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Humans can flexibly represent both categorical and coordinate spatial

relations. Previous research has mainly focused on hemisphere lateralization

in representing these two types of spatial relations, but little is known about

how distinct network organization states support representations of the two.

Here we used dynamic resting-state functional connectivity (FC) to explore

this question. To do this, we separated a meta-identified navigation network

into a ventral and two other subnetworks. We revealed a Weak State and

a Strong State within the ventral subnetwork and a Negative State and a

Positive State between the ventral and other subnetworks. Further, we found

the Weak State (i.e., weak but positive FC) within the ventral subnetwork was

related to the ability of categorical relation recognition, suggesting that the

representation of categorical spatial relations was related to weak integration

among focal regions in the navigation network. In contrast, the Negative

State (i.e., negative FC) between the ventral and other subnetworks was

associated with the ability of coordinate relation processing, suggesting that

the representation of coordinate spatial relations may require competitive

interactions among widely distributed regions. In sum, our study provides the

first empirical evidence revealing different focal and distributed organizations

of the navigation network in representing different types of spatial information.
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Introduction

Understanding spatial relations is hard for artificial
intelligence, but easy for human being. Spatial relationships
are critical to the formation of cognitive maps in navigation.
We can use flexible representations to encode spatial relations
either categorically, such that concerns the spatial layout formed
by relative positions of objects (e.g., a house located in the
left of the oak); or as coordinates, such that refers to the
spatial locations in terms of metric units (e.g., a house located
2.5 m from the oak) (Kosslyn, 1987). The categorical spatial
relationships capture abstract or general relations among object,
such as “under”; by contrast, the coordinate spatial relationships
reflect the exact metric or precise distance between objects.
As evidenced in other domains, such as number (Feigenson
et al., 2004; Pica et al., 2004) and color (Kay and Regier,
2003), there are profound distinctions between categorical
and coordinate representations (Holden et al., 2010). Do the
representations of categorical and coordinate spatial relations
have distinct underlying neural substrates? Large majority of
relevant neuroimaging studies concentrated on discovering the
hemispheric lateralization dissociation between the two types
of spatial relation representations in the prefrontal or parietal
cortex, which based on making very basic task designs by using
lines, crosses, or dots (Kosslyn et al., 1989; Trojano et al.,
2002; Slotnick and Moo, 2006; van der Ham et al., 2009, 2013).
However, a fundamental question remaining unclear is how
distinct neural substrates in the large-scale navigational system
underpinned the categorical and coordinate spatial relations.

Until now less attention has been paid to direct
comparison between categorical and coordinate spatial
relations representation under navigational system, and mix
results are reported. The only known studies identify greater
activation in the parietal cortex in the categorical condition,
and higher activation in the medial temporal lobe (MTL) and
dorsal striatum in the coordinate condition during spatial
navigation (Baumann et al., 2012; Baumann and Mattingley,
2014); however, another study finds that the anterior temporal
gyrus processes the categorical spatial information, and the left
angular and inferior frontal gyrus processes more coordinate
spatial information (Amorapanth et al., 2010). Importantly,
neuropsychological studies provide some insight about some
brain regions are conjointly and others distinctly recruited
in the categorical and coordinate spatial relations. Within
the scope of categorical/coordinate distinction, these shared
and distinct activation regions mainly restrict to a small
number of navigation-related regions of interest. On the
one hand, the MTL has been found to play a central role in
representing both categorical and coordinate spatial relations.
For categorical spatial relations, patients with hippocampal
damage are impaired in recognizing the relative relations
among mountains (Hartley et al., 2007; Urgolites et al., 2017),
and bilateral posterior hippocampus (HIP) are activated

