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Electroencephalography (EEG) and functional near-infrared spectroscopy

(fNIRS) have potentially complementary characteristics that reflect the

electrical and hemodynamic characteristics of neural responses, so EEG-

fNIRS-based hybrid brain-computer interface (BCI) is the research hotspots

in recent years. However, current studies lack a comprehensive systematic

approach to properly fuse EEG and fNIRS data and exploit their

complementary potential, which is critical for improving BCI performance. To

address this issue, this study proposes a novel multimodal fusion framework

based on multi-level progressive learning with multi-domain features. The

framework consists of a multi-domain feature extraction process for EEG

and fNIRS, a feature selection process based on atomic search optimization,

and a multi-domain feature fusion process based on multi-level progressive

machine learning. The proposed method was validated on EEG-fNIRS-based

motor imagery (MI) and mental arithmetic (MA) tasks involving 29 subjects,

and the experimental results show that multi-domain features provide better

classification performance than single-domain features, and multi-modality

provides better classification performance than single-modality. Furthermore,

the experimental results and comparison with other methods demonstrated

the effectiveness and superiority of the proposed method in EEG and fNIRS

information fusion, it can achieve an average classification accuracy of 96.74%

in the MI task and 98.42% in the MA task. Our proposed method may provide

a general framework for future fusion processing of multimodal brain signals

based on EEG-fNIRS.

KEYWORDS

multimodal fusion, electroencephalogram (EEG), mental arithmetic (MA), functional
near-infrared spectroscopy (fNIRS), multi-domain features, multi-level learning,
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Introduction

In recent years, the brain-computer interface (BCI) system
has attracted great attention because it can provide another
communication channel for people who have lost the ability
to move independently by decoding neural signals, and has
great application value in the field of rehabilitation (Wolpaw
et al., 2002). For example, Han et al. (2019) used an
electroencephalogram (EEG)-based BCI system to successfully
conduct online binary communication with patients in a
fully locked state. The BCI system usually records the user’s
brain nerve activity through various brain imaging modes,
and then converted into certain instructions, through which
users can communicate with the outside world. The brain
imaging modalities commonly used in BCI systems include
EEG, magnetoencephalography, functional magnetic resonance
imaging (fMRI) and functional near-infrared spectroscopy
(fNIRS) (Weiskopf et al., 2003; Coyle et al., 2004).

Since each neuroimaging modality has its advantages and
disadvantages, combining their complementary characteristics
may improve the overall performance of the BCI system
(Pfurtscheller et al., 2010; Dähne et al., 2015). Therefore, there
is growing interest in hybrid BCI formed by combing two or
more modalities. More and more studies have demonstrated
that combining different modalities or paradigms can improve
the performance of the BCI system, such as hybrid BCI based
on P300 and steady-state visually evoked potential(SSVEP)
(Wang et al., 2015), hybrid EEG- Electrooculogram (EOG)
(Hongtao et al., 2014) and hybrid BCI based on EEG and fNIRS
(Naseer and Hong, 2015).

Among various neuroimaging modalities, EEG and fNIRS
are widely used in the field of BCI due to their advantages of
non-invasiveness, portability, and wide applicability. EEG is a
method of recording brain activity using electrophysiological
indicators. It reflects the electrophysiological activities of brain
nerve cells on the cerebral cortex or scalp surface by recording
the changes in electrical waves during brain activity (Olejniczak,
2006). Although EEG is currently one of the most commonly
used technology in the field of BCI, it still has some limitations,
such as being susceptible to motion artifacts and electrical noise,
and having low spatial resolution. fNIRS is an emerging optical
brain imaging technology that has attracted much attention in
the field of BCI in recent years. It utilizes the good scattering
of the main components of blood to 600-900nm near-infrared
light, so as to obtain the changes of oxyhemoglobin (HbO) and
deoxyhemoglobin (Hb) during brain activity (Matthews et al.,
2008; Dashtestani et al., 2019). Compared with EEG, fNIRS is
less sensitive to motion artifacts and electrical noise, and has
higher spatial resolution (Wilcox and Biondi, 2015) but lower
temporal resolution. Due to the complementary properties of
EEG and fNIRS, the hybrid BCI based on EEG-fNIRS has
attracted more and more attention in recent years (Sinem et al.,
2019; Borghea et al., 2020). EEG and fNIRS signals can provide

complementary neural activity information to provide a more
comprehensive and accurate interpretation of brain function.
Numerous studies have shown that EEG-fNIRS hybrid BCI is
more likely to improve the performance of traditional single-
modal BCI (Koo et al., 2015; Yin et al., 2015; Shin et al., 2017)
and has more potential in disease diagnosis based on decoding
of patients’ brain activity (Blokland et al., 2014).

In BCI experiments, commonly used task paradigms include
motor imaging (MI) and mental arithmetic (MA). MI-based
BCI means that there is no actual physical behavior, but the
brain’s thoughts are used to imagine the body’s actions, and
the controller performs subsequent actual operations. MI is
similar to the brain regions activated by actual motor (Holmes
and Calmels, 2008; Miltona et al., 2008), which can promote
the repair or reconstruction of damaged motor pathways. For
example, for limb inconvenience caused by diseases such as
paralysis and stroke, the MI-based BCI system can not only
help patients control objects, but also can be used as a means
of rehabilitation physiotherapy to maximize their recovery of
their own athletic ability (Ortner et al., 2012). MA is a task
related to memory and cognition in the brain that involves
performing arithmetic operations in the brain without the aid
of external tools such as pen or paper. Previous studies have
demonstrated that the MA task has a positive effect on the fight
against degeneration of brain function (Ciftci et al., 2008) and
the diagnosis of brain diseases such as schizophrenia (Hugdahl
et al., 2001). In Shin et al. (2016) established a public dataset
of EEG-fNIRS based on both MI (left vs. right hand motor
imagery) and MA(mental arithmetic vs. resting state) tasks,
providing an open-access dataset for hybrid BCI. Based on
this dataset, various methods have been used to improve the
performance of BCI based on MI or MA tasks. For example,
Kwon et al. (2020) investigated the feasibility of implementing
a compact hBCI system and found that three mental states
(mental arithmetic, right-handed motor image, and idle state)
could be classified with a classification accuracy of 77.6± 12.1%
using an hybrid BCI system with only two EEG channels and
two fNIRS source-detector pairs. Alhudhaif (2021) combined a
k-Means clustering centers difference based attribute weighting
method and machine learning algorithm to achieve 99.7%
accuracy in MI based dataset and 99.9% accuracy in MA dataset.
Nour et al. (2021) proposed a novel classification framework
using an optimized convolution neural network (CNN) method
for MI tasks to study the contribution of multimodal EEG-
fNIRS to BCI performance. Meng et al. (2021) proposed a
novel crossing time windows optimization for MA based EEG-
fNIRS hybrid BCI, and obtained a classification accuracy of
92.52± 5.38%.

