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Natural fluctuations in sustained attention can lead to attentional failures in

everyday tasks and even dangerous incidences. These fluctuations depend on

personal factors, as well as task characteristics. So far, our understanding of

sustained attention is partly due to the common usage of laboratory setups

and tasks, and the complex interplay between behavior and brain activity. The

focus of the current study was thus to test the feasibility of applying a single-

channel wireless EEG to monitor patterns of sustained attention during a set of

ecological tasks. An EEG marker of attention (BEI—Brain Engagement Index)

was continuously recorded from 42 healthy volunteers during auditory and

visual tasks from the Test of Everyday Attention (TEA) and Trail Making Test

(TMT). We found a descending pattern of both performance and BEI in the

auditory tasks as task complexity increases, while the increase in performance

and decrease in BEI on the visual task. In addition, patterns of BEI in the

complex tasks were used to detect outliers and the optimal range of attention

through exploratory models. The current study supports the feasibility of

combined electrophysiological and neurocognitive investigation of sustained

attention in ecological tasks yielding unique insights on patterns of sustained

attention as a function of task modality and task complexity.

KEYWORDS

one-channel EEG, attentional control, test of everyday attention, everyday
functioning, attention fluctuations

Introduction

Sustained attention represents a basic attentional function and is defined as the
ability to maintain attention and remain in a state of vigilance throughout an extended
period (Esterman and Rothlein, 2019). Being a basic, yet complex, cognitive function,
sustained attention encompasses a variety of functions, including information selection,
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enhancement of selected information, and inhibition of
unselected information, thus allowing an appropriate response
to infrequent and unpredictable stimuli (Petersen and Posner,
2012; Esterman and Rothlein, 2019). Importantly, sustained
attention has a direct impact on the efficacy of additional
aspects of attention (selective attention, divided attention),
other cognitive skills (e.g., memory, executive functions),
and daily living functions such as academic attainment,
employment performance, and safe driving (Schmidt et al.,
2009; Fortenbaugh et al., 2015; Tan and Thamarapani, 2019).

Sustained attention is a fluctuating function, possibly due
to survival needs (Robertson and O’Connell, 2010). This innate
property of sustained attention is often explained in light
of theories of arousal, mind wandering, cognitive resource
allocation, and effort (Shenhav et al., 2017; Esterman and
Rothlein, 2019). However, fluctuations in sustained attention
also derive from task characteristics such as stimulus modality
(e.g., visual or auditory), density and intensity, task duration,
novelty, and complexity (Petersen and Posner, 2012). For
example, Szalma et al. (2004) showed that attentional decrement
was less pronounced for auditory than for visual tasks and that
recovery from a stressful experience occurs in auditory but not
in visual conditions. Moreover, an increase in task complexity
can lead to different patterns of attention allocation, such as
an inverted U shape (He and Zempel, 2013) or linear patterns
(Staal, 2004), emphasizing the importance of investigating the
specific dynamic of sustained attention.

Sustained attention is commonly estimated through
behavioral laboratory stimuli-based tasks. The most well-known
instrument is the Continuous Performance Test (CPT, Egeland
and Kovalik-Gran, 2010). So far, the ecological validity of the
CPT was found to be inconsistent (Hall et al., 2016; Berger
et al., 2017), further supporting the notion that sustained
attention should be investigated through ecological tasks to
better understand the high costs of attentional failures that
contribute to road, railway, and aircraft incidences (Murphy
et al., 2016). Indeed, most everyday tasks that require sustained
attention bring together multiple dimensions of attention while
evoking natural fluctuations which are hard to test in lab-based
tasks such as CPT (Murphy et al., 2016). First steps toward the
development and implementation of ecological assessments in
healthy and clinical populations have been taken. For example,
the classical go-no-go paradigm was implemented within the
Test of Everyday Attention (TEA) through daily life ecological
stimuli including tasks such as a visual map or telephone
number searching while doing auditory tasks (Robertson et al.,
1994).