more highly for correct than incorrect recognition of ordinal
location relations (Hannula and Ranganath, 2008). In addition,
a recent study demonstrates greater activation in the left
parahippocampal gyrus and retrosplenial cortex for processing
of spatial relations than locations (Blacker and Courtney, 2016).
Similarly, for coordinate spatial relations, the activation in
either anterior or posterior HIP has been found correlated with
the Euclidean distance (Evensmoen et al., 2013; Sherrill et al.,
2013; Howard et al., 2014) path distance (Howard et al., 2014)
and environment size (Baumann and Mattingley, 2013), and
closer locations/items have higher neural pattern similarity
in the HIP (Nielson et al., 2015; Deuker et al., 2016). On the
other hand, compared with categorical spatial relations, more
distributed regions beyond the MTL have been demonstrated
to represent the coordinate spatial relations. For example, the
medial prefrontal and medial posterior parietal regions show
increased activation with closer distance to the goal (Spiers
and Maguire, 2007; Viard et al., 2011), and the PCUN, insula,
and anterior cingulate cortex show higher activation with
further distance to the goal (Viard et al., 2011). In addition,
distance-related adaptation effect is observed in the left inferior
insula, anterior superior temporal sulcus, and right inferior
temporal sulcus (Morgan et al., 2011). Taken together, existing
evidence seems to suggest that the representation of categorical
spatial relations mainly converges on the MTL, while the
representation of coordinate spatial relations may also involve
other spatial-related regions beyond the MTL (Ekstrom and
Yonelinas, 2020).

Notably, it is increasingly recognized that different functions
of the MTL may arise from its distinct intrinsic connectivity
profiles with diverse cortical regions (Mahon and Caramazza,
2011; Sormaz et al., 2017). Yet, limited studies investigated the
neural differences based on the intrinsic functional connectivity
(FC) nature of the spatial relations. One suggestive study shows
higher resting-state FC between the HIP and lingual gyrus
is related to better ordinal relations memory (Sormaz et al.,
2017). However, it remains unclear how different intrinsic
connectivity patterns among the MTL and other spatial-related
regions support representations of categorical and coordinate
spatial relations in spatial navigation, respectively. Based on
previous findings, we hypothesize that (1) the representation
of categorical spatial relations would be mainly related to
interactions within the MTL regions and (2) the representation
of coordinate spatial relations would be related to more
distributed interactions among navigation-related regions.

To test these two hypotheses, we used the meta-identified
navigation network across the brain with the Neurosynth
(Yarkoni et al., 2011), and decomposed it into a ventral
subnetwork containing the MTL and other two subnetworks
with a modularity analysis (Hao et al., 2016; Kong et al.,
2016). Then, we characterized the intrinsic FC within the
ventral subnetwork and that between the ventral and other
subnetworks. Recent studies adopting dynamic FC approach
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have unveiled the time-varying nature of resting-state FC,
indicating some degree of multi-stability for dynamic FC with
multiple typical network states recurring during resting-state
(Hutchison et al., 2013; Allen et al., 2014). The recurring
FC states may manifest endogenous neural dynamics that are
believed to underlie the flexibility of cognition and behavior,
with different FC states relating to different cognitive functions
(Shine et al., 2016). That is, representation of categorical and
coordinate spatial relations may be associated with different
dynamic FC states of the navigation network. Therefore, we
calculated the FC matrices of all sliding time windows during
resting-state and clustered them into typical dynamic FC states
within the ventral subnetwork and between the ventral and
other subnetworks, respectively. After MRI scanning, we used
an ordinal scene recognition task to measure representation
of categorical spatial relations, and distance test to measure
representation of coordinate spatial relations. Finally, we
correlated properties of the typical dynamic FC states with
behavioral performances in the two tasks to examine whether
and how distinct dynamic network states were associated with
representations of categorical and coordinate spatial relations.

Materials and methods

Participants

Two hundred and twenty-six students (age range: 19–
24; mean age = 21.66, SD = 1.00 years, 108 males) were
recruited from Beijing Normal University, Beijing, China to
participate in this study. This sample size is comparable with
previous work (Wang et al., 2016; Hao et al., 2021) and exceeds
prior fMRI studies in most cases. None of the participants
reported a history of neurological or psychiatric disorders.
This study is part of an ongoing project (Gene Environment
Brain and Behavior) (Kong et al., 2017; Zhen et al., 2017). All

experiments were in accordance with the ethical standards of
the Institutional Review Board of Beijing Normal University and
written informed consent was obtained from each participant
before the experiment. One participant was excluded due to
more than 0.2 mm in mean framewise displacements of the head
motion.

Behavior tasks

The behavior tasks were tested outside of the MRI
scanner in a separate behavioral session, after the participants
underwent MRI scanning.

