.48. Repeated contrasts revealed a marginally
significant effect of slower reactions in mini-block 7, compared
to the mini-block 6, F(1,14) = 4.46; p = 0.05, ηp

2 = 0.24, observed
power = 0.50. Although a relative reaction time increase between
mini-blocks 9 and 10 is visible, this contrast did not reach
significance, F(1,14) = 3.01; p = 0.10, ηp

2 = 0.18, observed
power = 0.37, see Figure 5.

Behavioral verification of the
predictability effect

To check whether participants reacted significantly faster
after the initial learning phase in the big predictable blocks,
relative to the same stage of procedural learning in the big
random block, we averaged reaction times from mini-blocks 4–
6 and compared them between the four big blocks. To this aim,
we conducted a repeated-measures ANOVA with a 4-level “big
block” factor (Random vs. Space vs. Space-Time vs. Time) for
reaction time as the dependent variable. The number of trials
(per condition) included in the analysis is provided in Table 1.

The RT distributions did not differ significantly from the normal
distribution (all ps > 0.11 in each condition). The main effect
was significant, F(1.83,25.58) = 8.76, p = 0.002, ηp

2 = 0.38,
observed power = 0.94, see Figure 6. Simple contrast analysis
with the Random block as the reference category revealed
shorter reaction times in the Space and Space-Time blocks
F(1,14) = 10.53, p = 0.006, ηp

2 = 0.43, observed power = 0.85;
F(1.14) = 8.99, p = 0.01, ηp

2 = 0.39; observed power = 0.80,
respectively; simple contrast for the comparison with the Time
block: F(1.14) = 0.49, p = 0.50, observed power = 0.10. Detailed
descriptive statistics for the behavioral results are provided in
Table 2. Reaction times of each individual subject in each
condition are presented in Figure 7.

Electrophysiological verification of the
implicit learning facilitation
mechanism

Similarly to the above-described analyses, in order to
compare the electrophysiological correlates of the processes
hypothetically facilitated by the effects of implicit spatio-
temporal learning, we analyzed several ERP components from
the testing phase of each of the four big blocks (i.e., mini-
blocks 4–6). Thus, separate rmANOVAs were conducted with
a 4-level “big block” factor for the P1 and N2pc peak latencies
and peak amplitudes, as well as for the sLRP onset latency and
peak amplitude. Of all the expected effects, the main effect of
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FIGURE 4

Reaction times in each mini-block of the big Time block.

FIGURE 5

Reaction times in each mini-block of the big Space-Time block.

block was significant for the N2pc peak latency, [F(3,42) = 4.82,
p = 0.006, ηp

2 = 0.25, observed power = 0.87] as well as for
the N2pc peak amplitude [F(3,42) = 4.23, p = 0.011, ηp

2 = 0.23,
observed power = 0.82]. Simple contrast analysis with Random
block as the reference category revealed shorter N2pc latency in

the Space block, [F(1,14) = 10.56, p = 0.006, ηp
2 = 0.43, observed

power = 0.85]; simple contrast effects for the comparisons with
the Space-Time and Time blocks: F(1,14) = 0.17, p = 0.68,
observed power = 0.07; F(1,14) = 0.51, p = 0.49, observed
power = 0.10. An analogical simple contrast analysis for
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TABLE 1 Average number of trials and sequences plotted per participant in each big block, presented separately for the whole task and for the
“testing” phase.

Block Trials Sequences Trials in the testing phase Sequences in the testing phase

Random 282 (6) 70 (2) 141 (4) 35 (1)

Space 470 (11) 118 (3) 140 (6) 35 (1)

Space-Time 471 (10) 118 (2) 143 (2) 36 (0)

Time 471 (8) 118 (2) 142 (3) 35 (1)

Standard deviations are provided in parentheses. One sequence equals four trials.

FIGURE 6

Reaction times averaged for the testing phase (mini-blocks 4–6) for each predictability condition. Error bars represent ±1 standard error.
∗Stands for p < 0.05, ∗∗stands for p < 0.01.

TABLE 2 Descriptive statistics for the behavioral results (reaction
times in the testing phase, mini-blocks 4–6).