Brain activity underlying sustained attention long
has been studied with neuroimaging methods such as
electroencephalogram (EEG). Traditionally, sustained attention
was measured in the lab with high-density EEG devices
recording spectral EEG or task-related EEG responses to assess
cognitive functions. Given that traditional EEG paradigms

are unsuitable for ecological setups, a recent body of work
increasingly promotes the usage of real-time, easy-to-use EEG
technologies in ecological research and clinical practice (Lau-
Zhu et al., 2019). For example, it was demonstrated that EEG
markers obtained during sustained attention tasks are sensitive
to the parameters of everyday functioning, such as driving or
job-load (Kamzanova et al., 2014; Rupp et al., 2018). Despite
some methodological concerns (Rieiro et al., 2019), such as
the use of a single-channel dry electrode, signal quality, and
artifacts, researchers applied innovative models for analyzing
the ongoing data to provide an automated simplified signal
for state-dependent classification of the level of attentiveness
(Liu et al., 2013), detection of moment-to-moment attention
fluctuations during a computerized CPT (Zhang et al., 2021),
and early identification of attentional problems in children
(Serrano-Barroso et al., 2021). Similarly, the relatively new
brain engagement index (BEI), offering an attention-related
index, has been tested in diverse clinical populations such as
stroke (Bartur et al., 2017), migraine (Shahaf et al., 2018a), and
depression (Shahaf et al., 2017). In a recent study, BEI was
applied during CPT before and after stimulant intake and was
found to be practical in classifying subjects into healthy controls
or ADHD (Shahaf et al., 2018b). As such, BEI and other EEG
indexes have the potential to be repeatedly applied for real-life
dynamic monitoring as opposed to the current standardized
evaluation.

Thus, the current pilot study aimed at investigating patterns
of brain activity and behavior in ecological tasks of sustained
attention. For this purpose, we used the Test of Everyday
Attention (TEA) since it contains tasks from everyday life
and its validity and feasibility are well established (Robertson
et al., 1996). The TEA consists of a set of short ecological
tasks of visual and auditory modality with a gradual increase
in complexity. The TEA was previously tested in a range of
populations (van der Leeuw et al., 2017) and was found to
correlate with community functioning (Tyson et al., 2008). We
also controlled for cognitive level using the Trail Making Test
(TMT) and tested its relationship with attentional functions
(Gillen, 2008). In addition, we applied a consumer single-
channel wireless EEG device (NeuroSky MindWave) during the
TEA and TMT tests. We aimed at monitoring brain engagement
(BEI) through recording of ongoing electrophysiological frontal
activity which is directly computed to provide an online index
of attention (Shahaf et al., 2018a). As such, we investigated,
in a preliminary manner, a multimodal approach for studying
patterns of sustained attention as a function of task modality
and task complexity. We also analyzed the BEI indices in
the complex tasks, in an exploratory manner, to detect
outliers and optimal range of attention. We believe that the
implementation of real-time EEG monitoring in this setup
will expand our understanding of how to proceed in better
assessing sustained attention in the context of real-world
functioning.
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Materials and methods

Participants

Forty-two healthy volunteers were recruited for the study
through advertising on social media. The participants aged
18–48 years old (M = 25.9, SD = 4.8) were mostly female (N = 29,
69%), had at least 12 years of education (secondary school),
no history of neurodevelopmental or acquired neuropsychiatric
disorders, and use of neuroleptic or psychotropic drugs. All the
participants had normal or corrected vision, normal hearing,
did not take any medication affecting the level of arousal in
the previous 24 h (e.g., analgesics), slept at least 6 h before
study participation, and did not report unusual stress (24 h).
The participants completed screening for cognitive impairment
before entering the study and were found to be within the intact
range (The Montreal Cognitive Assessment: 26–30, M = 28,
SD = 1.6).

Measures

Cognitive screening
The Montreal Cognitive Assessment (MoCA) (Nasreddine

et al., 2005) is a paper-based screening instrument for the
detection of mild cognitive impairment. The test is composed of
eight parts and evaluates visuospatial perception, organizational
skills, recognition and naming, short-term memory, attention,
verbal ability, abstraction, and orientation. It takes about 10 min
and produces a maximum possible score of 30 points. The cut-
off of 26 points was set to mark normal cognitive function and
was applied in this study as exclusion criteria (Pike et al., 2017).

Experimental cognitive tasks
Trail Making Test (TMT) (Gaudino et al., 1995) is

a widely used, well-established neuropsychological tool to
measure the cognitive domains of visual-motor processing
speed, sequencing, and cognitive flexibility, as a part of
attentional control. TMT comprises two parts: in part A, the
participant is asked to connect a series of 25 encircled numbers
in numerical order; in part B, the participant is asked to connect
25 encircled numbers and letters in numerical and alphabetical
order, alternating between the numbers and letters in ascending
order. The primary score of the test is the total time (seconds) to
completion of parts A and B, including correction if required. In
the current study, TMT was used to assess cognitive level (Bowie
and Harvey, 2006) and its contribution to attentional functions
was tested (Gillen, 2008).