Assessment of categorical spatial
relations

We assessed the participants’ ability to represent categorical
spatial relations with an ordinal scene recognition task adapted
from Hartley et al. (2007). The stimuli were all computer-
generated landscapes, with four mountains varying in shape
and size surrounded by a distant semicircular mountain range
(Figure 1). There were 20 trials which were randomly mixed
in the task. In the study phase of each trial, participants were
required to study an image at the center of the screen for 2 s.
Then after a delay of 2 s with fixation, two images from a
novel viewpoint were presented in the test phase, including one
target image which preserved all topographic information from
the study image and one non-target image with the locations
of two mountains exchanged with each other. The location
of the target image on the left or right was randomized. The
participants were asked to identify the target image as quickly
and accurately as possible, by pressing “F” when the target
image was on the left and “J” when the target image was on
the right. Critically, the categorical spatial position among the

FIGURE 1

The ordinal scene recognition task to assess categorical spatial relations. Left panel: Example of a single trial. The participants were asked to
identify the target image as quickly and accurately as possible in the test phase. Right panel: Examples of the study and test images. Two images
were presented in the test phase, one of which was the target image and the other was the non-target image. The target image preserved all
ordinal information from the study image but with a novel viewpoint. For the non-target image, the locations of two mountains were
exchanged to the study image.
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four mountains extracted from the study images, which were
interrupted in the non-target images. Then, we averaged the
reaction times (RTs) of the correct trials for each participant.
For visualization and enhancing readability, we converted these
RTs into speed values using the classic formula: speedi = (Max–
RTi)/(Max–Min), where i refer to each participant, and Max and
Min correspond to the maximum and minimum RT across all
participants (Hao et al., 2017). The speed values were used as
the ordinal scene recognition scores.

Assessment of coordinate spatial
relations

According to the Lopez et al. (2020), we assessed the ability
to represent coordinate spatial relations with the distance test.
For the most noticeable way to assess the mentally represented
distances is to compare the landmarks with each other (Lopez
et al., 2020). The participant was presented with two well-known
landmarks (i.e., buildings or statues) in the Beijing Normal
University campus and required to choose the one closer to the
building where the experiment was conducted (i.e., the starting
point). It’s reasonable that coordinate judgments were made
when representing distances metrically. Specifically, we used
two surveys, which measured both the optimal path distance and
straight-line Euclidean distance. For the optimal path distance
survey, the participant was asked to select the optimal routes
and avoid dead ends to assess the distances between the starting
point and the landmarks; while in the Euclidean distance survey,
the participant was asked to estimate the straight-line distances
between the starting point and the landmarks. Each survey
contained nine items, including eighteen prominent landmarks.
Before the formal test, participants were provided with two
practice items to familiarize with the task and were given
feedback on each item. No feedback was provided in the formal
test. We averaged the number of correct items of the path
distance and Euclidean distance surveys as the distance score for
each participant.

All participants had lived in the campus for more than
2 years at the time of the test. To ensure that all participants
were familiar with the landmarks, they underwent a familiarity
testing, in which they rated their degree of familiarity with each
landmark on a scale ranging from one “very unfamiliar” to seven
“very familiar.” The high mean score (6.10 ± 0.70) indicates
relatively very familiar to all landmarks for each participant.

Image acquisition and preprocessing

MRI scanning was conducted on a Siemens 3T scanner
(MAGENTOM Trio, a Tim system) with a 12-channel phased-
array head coil at Beijing Normal University Imaging Center for
Brain Research, Beijing, China. T2∗-weighted functional images

in resting state were acquired using a gradient-echo, echo-planar
imaging (EPI) sequence (TR = 2 s, TE = 30 ms, FA = 90◦, number
of slices = 33, voxel size = 3.125 mm × 3.125 mm × 3.6 mm,
number of volumes = 240). During resting state scans, the
participants were instructed to close their eyes, keep still,
remain awake, and not think about anything systematically.
Of note, each participant was asked whether he/she had
fallen asleep during the scanning when the scan was finished.
Those who reported having fallen asleep were required
to rescan the resting-state imaging. In addition, high-
resolution T1-weighted structure images were acquired using
a magnetization-prepared rapid gradient-echo (MPRAGE)
sequence (TR/TE/TI = 2,530/3.39/1,100 ms, FA = 7◦,
matrix = 256 × 256, voxel size = 1 mm × 1 mm × 1.33 mm,
number of volumes = 128) for each participant.