The purpose of EEG-fNIRS multimodal systems is to utilize
the diversity and complementarity information of EEG and
fNIRS signals to maximize the respective advantages of each
modality and overcome the limitations of single-modal systems
(Li et al., 2019). However, EEG and fNIRS is inherently different,

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2022.973959
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-973959 August 3, 2022 Time: 9:3 # 3

Qiu et al. 10.3389/fnhum.2022.973959

such as sampling rate, temporal and spatial resolution, and
noise sensitivity, and the information between EEG and fNIRS
signal cannot be communicated. Therefore, how to effectively
fuse multimodal brain signals is one of the main challenges
for EEG-fNIRS multimodal studies. Currently, there are three
commonly used multimodal fusion strategies: data-level fusion,
feature-level fusion and decision-level fusion (He et al., 2020).
Since data-level fusion directly combines raw and unprocessed
data, it is unavoidable that the computational load is too large.
The accuracy of feature-level fusion is high, but the existing
signal feature-level fusion methods mainly use the feature
vector splicing method, which is difficult to eliminate redundant
information or enhance key information. Although decision-
level fusion is not as accurate as feature-level fusion, it can
eliminate redundant information of different modalities to a
certain extent. Most of the previous studies on EEG and fNIRS
fusion are based on feature-level fusion and achieved promising
results. Studies have shown that concatenating features from
EEG and fNIRS without any specific feature fusion algorithm
can also improve accuracy compared to EEG and fNIRS alone
(Buccino et al., 2016). The concurrently recorded EEG and
fNIRS features were fused by joint independent component
analysis (jICA) can improve the detection rate of mental stress,
with detection rates of 91%, 95% and 98% using fNIRS, EEG
and fusion of fNIRS and EEG signals, respectively (Al-Shargie
et al., 2016). Most recently, the researchers are applying deep
learning for integration of features. For example, Sun et al.
(2020) used fully connected neural network to design three
fusion schemes of linear, tensor and p-th order polynomial
to achieve feature fusion of EEG and fNIRS, and found that
p-th order polynomial fusion achieved highest classification
accuracy for MI task (77.53%) and MA task (90.19%). The
above proves that the feature-level fusion strategy can effectively
improve the performance of hybrid BCI based on EEG-
fNIRS. In addition, some studies have shown that decision-
level fusion can also improve the multimodal performance of
EEG-fNIRS to a certain extent. For example, Al-Shargie et al.
(2017) developed a decision fusion technique to combine the
output probabilities of the EEG and fNIRS classifiers based
on support vector machine (SVM), and found significant
improvement in the detection rate of mental stress by + 7.76%
and + 10.57% compared with sole modality of EEG and
fNIRS, respectively. Rabbani et al. (Rabbani and Islam, 2021b)
proposed a EEG-fNIRS decision fusion model based on long
short-term memory network (LSTM) and SVM classifiers, and
found that compared to EEG, HbO, and Hb alone, 26 subjects
had + 31.83%, + 5.2%, + 15.19% higher detection rates in the
decision fusion strategy.

The above studies show that both feature-level fusion
and decision-level fusion may effectively fuse EEG and fNIRS
information. However, the current multimodal fusion still has
the problems of incomplete feature extraction, insufficient
multimodal information fusion and poor classification

performance. A more comprehensive and systematic approach
to efficiently fuse EEG and fNIRS data and fully exploit
their complementary potential is needed, which is crucial
for improving the performance of EEG-fNIRS-based BCI.
Therefore, this paper proposes a novel multimodal fusion
framework based on multi-level progressive learning with
multi-domain features for fusing EEG and fNIRS information to
improve classification performance of EEG-fNIRS multimodal
brain-computer interface. The framework mainly includes three
processes. The first stage is the multi-domain feature extraction
process of EEG and fNIRS in time and frequency domains.
The second stage is a feature selection process based on atomic
search optimization (ASO). The third stage is a multi-domain
feature fusion process based on multi-level progressive machine
learning. This study evaluated the effectiveness of the proposed
method on MI and MA tasks involving 29 subjects, respectively.

Materials and methods

Electroencephalography-functional
near-infrared spectroscopy dataset

An open-access hybrid EEG-fNIRS dataset was used in
this study (Shin et al., 2016), which consists of two different
datasets: (i) dataset A (left- versus right-hand MI) and (ii)
dataset B (MA task vs. resting state). In this study, we used both
dataset A and dataset B to classify MI- and MA-based brain-
computer interface tasks, respectively. Dataset A and dataset B
were collected from 29 healthy subjects (14 males), of which 28
were right-handed and 1 was left-handed. Their mean age was
28.5 ± 3.7 years. No subjects reported a history of neurological,
psychiatric or another mental disease. Before the experiment,
all subjects were informed of the experimental procedures and
details, and all signed a written consent form.