Block M [ms] SD [ms]

Random 312.88 42.76

Space 262.14 69.71

Space-Time 270.33 70.83

Time 307.30 39.73

Total 288.16 55.75

the N2pc peak amplitude showed a less negative deflection
for spatially predictable targets [F(3,42) = 6.02, p = 0.028,
ηp

2 = 0.30, observed power = 0.63]; simple contrast effects
for the comparisons with the Space-Time and Time blocks:
F(1,14) = 1.81, p = 0.29, observed power = 0.17; F(1,14) = 0.02,
p = 0.88, observed power = 0.05. For the visualization of the
N2pc component, see Figure 8. Detailed descriptive statistics
are provided in Table 3. ANOVA results for the non-significant
effects are presented in Table 4.

Discussion

The aim of the current study was to verify the effect of
predictable spatial and temporal sequences on the efficiency of
a localization task. We additionally wanted to unravel the neural
mechanism underlying the expected behavioral facilitation. The
study showed that implicitly learned predictability in spatial
and spatiotemporal dimensions caused faster target localization
in a visual search task. However, implicit sequential learning
in the unidimensional temporal domain was not observed.
In line with this finding, bidimensional predictability did
not exhibit a greater facilitation effect over unidimensional
spatial predictability. We did not find any perceptual or motor
facilitation in the studied predictable spatio-temporal context.

In accordance with the tendency observed in previous
research (Shin and Ivry, 2002; O’Reilly et al., 2008; Heideman
et al., 2018), the facilitation effect of implicit learning was
stronger for the spatial than for the temporal dimension.
On the behavioral level, we observed the expected pattern
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FIGURE 7

Reaction times averaged for all trials from the testing phase and presented separately for each subject.

FIGURE 8

The N2pc component elicited in the testing phase (mini-blocks 4–6), presented separately for each big block.

of decreasing reaction times for spatially predictable targets
during the learning and testing phases (mini-blocks 1–3 and
4–6) as well as a surprise effect (an increase in reaction times)
when an unpredictable sequence appeared in mini-blocks 7–
9. Reactions again became faster in the last mini block with
the old predictable sequence. A typical implicit learning curve
thus occurred (cf., e.g., Coomans et al., 2011; Guo et al., 2013;

Meier and Cock, 2014). Moreover, as a result of comparing
the reaction times from the testing phase in the Space block
with analogous mini-blocks from the control condition, it
turned out that this dimension of predictability significantly
facilitated target localization. While this is not a surprising
result, taking into account that the stimulus-reaction mapping
correlated with the spatial dimension of predictability, the

Frontiers in Human Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnhum.2022.974791
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-974791 November 25, 2022 Time: 17:57 # 14

Szewczyk et al. 10.3389/fnhum.2022.974791

result concerning the electrophysiological underpinnings of this
facilitation is not obvious. We found that faster motor reactions
for spatially predictable targets were not because of faster
motor response selection (no effect on the sLRP component).
Instead, they were most probably due to a faster and less
effortful attentional selection (shorter N2pc latency and less
negative N2pc amplitude). Töllner et al. (2012a) also found
a less negative N2pc amplitude but no effect on the N2pc
latency for more vs. less frequent visual stimuli. According to
the authors, this pattern indicates that equally rapid attentional
selection of differently prevalent visual stimuli is possible due
to signal enhancement for infrequent targets. In that sense,
Töllner et al. (2012a) described the mechanism of compensating
for uncertainty by cortical amplification (cf. Egner and Hirsch,
2005). Our study compared equally frequent stimuli with
predictable vs. unpredictable locations. Therefore, one can ask
whether the differences in the amplitude of the N2pc component
are indicative of signal amplification for unpredictable stimuli
or signal reduction for predictable stimuli. According to the
assumptions of the predictive coding theory (Kok et al., 2012;
Clark, 2013), and considering shorter N2pc latency, the second
alternative seems more likely. Our result thus shows that the
predictability of the response-relevant spatial dimension acts
in the way of saving attentional resources. In other words,
reduced N2pc amplitude and its shorter latency mean that less
sensory evidence is needed to decide upon an accurate direction
of attentional shift (cf. Töllner et al., 2012a). This is a new
result in the context of the previously reported effects of spatial
sequential learning; it may be related to the fact that most of
the previous studies used procedures that did not involve visual
search (Shin and Ivry, 2002; O’Reilly et al., 2008; Heideman et al.,
2018, but see Coomans et al., 2011), or no electrophysiological
components were recorded (Shin and Ivry, 2002; O’Reilly et al.,
2008; Coomans et al., 2011; Heideman et al., 2018). Our finding
is consistent with research on overt attention. McDonnell
et al. (2014) showed that despite the lack of differences in
the speed of directing the first saccade toward a predictable
target, the detection of targets at predictable locations was
faster compared to reactions to randomly exposed targets. The
authors concluded that the perceptual and attentional–instead
of oculomotor–processes might have been accelerated (see also
Coomans et al., 2014). Therefore, the results of the present study
complement the current state of knowledge on learning spatial
sequences with the previously unreported effects of facilitated
attentional selection in a visual-search paradigm (cf., Shin and
Ivry, 2002; Abrahamse et al., 2010; Schwarb and Schumacher,
2012).