For each participant, image preprocessing was conducted
using FSL (FMRIB software Library1). Steps included the
removal of the first four volumes for image stabilization, head
motion correction (by aligning each volume to the middle
volume of the image with MCFLIRT), spatial smoothing (with
a Gaussian kernel of 6 mm full-width at half-maximum), grand-
mean intensity normalization, and the removal of linear trend.
Next, a band-pass temporal filter (0.01–0.1 Hz) was applied to
reduce low-frequency drifts and high-frequency noise. Then,
the physiological noise (such as cardiac and respiratory cycles),
and nuisance signals from the white matter, global gray
matter average, cerebrospinal fluid, six head motion correction
parameters, and first derivatives of these signals were regressed
out (Fox et al., 2005; Biswal et al., 2010). The residual time series
obtained were registered to the MNI standard space with using
FLIRT and then used for the dynamic FC analyses. The strength
of the intrinsic FC between two regions was estimated using the
Pearson’s correlation coefficients of the residual rs-fMRI time
series.

Functional organization of the
navigation network

Considering the complexity of navigation system, we used
a meta-analysis approach named Neurosynth (Yarkoni
et al., 2011), to identify 23 highly navigation-relevant
regions involving in navigation (Hao et al., 2021). After
the preprocessing, we first computed the Fisher z-transformed
Pearson correlation coefficients between the residual time series
of each pair of the defined regions for each participant. To
detect how interconnected regions formed functionally module
structure in the navigation network, we conducted a modularity
analysis on the averaged correlation matrix across participants.
Specifically, we used the community Louvain algorithm in

1 http://www.fmrib.ox.ac.uk/fsl
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the brain connectivity toolbox (version 2017-01-15, Rubinov
and Sporns, 2010). For the Louvain algorithm, we choose the
default resolution parameter gamma = 1 and executed it in the
MATLAB. Considering the conceptual advantages of unequal
importance of positive and negative weights, we adopted an
asymmetric modularity measure to avoid biased thresholding
of the networks. Then, we ran the algorithm 1,000 times and
obtained the auto-generated optimal community structure
with a module partition number of three. Further spatial
examination found that one of the modules contained most
of well-established navigational specific regions in the MTL
(e.g., the hippocampal formation and retrosplenial complex)
(Ekstrom et al., 2017; Qiu et al., 2019), which was labeled as the
ventral subnetwork. The other two modules contained a set of
general cognitive regions in frontal and parietal cortex (e.g., the
inferior parietal lobe and middle frontal gyrus).

Dynamic functional connectivity state
clustering and statistics

We characterized the dynamic FC by using sliding time-
window correlation among the identified regions in navigation
network. For each participant we constructed a tapered
window by convolving a rectangular window (width = 50 s/25
TRs) in steps of 1 TR, which resulting in 212 windows
during rs-fMRI scanning. We chose the typical window size
between 30 and 60 s, which was found to well balance the
susceptibility to spurious fluctuations for short window lengths
and categorical insensitivity to variability for long window
lengths in empirical studies (Allen et al., 2014; Leonardi and
Van De Ville, 2015; Zalesky and Breakspear, 2015). Following
previous classic work, tapering window shape was suggested
to better suppress spurious correlations and reduce sensitivity
to outliers in categorically short time segments. The weighted
Pearson correlation was adopted to calculate the FC for reducing
the noise induced by the limited number of data points available
in each time window (Zalesky et al., 2014). To estimate the
dynamic FC within ventral subnetwork (dWNC), we computed
the correlations between each pair of regions within the ventral
subnetwork for each time window. Similarly, to characterize the
dynamic FC between ventral and other subnetworks (dBNC),
we extracted the correlations between each region in the ventral
subnetwork and each region in the other subnetworks. Finally,
all time windows were concatenated across all participants,
resulting in 47700 (212 × 225) FC windows for dWNC and
dBNC, respectively.

To detect the representative FC patterns for the dWNC,
we applied the k-means clustering method on the concatenated
FC matrix consisting of all participants’ time windows (Lloyd,
1982; Allen et al., 2014; Nomi et al., 2016). Following previous
work in dynamics, the k-means algorithm was evaluated across
values of k ranging from 2 to 10 using the silhouette metric,

which measures how similar a FC window is to its own cluster
compared to other clusters (Hutchison and Morton, 2015). The
k-means clustering was repeated for 500 times with random
initialization of centroid positions and produced the highest
silhouette score with the value of k = 2. As a result, each time
window for dWNC was assigned to one of the two typical
dynamic FC states (clusters) for further analyses. Further, we
calculated the frequency (i.e., the proportion of all 212 windows
assigned to a particular state) and mean duration (i.e., the
average number of consecutive windows assigned to a particular
state) to describe each typical dynamic FC state. Likewise, we
clustered the time windows for dBNC across all participants into
two typical FC states and described their frequencies and mean
durations in the same way.