Dataset A and dataset B contain EEG data and fNIRS data.
During the experiment, the subject sat in a comfortable armchair
in a bright room, 1.6 meters in front of a 50-inch white screen.
Subjects were asked to keep their bodies as still as possible
during data recording to reduce motion artifacts. EEG data were
collected by a multi-channel BrainAmp EEG amplifier (Brain
Products GmbH, Gilching, Germany) with 30 active electrodes
linked to a mastoids reference at a sampling rate of 1000 Hz.
The 30 EEG electrodes were placed on the scalp surface through
a customized stretchy fabric cap (EASYCAP GmbH, Herrsching
am Ammersee, Germany) according to the international 10-5
system. As shown in Figure 1, the placement positions were
AFp1, AFp2, AFF1h, AFF2h, AFF5h, AFF6h, For F3, F4, F7, F8,
FCC3h, FCC4h, FCC5h, FCC6h, T7, T8, Cz, CCP3h, CCP4h,
CCP5h, CCP6h, Pz, P3, P4, P7, P8, PPO1h, PPO2h, POO1
and POO2, and Fz is the ground electrode. fNIRS data were
collected by NIRScout (NIRx GmbH, Berlin, Germany) using
two wavelengths of 760 and 850 nm at a sampling rate of
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12.5 Hz. 14 sources and 16 detectors (forming 36 channels)
were placed on the scalp surface of the frontal area (9 channels
around Fp1, Fp2, and Fpz), motor area (12 channels around
C3 and C4, respectively) and visual area (3 channels around
Oz) of the brain with a source-detector distance of 30mm. The
fNIRS optodes were fixed on the same cap as the EEG electrode,
and an additional opaque cap over the stretchy fabric cap was
used to block ambient light. Figure 1 shows the location of the
EEG electrodes and fNIRS optodes. During the data collection
process, triggers were sent to EEG and fNIRS instrument at
the same time via parallel port using MATLAB to ensure
synchronous recording of EEG and fNIRS signals.

The experimental paradigm consisted of six sessions, in
which MI and MA were performed alternately (session 1, 3, 5
for MI tasks and session 2, 4, 6 for MA tasks). As shown in
Figure 2, each session consisted of a 60s pre-rest period, 20
repetitions of task process, and a 60-s post-rest period. Each task
process started with a 2s visual instruction, followed by a 10s task
execution (MI task in Dataset A and MA task in Dataset B), after
which was a rest period of 15-17 s.

In the MI task, subjects were taught to execute kinesthetic
MI (imagining their hands opening and closing as they grabbed
a ball). A black arrow pointing to the left or right appeared
for 2 seconds in the center of the screen for the visual
instruction. During the task period, the arrow vanished with
a short beep sound, and a black fixation cross emerged.
The participants were asked to envision holding their hands
(opening and closing them) at a 1 Hz rate. Data for MI tasks
were collected in Database A.

In MA tasks, the 2-s task visual instruction, that is, an
instruction using an initial subtraction, for example "three digits
minus one digit" (such as 384-8) was displayed on the screen
for 2 s for the preparation of the given task. At the same time,
the subjects were asked to remember the numbers. Before the
initial subtraction disappeared, a short beep sound was played,
prompting the subjects to perform a 10-s MI or MA task, that
is, subtracting a single-digit number from the result of the
previous subtraction. Each task execution ended with a short
beep and a ‘stop’ displayed on the screen for 1 s. After the task
was executed, there was a 15-17 second rest. This task process
was repeated 20 times in a single session. More details can be
found in reference (Shin et al., 2016). Data for MA tasks were
collected in Database B.

The MI and MA datasets are publicly available which can be
found in the following link: http://doc.ml.tu-berlin.de/hBCI.

Data preprocessing

All data preprocessing was performed using MATLAB
R2020a (MathWorks, Natick, MA, United States) and bbci

toolbox (Blankertz et al., 2016). For the preprocessing of
EEG data, the raw EEG data was first re-referenced using
the common average reference and filtered with a passband
of 0.5–50 Hz using a fourth-order Chebyshev type II filter.
Most of the previous studies based on EEG signals also
used this filter in preprocessing (Goncharova et al., 2003;
Fatourechi et al., 2007; Laghari et al., 2014). Then, the
EOG rejection based on independent component analysis
was performed by automatic artifact rejection toolbox in
EEGLAB. After removing the EOG artifacts, the EEG signals
of all channels were down-sampled to 200 Hz, and the
data of each task process (i.e., 2s visual instruction + 10s
task execution + 15-17 s rest) was extracted, and a total
of 60 (3 sessions x 20 repetitions) task process data. For
the preprocessing of fNIRS data, the raw fNIRS data was
first down-sampled to 10 Hz, and then the concentration
changes of HbO and Hb were first converted from raw optical
data by applying the modified Beer–Lambert law (Kocsis
et al., 2006). The HbO and Hb data were band-pass filtered
at 0.01-0.09 Hz (a 3rd order zero-phase Butterworth filter)
to remove such as from heartbeat (∼1 Hz), respiration-
induced venous pressure waves (∼0.2 Hz), arterial pressure
waves (∼0.2 Hz) and arterial pressure oscillations (Mayer
waves∼0.1 Hz) artifacts. Then, like the EEG data processing,
60 task process data (i.e., 2s visual instruction + 10s task
execution + 15-17 s rest) were extracted, and the baseline
correction was performed for each task process data by
subtracting the average value of the 2s visual instruction
period. All channels of EEG and fNIRS were used for further
data processing. For EEG and fNIRS data, we set the 1-
second data as a subtask, that is, each task contains 10
subtasks, and each session contains a total of 20 (repetitions)
x 10 (subtasks) = 200 subtasks. Therefore, each subject
had a total of 3(sessions)∗200 (subtasks) = 600 subtasks in
an MI or MA task.

Proposed multimodal fusion
framework

To efficiently fuse EEG and fNIRS data and fully exploit
their complementary potential is needed, which is crucial for
improving the performance of EEG-fNIRS-based BCI. In this
study, we proposed a novel multimodal fusion framework
based on multi-level progressive learning with multi-domain
features to improve classification performance of EEG-fNIRS
multimodal brain-computer interface. As shown in Figure 3,
the framework mainly includes three processes. The first stage is
the multi-domain feature extraction process of EEG and fNIRS
in time and frequency domains. The second stage is a feature
selection process based on Z-Score and ASO algorithm. The
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FIGURE 1

The positions of the EEG electrodes (blue and black dots), fNIRS light sources (red squares), and detectors (green squares). The black dot (Fz) is
the ground and the solid purple lines represent the fNIRS channels.