The test of Everyday Attention (TEA) (Robertson et al.,
1994) was designed based on the go-no-go paradigm, previously
established for investigating attention while implementing daily

life tasks and using stimuli of visual map searching, elevator-
floor counting (visual and auditory), visual telephone number
searching, telephone number searching while doing auditory
tasks, and auditory lottery task. Altogether, the test consists
of eight subtests designed to assess aspects of visual and
auditory sustained attention, including vigilance to stimuli and
attentional switches. Each subtest consists of 7 up to 10 trials
with graduated levels of complexity in terms of stimulus load:
number of distractors, types of stimuli, and the trial duration.
For this study, we used “elevator tasks”: Three auditory tasks
and one visual task. In each task, the participant is asked to
count at which floor the elevator stopped based on auditory or
visual information, each one with a gradual rise in the level of
complexity as for the number of stimuli, their complexity, and
the trial duration. The auditory tasks include tones counting
for the floor identification as follows: 1st subtest—basic tones
counting (one type, 7 trials); 2nd subtest—basic tones counting
with distraction (10 trials); 3rd subtest—basic tones counting
with distraction and mental manipulation (additional types of
tones are added to this task to indicate the direction of the
elevator movement: up or down with requirement for follow up
the switches, 10 trials); and 4th subtest—visual elevator counting
with mental manipulations to follow switches (up and down,
random order) in the elevator movement directions (10 trials).
The content and concept of 3rd and 4th TEA tasks are similar,
while the difference is in the task modality. The reliability and
validity of the TEA were established in healthy, neurological,
and psychiatric populations.

Brain engagement index
EEG data were recorded using the NeuroSky MindWave

single-channel, wireless system (NeuroSky, Inc., San Jose, CA,
CE-authorized), with one frontal dry electrode (∼Fpz) and one
reference dry electrode on the earlobe, using a sampling rate
of 512 Hz. The EEG data of continuous brain activity, sampled
every 10 s, was used to extract an electrophysiological marker of
sustained attention, called the BEI (Shahaf et al., 2017). Each 10-
s segment was filtered to the delta band and then divided into
epochs of 1,500 ms with overlapping. The power of delta activity
was computed, and then the mean and standard deviation of all
epochs within a segment were calculated. Epochs were regarded
as noisy if the ratio of the standard deviation to the mean of
absolute activity was greater than 1, then these 1,500 ms epochs
were rejected and not included in the BEI computation. Ten-
second segments with multiple rejected 1,500-ms epochs were
automatically rejected, and a minimum of 3 consecutive 10-s
segments were required for a valid sample. BEI computation
is based on a template matching algorithm that compares a
template of 1,500-ms attention-related delta bandpass activity
with the ongoing sampled signal using a moving window (for
a full description of the matching procedure, see Shahaf et al.,
2017). Simply put, BEI is based on measuring the number of
occurrences of delta pattern, the template, which is composed
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of a sequence of larger wave deflections, lasting a few hundred
milliseconds, followed by a sequence of smaller waves, also
lasting a few hundred milliseconds. The BEI is represented on
a scale of 0–1. The value representing the optimal attentional
allocation is 0.5 with a normal range between 0.3 and 0.7.
BEI is presented ongoingly on the computer screen and might
be used during clinical intervention and rehabilitation. The
feasibility and validity of the BEI marker for attention were
shown in previous research on stroke (Bartur et al., 2017),
migraine (Shahaf et al., 2018b), depression (Shahaf et al., 2017),
and ADHD (Shahaf et al., 2018b).

Procedure

The study was approved by the Ethics Committee of Tel
Aviv University and data was collected in 2018. All participants
were volunteers who weren’t paid for their participation
and were recruited through social networks. They provided
written informed consent after receiving an explanation of the
study’s aims and procedures. The study was carried out in a
laboratory setting with constant conditions as for the light,
noise, temperature, etc. All the participants sat in front of a
desk with the study materials. First, the participants completed
the demographic questionnaire and the MoCA test (no obligate
certification was needed) to ensure inclusion and rule out
exclusion criteria. Next, the EEG electrode was positioned on the
forehead and was activated in advance to ensure proper signal
detection after stabilization. The participants performed a series
of tests including TMT A and B and the TEA tasks (A to D) in a
continuous fashion while monitoring ongoing EEG activity. The
order of TMT and TEA was counterbalanced across participants
and the order of the TEA subtests was constant to enable a
gradual increase in task complexity. The entire procedure took
approximately 1 h to be completed.