Behavioral correlation with dynamic
functional connectivity states

The most essential nature of these typical dynamic states is
their FC strength. Thus, we calculated the mean FC strength
of each typical dynamic FC state for each participant, which
was the averaged FC value for all windows assigned to a
particular state. First, to examine how dynamic organization
within the ventral subnetwork was related to representations
of categorical and coordinate spatial relations, we conducted
partial correlation analyses between the mean FC strength
of each typical dWNC FC state and scores in the ordinal
scene recognition test and the distance test, respectively.
The same correlation analyses were performed between the
mean FC strength of each typical dBNC FC state and two
behavioral scores to examine how dynamic interactions between
subnetworks supported representations of the two types of
spatial relations. Several confounding factors were controlled.
First, age and gender were included as control variables. Second,
the framewise displacement (FD; mean = 0.09, SD = 0.03)
(Power et al., 2012) was included as a control variable for head
motion. Third, the familiarity of all landmarks was added as
a control variable when performing the correlation analyses
regarding the distance test.

Results

In the present study, we used the Neurosynth-defined
navigation network with 23 regions widely distributed in the
medial temporal, parietal, and frontal cortex (Hao et al., 2021),
which was aligned to another meta-analysis studies (Boccia et al.,
2014, 2017; Ekstrom et al., 2017; Gona and Scarpazza, 2019).
To refine the potential differences in navigation organization
underlying between the representations of categorical and
coordinate relations, we conducted a modularity analysis on the
averaged FC matrix of the navigation network and obtained

Frontiers in Human Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2022.972375
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-972375 November 15, 2022 Time: 6:48 # 6

Hao et al. 10.3389/fnhum.2022.972375

an optimized structure of three modules (Figure 2), with a
modularity index (Q) of 0.50, indicating a strong modular
structure in the navigation network (Newman and Girvan,
2004). The three modules almost fit well with three distinct
pathways in the dorsal visual stream that mainly targets to
the MTL involved in navigation, and projects to the prefrontal
and premotro cortex involved in spatial working memory
and visually guided action, respectively (Kravitz et al., 2011).
Most important, the ventral subnetwork included bilateral
HIP, parahippocampus gyrus (PHG), retrosplenial complex
(RSC), lingual gyrus (LING), fusiform gyrus (FFG), and the
right middle occipital gyrus (MOG), which were well-known
navigational regions reported in previous studies (Epstein and
Kanwisher, 1998; Maguire et al., 1998; Spiers and Maguire, 2006;
Epstein, 2008; Epstein et al., 2017). Other subnetworks were
widely characterized in many cognitions with general function,
including bilateral superior parietal gyrus (SPG), Inferior
parietal lobe (IPL), precuneus (PCUN), the right angular gyrus
(ANG), superior frontal gyrus (SFG), and left precentral gyrus
(PreCG), middle frontal gyrus (MFG), supplementary motor
area (SMA), and a third module including the left MOG. Further
examination found that the left MOG module consisted of
multiple clusters, including some inferior parietal lobule voxels,

a few superior parietal lobule voxels in Juelich Histological
atlas and some superior lateral occipital cortex (LOC) voxels in
Harvard-Oxford cortical structural atlas.

Next, we explored the representative states for dWNC using
a clustering method. Stable clustering of all concatenated dWNC
FC matrices was obtained, showing the highest silhouette
value when k = 2. The resulting two clustering FC matrices
represented the centroids of all matrices assigned to each cluster
and putatively reflected the two typical FC states within the
ventral subnetwork. As shown in Figure 3, we found that
the two FC states showed different FC strength among the
ventral regions, that is, one state showed relative weak FCs
(mean = 0.28; SD = 0.051; named as Weak State), while the other
showed strong FCs (mean = 0.62; SD = 0.05; named as Strong
State; Weak vs. Strong, t224 = −101.65, p< 0.001). Notably, both
the Weak and Strong State showed FC strength significantly
higher than 0 (Weak State: t224 = 83.32, p < 0.001; Strong
State: t224 = 185.94, p< 0.001), indicating functional integration
within ventral subnetwork. Then, the Weak State had a higher
frequency than the Strong State (Weak State: 0.54, Strong State:
0.46; t224 = 3.62, p < 0.001). Finally, the Weak State showed
longer mean duration (12.34 ± 6.51 windows) than the Strong
State (10.05 ± 4.36 windows; t224 = 3.85, p < 0.001).