FIGURE 2

The paradigm of the experiment.

third stage is a multimodal feature fusion process based on
multi-level progressive machine learning.

Feature extraction

In order to make full use of brain signals, we extracted time-
domain and frequency-domain features from the preprocessed

EEG data and fNIRS data, respectively, for the classification of
MI tasks (left-hand vs. right-hand) and classification of MA
tasks (MA vs. resting state).

Time domain feature
For time domain features, we extracted six statistic features

of EEG and fNIRS, including signal mean, signal variance, mean
of the first difference absolute value, mean of the normalized first
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FIGURE 3

The overall architecture of the proposed multimodal fusion framework.

difference absolute value, mean of the second difference absolute
value and mean of the normalized second difference absolute
value. The formulas for calculating these statistic features are
shown as (Qiu et al., 2022).

Frequency domain feature
For the frequency domain features of EEG signals, we

extracted the differential entropy (DE) feature in the range
of 0.5–45 Hz using short-term Fourier transform, which is
calculated as follows:

DE = h(x) −
+∞

∫
−∞

1
√

2πσ 2
e−

(x−µ)2

2σ2 log
(

1
√

2πσ 2
e−

(x−µ)2

2σ2

)
(1)

dx =
log(2πeσ2)

2

where µ and σ represent the mean and standard deviation of the
signal, respectively, and e is the Euler constant.

For the frequency domain feature of fNIRS signals, we
extracted the power spectral density (PSD) feature of HbO
and Hb in the range of 0.01–0.1 Hz using Fourier transform,
respectively. The PSD feature, like the DE feature, is based on
the Fourier transform. It converted the fluctuations of the signal
surface topography into the spatial frequency domain within
the range of the specified frequency domain, so as to obtain

the intensity spectral line distribution of the high, medium
and low frequency energy topography components. The specific
process is as follows: For a discontinuous HbO and Hb signal
x(n) with limited length, the discrete Fourier transform is firstly
performed, and the formula is:

XN
(
e−jω

)
=

N∑
n=1

x(n)e−jωn (2)

P (ω) =
1
N
∣∣XN(e−jω)

∣∣2 = 1
N

∣∣∣∣∣
N∑

n=1

x(n)(e−jω)

∣∣∣∣∣
2

, n = 1, . . . ,N

(3)
where XN

(
e−jω

)
is the Fourier transform of the sequence x(n)

and P (ω) is the final result of the average periodogram
estimated power spectrum.

Feature selection

Time-domain feature and frequency-domain feature are
features from two different dimensions. When multiple different
types of features are used, simple feature splicing often
leads to redundant information, making it is difficult to
fully utilize the effective information of multiple features.
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To combine the time and frequency domain features from
EEG or fNIRS more efficiently, we utilized the Atom Search
Optimization (ASO) algorithm for feature selection on the
combined time and frequency domain features in this study.
Specifically, we first converted all features into the same
dimension using Z-Scores (Aris et al., 2018), and then
used the ASO algorithm for feature selection. The ASO
algorithm was proposed by Zhao et al. (2018) in 2018,
which is inspired by basic molecular dynamics. All matter
in nature is composed of atoms. Atoms have mass and
volume. In an atomic system, all atoms interact and are
in a constant state of motion. The role is very complex.
With the development of science and technology, molecular
dynamics has developed rapidly in recent years, and it is
already possible to use computers to simulate the laws of
physical motion of atoms and molecules. The ASO algorithm
mainly simulates the displacement of atoms caused by the
interaction of the interaction force generated by the Lennard-
Jones potential and the binding force generated by the bond
length potential in the atomic motion model, and uses
attraction and repulsion to realize global search and local
search. In ASO, the position of each atom in the search
space represents a solution, and this solution is related to
the atomic mass. A better solution means atoms with heavier
mass and vice versa. All atoms in the group attract or repel
each other depending on their distance, causing the lighter
atoms to move toward the heavier ones. Heavier atoms have
less acceleration, which makes them seek better solutions in
local space. Lighter atoms have greater acceleration, which
allows them to search for new regions of the global search
space where better solutions may exist. Previous studies have
demonstrated that this algorithm can be used to remove
redundant information between features in different frequency
domains, leaving complementary and useful information
(Ghosh et al., 2020).

EEG-fNIRS fusion

Determining the trustworthiness of each mode to the
objective, then coordinating and making joint judgments,
is what decision-level fusion entails. In the decision-level
fusion, each modal feature is classified independently at
the decision level to generate local judgments based on
individual features, which are then integrated by decision-
level fusion methods. In this paper, we proposed a progressive
learning method to achieve the decision-level fusion of
different features between two different modalities, so as to
solve the problem of information incompatibility between
different modalities. Progressive learning is one of the
algorithms in ensemble learning, which is an algorithm that
is learned by combining multiple individual machine learning

algorithms. Progressive learning method contains a total of
two-level learning process, primary learning and secondary
learning. We selected four machine learning models, namely
Random Forest, eXtreme gradient boosting (XGBoosting),
adaptive boosting (ADABoosting) and light gradient boosting
machine (LGBM), as the primary learning models {λ1, λ2,
λ3, λ4}, and Logistic Regression as the secondary learning
model λ.

The proposed multimodal fusion framework based
on progressive learning is shown in Figure 3. First, we
combined the time-domain and frequency-domain features
of a single modality (EEG or fNIRS), respectively, to form
a new feature matrix. Then, the ASO algorithm was used
to perform feature selection on the new feature matrix
to remove the information redundancy caused by multi-
domain features. Next, the selected multi-domain features
of EEG and fNIRS were used as the input for multi-
level progressive learning, respectively. In the multi-level
learning process, we used a total of four classification
models (Random Forest, XGBoosting, ADABoosting, and
LGBM) as the training model for the primary learning
stage, and Logistic Regression as the training model for the
secondary learning.