Regarding the lack of a temporal predictability effect,
our findings comply with the previous reports by O’Reilly
et al. (2008), who showed that a predictable sequence of
time intervals alone does not facilitate target localization. The
authors speculate that the intervals they used might not have
been distinctive enough to sufficiently facilitate the perceptual

TABLE 3 Descriptive statistics for the significant electrophysiological
results (N2pc peak latency and peak amplitude).

Latency Amplitude

Block M [ms] SD [ms] M[µV] SD [µV]

Random 262.40 23.68 −1.48 1.08

Space 226.67 69.71 −0.92 0.88

Space-Time 249.33 43.75 −1.23 0.79

Time 261.60 36.82 −1.50 0.93

Total 250.00 43.49 −1.28 0.92

task. Just as in the study by Los et al. (2017) who in fact
observed successful temporal learning, the intervals in the
current study had a similar difference value (i.e., 400 ms). Thus,
the inappropriate difference value is not a likely explanation.
An alternative reason for the lack of an effect in the study
by O’Reilly et al. (2008) was the argument that the eight-
element sequence was too long to be integrated into memory
as a predictable chunk. In our research, we used a sequence
of four elements, which is equal to the average working
memory capacity (cf., Cowan, 2010). It can therefore be assumed
that the sequence length in the current study was optimal.
Thus, the following alternative explanations are plausible: (1)
sequential learning does not occur for the temporal domain
in the case of a perceptually demanding visual search task;
(2) exhibition of the effects of implicit temporal SL requires
even more perceptually challenging conditions, similarly to
the case of spatial SL in a discrimination task (see: Coomans
et al., 2011); (3) SL only occurs in spatially predictable
conditions.

The first explanation can be considered with reference to the
knowledge on the need for attentional resources for successful
implicit learning. Conway (2020) states that the involvement of
attention is not necessary for implicit learning of a sequence
composed of elements that are in close proximity. However,
it is required when a hidden pattern organizes elements that
are not adjacent to each other (de Diego-Balaguer et al.,
2016). Attentional resources must be also engaged for the
effective implicit learning of global structures (Bekinschtein
et al., 2009), as well as in the case of multi-modal sequences
(e.g., visual and auditory or visual and motor) or in rule-based
learning (Smith et al., 1998; Hendricks et al., 2013). It can
be therefore concluded that our temporal sequences were not
a subject of implicit learning, probably because the elements
of the sequence were separated by temporally unpredictable
events (i.e., the response time and the fixation dot). This
design resulted from the EEG signal acquisition standards,
which did not leave much room for modification. However,
it is also possible that our sample size or the number of the
sequence repetitions did not allow for a sufficient exposure of
the temporal predictability effect (the power obtained for the
comparison of RTs from the testing phase between Random
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TABLE 4 Non-significant results of the repeated measure analysis of variance (rmANOVA) conducted for the event-related potential (ERP)
components.

Component Dependent variable dfNum dfDen F p Fcorrected p

P1 Peak latency 3 42 0.48 0.70 – –

Peak amplitude 3 42 1.67 0.19 – –

sLRP Latency (jackknife) 1.66 23.27 – – 0.94 0.43

Amplitude (jackknife) 1.89 26.52 – – 2.52 0.07

and Time block was equal to 0.10). According to one of
the statistical learning principles outlined by Conway (2020),
more complex patterns lead to a lower level of learning (cf.,
Schiff and Katan, 2014), and thus they require more effort
and/or time to be acquired. Nevertheless, future studies might
take up the challenge of creating more optimal sequences
that could at the same time be tested in the ERP paradigm.
Spatial sequences, in turn, although composed of non-adjacent
elements, entered attentional focus probably because of the
nature of the localization task, thus resulting in successful
learning.