FIGURE 2

Separating the navigation network into the ventral and other two subnetworks. Three modules identified using modular analysis: ventral
subnetwork (red) including most well-established regions for navigation and other two subnetworks (green and blue) including multiple regions
in the dorsal parietal-frontal lobe.
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FIGURE 3

Properties of representative dynamic functional connectivity (FC) states within the ventral subnetwork (dWNC) and those between ventral and
other subnetworks (dBNC). (A) Weak State and Strong State for dWNC. Weak State showed higher frequency, longer mean duration, and weaker
FC strength than Strong State. (B) Negative State and Positive State for dBNC. The two states showed no difference in frequency or mean
duration. Error bars indicate SEM. ***p < 0.001.

Similarly, we adopted clustering analysis and revealed two
typical states for all concatenated dBNC matrices. Specifically,
one state showed significantly negative FCs between the ventral
and other subnetworks (mean = −0.18, SD = 0.06; t224 = −48.48,
p < 0.001; named as Negative State), indicating competitive
interactions between subnetworks. In contrast, another state
showed significantly positive FC (mean = 0.13, SD = 0.05;
t224 = 36.47, p < 0.001; named as Positive State), indicating
cooperative interactions between subnetworks. Apparently, two
typical states showed significantly different mean FC strengths
(t224 = −66.54, p < 0.001). There is no significant difference
between the Negative and Positive States in frequency (Negative
State: 0.49, Strong State: 0.51; t224 = −0.75, p = 0.45) or mean
duration (Negative State: 11.22 ± 4.86 windows, Positive State:
11.51 ± 5.12 windows; t224 = −0.57, p = 0.57).

After depicting these typical states, we then explore how the
mean FC strength of each typical dynamic FC state associates
with behavioral performance of categorical and coordinate
spatial relations. The descriptive statistics of behavioral tests
were summarized in Table 1. There was no correlation between
the speed scores and distance scores (r = −0.09, p = 0.20).
On the one hand, for the dWNC, we examined how Weak
State or Strong State were relevant to individual differences in
representation of categorical spatial relations. To do this, we
assessed the participants’ representation of categorical spatial
relations by using an ordinal scene recognition task. We found
the mean FC strength of the Weak State, not the Strong
State, had a significant negative correlation with speed scores
(0.71 ± 0.18), after controlling for age, gender, head motion
(Weak State: r = −0.19, p = 0.016, Bonferroni correction; Strong

State: r = −0.05, p = 0.42; Figure 4). These results suggested that
weak integration among the ventral regions during resting-state
was an optimal state for representation of categorical spatial
relations. Next, we checked the association between dWNC FC
states and participants’ ability to represent coordinate spatial
relations. We didn’t find any correlations between distance
scores and mean FC strength of the Weak State or Strong
State (Weak State: r = 0.02, p = 0.78; Strong State: r = 0.02,
p = 0.76). To sum up, these results confirm hypothesize 1, that
is, representation of categorical spatial relations was related to
weak dynamic integration within the ventral subnetwork.

On the other hand, we investigated whether the FC
states of dBNC were associated with the representation of
coordinate spatial relations. We found that the mean FC

TABLE 1 Demographic information and descriptive statistics of
behavioral tests.

n 226

Sex (M/F) 108/118

Age 21.66 ± 1.00

Categorical spatial relations

Ordinal scene recognition task RT (s) 2.84 ± 1.077

Speed 0.71 ± 0.183

ACC 0.79 ± 0.136

Coordinate spatial relations

Sense of distance score 5.28 ± 0.925

Path distance 6.19 ± 1.564

Euclidean distance 4.37 ± 2.139

Familiarity 6.10 ± 0.704
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FIGURE 4