In the primary learning stage, we first divided the multi-
domain features of a single modality (EEG or fNIRS) into
two parts in an 8:2 ratio as the input to the four learning
models. Those 80% of the features were further divided
into 8 small parts {k1, k2, ..., k8}, and one of the small
parts ki (i = 1.8) was selected as the test set in turn, and
the remaining as the training set. Each training and testing
produce a local model and a set of predicted values, namely
"Local model 1∼Local model 8" and "Predict 1∼Predict 8"
in Figure 3. Then, each local model was used to predict the
corresponding 20% unimodal features (those obtained after
feature selection), and a total of 8 test prediction values were
obtained, namely "Test Predict 1∼Test Predict 8" in Figure 3.
Their average was recorded as "Average." Therefore, after
the primary learning with four learning models, each single
modality (EEG or fNIRS) corresponds to 4 sets of “Predict
1∼Predict 8” (each set was named as Ai, i = 1.4) and 4 sets of
“Average” of Test Predict values (each set named as Bi, i = 1.4).
That is, {EEG_A1, ..., EEG_A4} and {EEG_B1, ...., EEG_B4}
for EEG and {fNIRS_A1,..., fNIRS_A4} and {fNIRS_B1, ...,
fNIRS_B4} for fNIRS.

In the secondary learning stage, {EEG_A1, ..., EEG_A4,
fNIRS_A1, ..., fNIRS_A4} was used as training set, {EEG_B1,
..., EEG_B4, fNIRS_B1, ..., fNIRS_B4} was used as test set, and
Logistic Regression was used as classification model to obtain
final classification results for MI and MA tasks.

This paper proposed multimodal fusion framework based
on multi-level progressive learning with multi-domain features
to improve the classification performance of the EEG-fNIRS
multimodal brain-computer interface. The framework mainly
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includes three processes: (1) Multi-domain feature extraction
process of EEG and fNIRS in time and frequency domains.
(2) Feature selection process based on ASO algorithm.
(3) Multimodal feature fusion process based on multi-
level progressive machine learning. This study evaluates the
effectiveness of the proposed method on MI and MA tasks
involving 29 subjects. Our proposed framework is outlined in
the following pseudocode (Algorithm 1).

ALGORITHM 1 Training and optimization procedures of EEG-fNIRS
fusion based on our proposed framework.

Inputs: time domain features of EEG E1 = {(E1xm , ym)}; frequency domain
features of EEG E2 = {(E2xm , ym)}; time domain features of fNIRS F1 = {(F1xm ,
ym)}; frequency domain features of fNIRS F2 = {(F2xm , ym)}; number of primary
learning models T; primary learning models λ1 , λ2 , λ3 , λ4 ; secondary learning
model λ

Outputs: trained model M based on our proposed method; predicted labels L;

1. set E = E1 ∪ E2 = {(Exm , ym)},

2. F = F1 ∪ F2 = {(Fxm , ym)}% Combine the time and frequency domain
features

3. D1 = E’, D2 = F’% feature selection using ASO algorithm for E and F:

4. for t = 1, . . ., T:

5. ht1 = λt (D1)% Train a primary individual learner ht1 and ht2 by
applying the primary

6. ht2 = λt (D2)% learning models

7. end for

8. D’ = ∅; % Generate a new data set

9. for i = 1,. . .,k:% k-flod cross-validation

10. for t = 1,. . .,T:

11. ht1 ’ = ht1 (E1xi), ht2 ’ = ht2 (F1xi),

12. ht = ht1 ’ ∪ ht2 ’

13. Zit = ht (xi)

14. end for

15. D’ = D’ ∪ ((Zi1 , Zi2 , . . ., ZiT ), yi)

16. end for

17. h’ = λ (D’);% Train the secondary learner h’ by applying the secondary
learning

18. % algorithm λ to the new data set D’

19. M (x) = h’ (h1 (x), h1 (x),. . ., hT (x))

20. return predicted labels L and trained model M based on our proposed
method

Results

This section mainly presents the classification accuracy
of EEG and fNIRS-based single-domain and multi-domain
features, single- and multi-modality, the traditional fusion
method and the proposed fusion method on MI and MA tasks.

First, we explored the classification accuracy of MI and
MA tasks based on the time- and frequency-domain features
of EEG and fNIRS signals. The time-domain features of EEG
and fNIRS used here include a variety of timing statistical

features, and the frequency-domain features included DE
feature of EEG and PSD feature of fNIRS. These time-
domain and frequency-domain features were normalized by
Z-Score and then feature selection using ASO algorithm
before being used for classification. In the classification of
both MI and MA tasks, a Random Forest classifier was used
to classify time-domain features, frequency-domain features,
and time-frequency hybrid features from EEG and fNIRS
as input, respectively. Figures 4, 5 show the classification
accuracy of EEG-based statistic feature and DE feature and
their multi-domain hybrid features in MI and MA tasks,
respectively, for 29 subjects. As shown in Figures 4, 5, in
the classification of MI and MA tasks, all subjects show
higher classification accuracy in the EEG-based time-frequency
domain hybrid features than single time or frequency domain
features. In the EEG-based MI task classification, the average
classification accuracies of 29 subjects based on statistic
feature, DE feature and their multi-domain hybrid features
were 58.01 ± 4.33%, 54.17 ± 3.79%, and 65.87 ± 3.78%,
respectively. In the EEG-based MA task classification, the
average classification accuracies of 29 subjects based on
statistic feature, DE feature and their multi-domain hybrid
features of EEG were 76.42 ± 6.73%, 75.06 ± 6.68%, and
80.75± 7.60%, respectively.