With reference to the perceptual difficulty level hypothesis,
Goschke (1998) demonstrated that the mechanism of sequential
learning in the auditory domain varies depending on whether
selective attention must be engaged or not. We thus expected
similar effects in the visual domain. However, it could be that
the localization task was not sufficiently demanding to expose
behavioral benefits. Future studies should therefore test the
effects of temporal sequences in perceptually more difficult, e.g.,
discrimination, tasks.

The third explanation is based on previous studies which
demonstrated that even though predictable temporal sequences
do not operate in isolation, they can enhance the effects of spatial
(sequential) predictability (Shin and Ivry, 2002; O’Reilly et al.,
2008). Such a conclusion cannot be drawn from our findings.
Moreover, there was no acceleration of attentional selection in
the Space-Time block, although this could be expected based on
the effects of spatial predictability in the Space block. Therefore,
did temporal sequences undermine the spatial predictability
effects? It might be that the presence of temporal sequences
was an attentionally more challenging situation in comparison
to the random block, where the same time interval could be
accidentally repeated in two or more consecutive trials. Faster
reactions for such repetitive targets are known as the sequential
effect, which never occurred in the case of the Time block.

Conclusion and theoretical
implications

By detecting shorter latency and lower amplitude of the
N2pc component in a localization task we demonstrated that
attentional selection in spatially predictable context is both
easier and faster. This is in line with the predictive coding

theory, according to which prediction attenuates neural activity
related to the anticipated events (cf. Friston, 2005; Dale et al.,
2012). Whether these effects replicate in other visual search tasks
remains to be unraveled by future studies.

In the context of the unraveled impact of spatial sequential
predictability on covert selective attention, the question about
a similar facilitation effect of temporal sequential predictability
remains to be answered. To fully elucidate this issue, future
studies should test temporal sequences, where the elements
of a sequence would not be separated by unpredictable time
intervals. Additionally, looking at the results of the present study
through the lens of the predictive coding theory, one can ask
about the limitations of the human ability of (and the need for)
monitoring complex temporal structures when covert selective
attention is at play. Therefore, future research should take up
the challenge of testing temporal and spatio-temporal sequential
learning when the temporal dimension of predictability is
response relevant. Furthermore, the use of virtual reality systems
would allow creation of more ecologically valid conditions,
where the utility of the spatio-temporal predictability could
be truly revealed.

Even though our findings do not entirely support our
primary hypotheses, they provide some critical theoretical
implications, e.g., for the predictive coding theory (Clark, 2013).
Swallow and Zacks (2008) demonstrated that predictions are
primarily created in relation to behaviorally relevant feature
dimensions, i.e., ones that are directly linked to the action
required in a current situation. Given that the knowledge of
temporal sequences was not successfully acquired, it might be
that the process of hypothesis generation and verification does
not occur on a global scale but is selective (in terms of domains
that might be crucial for effective action preparation). This
speculation is in opposition to the predictive coding framework,
according to which perceptual and motor systems should not
be considered separately but as a unified inferring mechanism
(Adams et al., 2013). The function of these (perceptual and
motor) mechanisms would be to predict sensory signals
simultaneously in all domains: auditory, visual, somatosensorial,
interoceptive, and proprioceptive (Adams et al., 2013). However,
such a global scale inferring process may be restricted if the
costs of prediction acquisition outweigh its potential benefits,
as might be the case when monitoring a complex temporal
sequence. More research is needed to unravel this controversy.
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Limitations

In general, studies on implicit learning demand a very
cautious design, especially when electroencephalographic
indexes are at play. Such research paradigm demands
reconciliation of divergent goals, i.e., providing a sufficient
learning period on one hand, and avoiding a tiresome testing
time on the other hand. Given a relatively weak power for
detecting the effect of temporal predictability in our experiment,
future studies should consider testing a larger sample. With the
aim to avoid excessive EEG signal contamination, a between-
subjects design would allow inclusion of a longer learning
period, without the costs of tiredness.
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