The relationship between mean functional connectivity (FC) strength of typical FC states and behavioral performance of representing categorial
and coordinate spatial relations (Bonferroni correction). (A) Weaker mean FC of Weak State within the ventral subnetwork was related to higher
speed in ordinal scene recognition based on representation of categorical spatial relations. (B) Stronger negative FC of Negative State between
the ventral and other subnetworks was associated with higher distance scores based on representation of coordinate spatial relations. The
speed score and distance score were standardized.

strength of the Negative State, rather than the Positive State,
was negatively correlated with the distance scores (5.28 ± 0.93),
after controlling for age, gender, head motion, familiarity with
landmarks (Negative State: r = −0.18, p = 0.028, Bonferroni
correction; Positive State: r = −0.11, p = 0.11). These results
suggested that stronger competitive interaction between the
ventral and other subnetworks during resting-state was an
optimal state for representation of coordinate spatial relations.
Further, we checked the relationship between dBNC states and
the representation of categorical spatial relations. We didn’t find
the mean FC strength of the Negative State or Positive State
had correlation with speed scores (Negative State: r = 0.14,
p = 0.16; Positive State: r = 0.06, p = 0.35). In sum, these results
confirmed hypothesize 2, that is, representation of coordinate
spatial relations was related to dynamic interactions between the
ventral and other subnetworks.

Discussion

In the current study, we investigated the dissociable dynamic
FC states underlying the representations of categorical and
coordinate spatial relations in the large-scale organization of
navigation network. First, we separated the navigation network
into a ventral subnetwork containing the MTL regions and
other two subnetworks with a modularity analysis. Then, we
identified the Weak State and Strong State for dynamic FC
within the ventral subnetwork and found that the Weak State
was related to the performance of ordinal scene recognition
based on categorical relations, suggesting that the representation
of categorical spatial relations was related to weak integration

among focal regions within the ventral subnetwork. In contrast,
we identified the Negative State and Positive State for dynamic
FC between the ventral and other subnetworks and found
that the Negative State was associated with the distance
test scores assessing coordinate relations, suggesting that the
representation of coordinate spatial relations may require
competitive interactions among widely distributed regions
between the ventral and dorsal subnetworks. Overall, our study
provides the first empirical evidence at the network level
revealing dissociation of focal and distributed organizations
of the navigation network in representing different types of
spatial information, which may illuminate the mechanisms for
understanding scenes containing multiple objects.

Importantly, our study revealed dynamic organizations of
the navigation network during resting-state. First, we revealed
two opposite FC states for interactions between the ventral and
other two subnetworks, a positive state and a negative state.
Previous studies using static FC methods reported only positive
connectivity between the ventral and dorsal networks. For
instance, the RSC was functionally connected with widespread
parieto-frontal regions including the posterior cingulate cortex,
the PCUN, and SFG (Boccia et al., 2017). Intriguingly, for the
first time we revealed that FCs between the ventral and other
subnetworks alternated between a positive and a negative state,
suggesting that cooperative interactions between subnetworks
are accompanied by periods of competitive interactions between
them during resting-state. While the positive state may promote
efficient communication between the subnetworks, the negative
state may constrain the information flow between them,
contributing to the functional specialization of the ventral
subnetwork. Additionally, we revealed a weak state and a strong
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state for FCs within the ventral subnetwork. Previous findings
have reported wide-spread positive resting-state FCs among
ventral subnetwork regions, such as the HIP, parahippocampal
place area, RSC, and occipital place area (Kong et al., 2016;
Silson et al., 2016; Boccia et al., 2017). Our results enriched
previous findings by showing that integration within the
ventral subnetwork also alternated between two typical states
with different FC strength, a strong state and a weak state,
each potentially exploited to varying degrees by navigational
behaviors. While the strong state indicated highly synchronized
activity among the ventral subnetwork regions, the weak state
exhibited loose synchronization activity among the regions.

Further, identification of different dynamic FC states is
critical to reveal the association between spatial relation
representations and organizations of the navigation network,
since our results indicated that spatial relation representations
were associated with FC states of only some but not all
time periods during resting-state. Specifically, representation of
categorical spatial relations was only associated with the Weak
State, but not the Strong State, within the ventral subnetwork; in
contrast, representation of coordinate spatial relations was only
related to the Negative State, but not the Positive State, between
the ventral and other subnetworks. The associations between
spatial relationship representations and specific dynamic FC
states were concealed when FCs of all time windows were taken
as static and invariant.