Figures 6, 7 show the classification accuracy of fNIRS-
based statistic feature and PSD feature and their multi-domain
hybrid features in MI and MA tasks, respectively, for 29
subjects. It can be seen that the classification accuracy of
both the MI and MA tasks based on the time-frequency
domain hybrid features of fNIRS for all subjects is higher
than that of the single time domain or frequency domain
features. In the fNIRS-based MI task classification, the average
classification accuracies of 29 subjects based on the statistic
feature of HbO, the PSD feature of HbO, the statistic feature
of Hb, the PSD feature of Hb, and their multi-domain hybrid
features were 89.26 ± 2.87%, 78.87 ± 4.71%, 88.71 ± 2.37%,
81.51 ± 3.57%, and 92.19 ± 2.59%, respectively. In the
fNIRS-based MA task classification, the average classification
accuracies of 29 subjects based on the statistic feature of HbO,
the PSD feature of HbO, the statistic feature of Hb, the PSD
feature of Hb, and their multi-domain hybrid features were
92.51 ± 2.27%, 85.74 ± 5.20%, 90.00 ± 1.99%, 92.85 ± 2.23%,
and 94.88 ± 2.35%, respectively. From the classification results
of MI and MA based on EEG and fNIRS features, it can be
seen that the classification accuracy can be effectively improved
by combining time domain and frequency domain features.
Among them, the classification accuracies of MI and MA tasks
based on EEG time-frequency multi-domain features is 7.86
and 4.33% higher than that of EEG time-domain single-domain
features, and 11.70% and 5.69% higher than EEG frequency-
domain single-domain features, respectively. The classification
accuracies of MI and MA tasks based on fNIRS time-frequency
multi-domain features is 3.48% and 4.88% higher than fNIRS
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FIGURE 4

Classification accuracies of EEG-based statistic features and DE feature and their multi-domain hybrid features in the MI task for 29 subjects.
The abscissa represents the test number, and the ordinate represents the classification accuracy.

FIGURE 5

Classification accuracies of EEG-based statistic feature and DE feature and their multi-domain hybrid features in the MA task for 29 subjects.
The abscissa represents the test number, and the ordinate represents the classification accuracy.

time-domain single-domain features, respectively, and 13.32%
and 9.14% higher than fNIRS frequency-domain single-domain
features, respectively.

Previous studies have shown that a multimodal combination
based on EEG and fNIRS can provide better performance than
single modality (He et al., 2020). But there is currently a lack
of a systematic approach to properly fuse EEG-fNIRS data and
exploit their complementary potential. Therefore, we proposed

a fusion method based on progressive multi-level learning to
deeply fuse different features between two different modalities,
EEG and fNIRS, to classify MI and MA tasks more efficiently.
The fusion method mainly includes two levels of learning:
primary learning and secondary learning. In the primary
learning, we used Random Forest, XG Boosting, ADA Boosting
and Light GBM four machine learning models for a single
modality to learn multi-domain features from EEG and fNIRS,
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FIGURE 6

Classification accuracies of fNIRS-based statistic features and PSD features of HbO and Hb and their multi-domain hybrid features in the MI task
for 29 subjects. The abscissa represents the test number, and the ordinate represents the classification accuracy.

FIGURE 7

Classification accuracies of fNIRS-based statistic features and PSD features of HbO and Hb and their multi-domain hybrid features in the MA
task for 29 subjects. The abscissa represents the test number, and the ordinate represents the classification accuracy.

respectively. In secondary learning, we further used Logistic
Regression for final classification based on primary learning
results. To verify the effectiveness of the proposed fusion
method, we compared it with the direct splicing method. The
direct splicing method here refers to simple matrix splicing of
the extracted EEG features (including statistical features and DE
features) and fNIRS features (including statistical features and
PSD features of HbO and Hb) without any other processing, and
then using the random forest algorithm for classification. The
classification results based on direct splicing were 8-fold cross-
validated. Table 1 shows the classification accuracies on MI
and MA tasks obtained by fusing EEG and fNIRS multimodal

features based on the proposed fusion method and the direct
splicing method, respectively, for 29 subjects. It can be observed
that in both the MI and MA tasks, the accuracy obtained
by each subject in the fusion of EEG and fNIRS multimodal
features based on our proposed fusion method is higher than
the direct splicing method. The average classification accuracies
of 29 subjects for MI and MA tasks based on the direct splicing
method was 80.47 ± 4.68% and 85.43 ± 4.79%, respectively,
while the average classification accuracy based on our proposed
fusion method was 96.74 ± 1.96% and 98.42 ± 1.52%,
respectively. In the classification of MI tasks, the fusion method
of direct splicing improves the accuracy by 14.60% compared
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with the EEG-based single modality, and reduces the accuracy
by 11.72% compared with the fNIRS-based single modality. In
the classification of the MA task, the fusion method of direct
splicing improves the accuracy by 4.68% compared with the
EEG-based single-modality, and reduces the accuracy by 9.45%
compared with the fNIRS-based single-modality. That is, the
multimodal fusion method of direct splicing plays the role of
‘positive fusion’ compared with the single-modality based on
EEG, but plays the role of “negative fusion” when compared
with the single-modality based on fNIRS. The emergence of the
phenomenon of "negative fusion" indicates that the features of
EEG and fNIRS have not been effectively fused. The reason may
be that the features of EEG and fNIRS are cross-modal, and their
essence, acquisition mechanism and dimensions are different.

However, after the fusion of our proposed method, the
classification accuracy of EEG-fNIRS is as high as 96.74± 1.96%
in the MI task, and the classification accuracy in the MA
task is as high as 98.42 ± 1.52%. It can be observed that
the proposed fusion method improves the accuracy by 30.87%
over the EEG-based single modality in the MI task and 4.55%
over the fNIRS-based single modality. It achieves a 17.67%
improvement over the EEG-based single-modality accuracy in
the MA task and a 3.54% improvement over the fNIRS-based
single-modality accuracy. Moreover, compared with the EEG-
fNIRS fusion method based on simple splicing, the classification
accuracy of our proposed method in the MI task is improved
by 16.27% and the classification accuracy in the MI task is
improved by 12.99%. Obviously, our proposed fusion method
can effectively fuse the multimodal features of EEG and fNIRS,
thereby improving the classification accuracy of BCI based on
MI and MA tasks.

Discussion

In recent years, multimodal hybrid BCI has attracted more
and more attention. Many studies have shown that using the
complementarity between different modalities of brain imaging
techniques can obtain richer brain information and eliminate
redundant information, thereby improving the performance of
BCI. However, due to the different acquisition mechanisms,
temporal and spatial resolutions, and noise susceptibility of
different modal technologies, the information between various
modalities may not be interoperable. How to use the diverse and
complementary information of different modalities to maximize
their respective advantages and overcome the limitations of
a single-modal system is one of the main challenges in the
application of multimodal BCI. To address this issue and
improve the performance of BCI based on EEG-fNIRS, in this
study, we proposed a novel multimodal fusion method based
on multi-level progressive learning with multi-domain features.
The proposed method was evaluated using a public dataset

based on EEG-fNIRS, which contains two tasks, MI (left-hand
and right-hand) and MA (MA and resting state).

Currently the classification framework based on MI and
MA tasks generally concentrates on the pattern of classifier
with single-domain feature, which can only provide limited
information useful for final classification, thus may lead
to unsatisfactory performance. Therefore, in this study, we
extracted the temporal and spectral feature information
of EEG and fNIRS-based brain activity from multiple
domains (time and frequency domains), which can mine
the different and complementary information for MI and MA
pattern classification. There are currently few studies on the
classification of MI tasks and MA tasks (especially MA tasks)
based on multi-domain hybrid features of EEG or fNIRS. From
the classification results of single-domain and multi-domain
features based on EEG and fNIRS (Tables 1, 2), it can be
seen that combining time-domain and frequency-domain
features can effectively improve the classification accuracies of
MI and MA tasks. In the MI task, the classification accuracy
of EEG-based multi-domain features is up to 11.70% higher
than that of single-domain, and the classification accuracy of
fNIRS-based multi-domain features is up to 13.32% higher
than that of single-domain. In the MA task, the classification
accuracy of multi-domain features based on EEG is up to
5.69% higher than that of single domain, and the classification
accuracy of multi-domain features based on fNIRS is up to
9.14% higher than that of single domain. This conclusion is
consistent with previous EEG-fNIRS-based studies finding that
using multi-domain features can improve BCI classification
performance based on MI and MA tasks. Table 2 lists the
classification accuracy of MI and MA tasks based on single-
domain features and multi-domain hybrid features based on
EEG or fNIRS. As can be seen from Table 2, the conclusions of
the previous related studies and our study jointly illustrate that
multi-domain features can provide higher BCI classification
performance than single-domain features.

Determining a systematic approach to properly fuse EEG-
fNIRS data and exploit their complementary potential is
critical for improving the performance of EEG-fNIRS-based
BCI. Incorrect fusion methods such as direct feature splicing
not only cannot improve performance, but may lead to
the appearance of ‘negative fusion’ and reduce performance.
In this study, we proposed a novel multimodal fusion
method based on multi-level progressive learning with multi-
domain features, which deeply fused multi-domain features
of two modalities, EEG and fNIRS, at the decision-level.
Our fusion results show that, the classification accuracy
based on EEG-fNIRS multi-domain features is as high as
96.74 ± 1.96% in the MI task, and the classification accuracy
in the MA task is as high as 98.42 ± 1.52%. These results
are greatly improved over both single modality and traditional
fusion methods of direct feature splicing. It can be seen
that our proposed fusion method can effectively fuse the
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multimodal features of EEG and fNIRS. Table 3 presents
the classification accuracies of the fused EEG-fNIRS multi-
modality for MI and MA tasks on the same open dataset.
At present, most of the studies based on the same dataset
(Shin et al., 2016) fused EEG and fNIRS at the feature-
level (Shin et al., 2016; Meng et al., 2021; Nour et al.,
2021), and some perform dual fusion at the feature-level
and decision-level (Rabbani and Islam, 2021a). It can be
seen from Table 3 that our fusion results in MI and MA
tasks are better than most related studies (Shin et al.,
2016; Meng et al., 2021; Rabbani and Islam, 2021a), that is,
the classification accuracies were higher. Nour et al. (2021)

proposed a novel multi-bandwidth classification framework
based on an optimized convolutional neural network (CNN)
to fuse EEG and fNIRS, and achieved 99.85% classification
accuracy on the MA task. Although the fusion result of this
study is slightly higher than our fusion result of 98.42%, their
fusion method was based on deep learning, which requires
a large amount of computation, and the fusion model was
only verified on a single MA task. However, our fusion
framework mainly relies on machine learning and achieves
good classification accuracy on both MI and MA tasks. All in
all, our proposed fusion framework is more competitive with
existing fusion methods.

TABLE 1 The classification accuracies on MI and MA tasks obtained by fusing EEG and fNIRS multimodal features based on the proposed fusion
method and the direct splicing method for 29 subjects.

Task MI MA

Features
Subject

EEG-fNIRS
(Direct splicing)

EEG-fNIRS (Proposed
fusion method)

EEG-fNIRS
(Direct splicing)

EEG-fNIRS (Proposed
fusion method)

1 81.49% 95.03% 91.26% 100.00%

2 80.69% 97.11% 85.78% 99.54%

3 79.69% 96.99% 77.97% 94.94%

4 83.59% 97.21% 83.03% 98.31%

5 80.79% 96.18% 81.54% 96.51%

6 74.25% 97.73% 86.62% 99.48%

7 84.63% 98.23% 88.64% 97.76%

8 71.39% 96.35% 82.69% 98.32%

9 82.93% 99.01% 86.78% 98.39%

10 86.13% 98.89% 98.63% 98.31%

11 77.23% 97.13% 83.52% 97.61%

12 75.90% 97.37% 79.96% 93.47%

13 76.45% 98.23% 79.44% 96.74%

14 77.97% 98.36% 78.07% 99.68%

15 85.30% 95.08% 83.16% 97.12%

16 74.96% 96.37% 79.17% 99.77%

17 83.60% 97.93% 86.56% 98.88%

18 77.33% 96.44% 91.97% 99.80%

19 81.49% 98.73% 84.56% 98.84%

20 74.51% 98.33% 80.45% 99.23%

21 89.53% 94.10% 84.84% 98.97%

22 85.54% 95.64% 87.88% 98.58%

23 84.81% 98.34% 87.64% 99.73%

24 77.19% 94.51% 87.42% 99.22%

25 82.85% 90.13% 89.76% 99.85%

26 83.65% 97.42% 90.27% 98.54%

27 83.87% 97.24% 87.90% 99.21%

28 71.46% 98.06% 81.72% 97.68%

29 84.48% 93.18% 90.14% 99.75%

Mean 80.47% 96.74% 85.43% 98.42%

Standard
deviation

4.68% 1.96% 4.79% 1.52%
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TABLE 2 Classification accuracies of MI and MA tasks based on single-domain features and multi-domain hybrid features based on EEG or fNIRS.