The dissociation of representations of categorical
and coordinate spatial relations lies in two aspects. First,
representation of categorical spatial relations was mainly related
to the ventral subnetwork, while representation of coordinate
spatial relations was related to interactions between the ventral
and other subnetworks. Although some studies have suggested
the potential dissociable neural bases between the hippocampal
formation and parietal cortex underlying representations of the
two types of spatial relations, accumulating research showed
different results and indicated the dissimilarity might didn’t be
confined to the specific regions. Broad regions were found be
involved in the two kinds of spatial relations. The MTL has been
found to play a central role in representing both categorical and
coordinate spatial relations (Howard et al., 2014; Blacker and
Courtney, 2016; Deuker et al., 2016; Urgolites et al., 2017), and
the prefrontal and posterior parietal regions are also involved
in coordinate spatial relations (Spiers and Maguire, 2007;
Morgan et al., 2011; Viard et al., 2011). Our results extended
previous studies by comparing the dynamic FC nature of the
two types of spatial relations from the network organization
level. Representation of categorical spatial relations has been
considered as an integrated cognitive process including
extracting environment layout in the PPA, encoding location
information in the HIP, and updating viewpoint information in
the RSC. It’s reasonable that the dynamic cooperation of ventral
navigation regions supports the representation of categorical
spatial relations. In contrast, representation of coordinate

spatial relations requires precise distance information between
landmarks, possibly involving both spatial processing and
high-level cognitive functions such as executive control and
attention modulation, which may be supported by dynamic
communication between the ventral and dorsal subnetworks.

Another dissociation of representations of the two types of
spatial relations lies in that weak integration among the ventral
regions during resting-state was optimal for representation
of categorical spatial relations, while competitive interaction
between the ventral and other subnetworks was optimal
for representation of coordinate spatial relations. It can be
speculated that the moderate integration among the ventral
regions may support an optimal balance between effective
communications among these regions and maintenance of
independent function of individual regions. In contrast,
the competitive interactions between the ventral and other
subnetworks are important for precise representation of
coordinate spatial relations. In line with this result, we have
found in a previous study that stronger integration of the IPS
with other regions in the navigation network was associated with
poor ability of executive control (Hao et al., 2017). Thus, we
speculated that competitive interactions between the ventral and
parietal-frontal subnetworks might be related to better ability of
executive control or other high-level cognitive functions, which
brings better representation of coordinate spatial relations.

Our study revealed different dynamic network organization
states in relation to the representations of categorical and
coordinate spatial relations. It is worth noting that the
distinction of allocentric and egocentric spatial processing
constitutes another vital classification, which concerns about the
frame of reference with respect to navigator or environment.
The allocentric-egocentric dichotomy may partly overlap with
the categorical-coordinate dichotomy. It will be still necessary
for future studies to further determine the relationship between
the two dichotomy systems (Jager and Postma, 2003; Baumann
and Mattingley, 2014; Ruotolo et al., 2019). Several important
issues are unaddressed for future research. First, the present
study characterized dynamic organizations of the navigation
network by clustering FC states of all time windows into
typical FC states, and future study needs to examine how more
quantitative characteristics in dynamic network organization,
such as flexibility and module allegiance, are related to spatial
relation representation (Chai et al., 2016). Noteworthy, although
we didn’t find any sub-modules for the ventral network in
the weak state, it still inspires further studies to explore
the functional significance of possible sub-modules in the
ventral network with more sensitive measures. Second, Deco
et al. (2011) propose that dynamic network configuration is
constrained by the underlying stable anatomical skeleton, and
it’s important to explore the link between anatomical structure
and resting-state functional dynamics. Third, the negative
correlation between the ventral and dorsal subnetworks should
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be interpreted with caution, considering the debate that global
signal regression may introduce artifactual anti-correlations
(Fox et al., 2005; Murphy et al., 2009; Cole et al., 2010; Murphy
and Fox, 2017). Forth, the role of MOG module seems to be
special. Further research would be valuable to examine the
temporal variability at the nodal level and subnetwork level in an
integrated manner (Zhang et al., 2016; Sun et al., 2019), which
helps to better reveal the functional specificity of navigation
network regions. Finally, the dynamic FC patterns revealed
in our study provide new insights than constant connectivity
patterns in conventional analysis, and future studies with
the dynamic approach in developing brain may provide new
understanding of brain maturation and plasticity.
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