Studies Tasks Classification Algorithms Modalities Features Accuracies

Shin et al., 2016 MI Linear Discriminant Analysis (LDA) EEG Power Spectrum 73.10%

Common Spatial Pattern 63.39%

Hybrid Features 73.28%

fNIRS Mean Value of HbO Channel Wise 82.76%

Mean Value of Hb Channel Wise 79.66%

Modified Common Spatial Pattern 78.74%

Hybrid Features 86.84%

MA EEG Power Spectrum 82.64%

Common Spatial Pattern 77.24%

Hybrid Features 84.6%

fNIRS Mean Value of HbO Channel Wise 82.76%

Mean Value of Hb Channel Wise 79.66%

Modified Common Spatial Pattern 78.74%

Hybrid Features 86.84%

Li et al., 2021 MI Deep Forest EEG Time-frequency 62.00%

Common Spatial Pattern 72.00%

Fusion 75.00%

Saadati et al., 2020 MI Deep Neural Networks (DNN) fNIRS HbO_Mean 70.00%

Hb_Mean -

Hybrid Features 80.00%

Yin et al., 2015 MI Extreme Learning Machines EEG Power 70.00%

Instantaneous Amplitude 72.00%

Instantaneous Phase 81.00%

Instantaneous Frequency 79.00%

Hybrid Features 88.00%

fNIRS HbO_Mean 70.00%

Hb_Mean 72.00%

Total HbO and Hb 81.00%

Differences between HbO and Hb 79.00%

Hybrid Features 88.00%

Zhang et al., 2021 MI LDA EEG Power Spectral Density 74.00%

Common Spatial Pattern 75.90%

Wavelet Transform 83.20%

Hybrid Features 84.70%

Our work MI Random Forest EEG Statistic 58.01± 4.33%

DE 54.17± 3.79%

Hybrid Features 65.87± 3.78%

fNIRS HbO_statistic 89.26± 2.87%

HbO_PSD 85.74± 5.20%

Hb_statistic 90.00± 1.99%

Hb_PSD 81.51± 3.57%

Hybrid Features 92.19± 2.95%

MA EEG Statisitc 76.42± 6.73%

DE 75.06± 6.68%

Hybrid Features 80.75± 7.60%

fNIRS HbO_statistic 92.51± 2.27%

HbO_PSD 85.74± 5.20%

Hb_statistic 90.00± 1.99%

Hb_PSD 92.85± 2.23%

Hybrid Features 94.88± 2.35%
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TABLE 3 The classification accuracies of the fused EEG-fNIRS multi-modality for MI and MA tasks on the same open dataset.

Studies Tasks Classification algorithms Multi-modality Fusion strategies Accuracies

Shin et al., 2016 MI LDA EEG-fNIRS Feature-level 75.9%

MA LDA EEG-fNIRS Feature-level 86.2%

Rabbani and Islam, 2021a MI SVM+ LDA EEG-fNIRS Feature-level+ Decision-level 78.56%

MA SVM+ LDA EEG-fNIRS Feature-level+ Decision-level 92.52%

Meng et al., 2021 MA LDA EEG-fNIRS Feature-level 89.83%

Nour et al., 2021 MI Convolutional Neural Network (CNN) EEG-fNIRS Feature-level 99.85%

Our work MI Logistic Regression EEG-fNIRS Decision-level 96.74%

MA Logistic Regression EEG-fNIRS Decision-level 98.42%

From the above experimental results, it can be seen
that our proposed multimodal fusion method based on
multi-level progressive learning with multi-domain features
and ASO feature selection is effective and promising in
the fusion of EEG-fNIRS. Furthermore, the superiority of
this method is verified by comparison with other EEG-
fNIRS fusion methods. The proposed method is a novel
multimodal fusion algorithm, which combines the advantages
of multi-domain feature extraction, the ability of ASO
algorithm feature selection and multi-level progressive
machine learning, and can effectively fuse the information
of EEG and fNIRS to improve the classification accuracy.
We validated the effectiveness of the proposed method
on two experimental tasks (i.e., MI and MA tasks), and
illustrated the superiority of the proposed method through
extensive comparisons comparisons with different methods.
However, there are still some potential problems in this
study that need to be studied and improved. On the one
hand, the more multi-domain features extracted from multi-
modalities, the richer the brain information contained,
and the more comprehensive the task-related intrinsic
features. However, as the feature dimension increases,
the computation time of the proposed method increases.
Therefore, the improvement of the computational efficiency
of this method needs to attract more attention in future
research. On the other hand, the proposed method was only
validated on public datasets and has not been extended to
practical BCI applications. Therefore, for future work, we
intend to apply the proposed method to solve multimodal
BCI classification problems in more real-world situations
and to extend the proposed method to a wider range of
neuro-clinical applications.

Conclusion

Aiming at the problems of insufficient feature extraction
and insufficient multimodal information fusion in current
multimodal fusion, this study proposes a novel multimodal
fusion method based on multi-level progressive learning
with multi-domain features. The method combines the
advantages of multi-domain feature extraction, the feature

selection process of ASO algorithm and multi-level progressive
machine learning. Based on this method, task-related brain
electrical and hemodynamic information can be fully extracted
through multi-domain features, the multi-domain features
can be eliminated redundant information through ASO
algorithm and the multi-domain features of EEG and fNIRS
can be effectively fused through multi-level progressive
machine learning. The effectiveness and superiority of
this method for EEG and fNIRS information fusion are
verified on two different tasks, MI and MA. Experiments
on the EEG-fNIRS dataset containing 29 subjects show that
the proposed method can achieve an average accuracy of
96.74% in the classification of the MI task, and an average
accuracy of 98.42% in the classification of the MA task.
Our proposed method may provide a general framework
for fusion processing of multimodal brain signals and
multimodality-based BCI.
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