Data processing

Outliers detection
We tested a model for unsupervised anomaly detection

based on the BEI time series data of each task (10 trials). We
used a neighbor-based algorithm, Local Outlier Factor (Sklearn
in Pinguin), with the Dynamic Time Warping (DTW) similarity
metric (tslearn). The Local Outlier Factor is a statistical method
that can identify anomalies based on statistical measures
extracted from the data, thereby producing an outlier score for
each trial based on the local density of the data. The algorithm’s
continuous scores (outlier scores) were taken as a dependent
variable to test for group differences (outliers, normal) in
terms of performance on the TEA and TMT tasks. Following
an exploration of the hyper-parameter space, we choose the

threshold that yielded the best performance of the method on
the data of each task.

Distance from optimal brain engagement index
score

We tested the relationship between successful trials and their
corresponding EEG concentration signal. We took the absolute
distance of EEG’s concentration signals from 0.5 (the halfway
point) as a dependent parameter, and compared these scores on
correct trials, to the scores of incorrect trials.

Statistical analysis

Mean correct responses (Accuracy) and mean BEI (BEI)
were calculated for each task. Mean BEI was also calculated for
TMT-A and TMT-B. Accuracy and mean BEI on the TEA tasks
were tested using Repeated Measures ANOVA with Tukey Post
hoc analysis. Analysis of Covariance (ANCOVA) was used to test
for group differences in performance based on the algorithm
classifying participants into outlier or normal groups. One-
way ANOVA was used to test for differences in distance from
optimal BEI score between correct and incorrect trials. Pearson
correlational analysis was used to test for an association between
BEI and performance in TEA tasks, TMT, and in between. The
level of significance was set to 0.05. All tests were performed
using SPSS22 (Armonk, NY: IBM Corp.).

Results

Performance on the test of everyday
attention tasks

Repeated Measures ANOVA with TASK as a within-subject
factor was performed. The main effect of TASK was highly
significant (F = 16.601, p < 0.001, ηp2 = 0.293). Post hoc tests
revealed that performance on the different tasks significantly
differed from each other (TEA A from TEA B p < 0.001, TEA
A from TEA C p = 0.038, TEA A from TEA D p < 0.001, TEA B
from TEA C p = 0.001, TEA C from TEA D p< 0.001) aside from
the difference between TEA B and TEA D which approached
significance (p = 0.063) (Figure 1).

Brain engagement index on the test of
everyday attention tasks

Repeated Measures ANOVA with TASK as a within-subject
factor yielded a significant result (F = 3.129, p = 0.028,
ηp2 = 0.073). Post hoc tests revealed that BEI on TEA C
significantly differed from BEI on TEA A (p = 0.000) and BEI
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FIGURE 1

Accuracy as a function of task. Percents of correct responses are presented in bars (Mean, SE) for three auditory tasks (TEA A, TEA B, and TEA D)
and one visual task (TEA C).

FIGURE 2

Mean BEI as a function of task. BEI scores are presented in bars (Mean, SE) for three auditory tasks (TEA A, TEA B, and TEA D) and one visual task
(TEA C).

on TEA B (p = 0.032) and approached significance on TEA D
(p = 0.073) (Figure 2).

Correlational analyses

Accuracy on the visual task with manipulation (TEA
C) significantly correlated with overall latency on TMT-A
(r = 0.467, p = 0.002) and TMT-B (r = 313, p = 0.047). In
addition, BEI on this task (TEA C) significantly correlated with

overall latency on TMT-A (r = 0.317, p = 0.043) and TMT-B
(r = 425, p = 0.006).

Outliers detection

Following the results of performance and mean BEI
analyses, we tested a model for anomaly detection based on
the BEI time series data of each task (10 trials). As shown in
the analysis of BEI as a function of task, BEI on the visual
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task (TEA C) was significantly different from the auditory tasks
and contained more variability. The outlier score presented
as a negative score. Groups (outliers, normal) were created
based on a threshold score of –1.2 to maintain plausible group
sizes (N in the outliers group = 8). ANCOVA with Group as
between-subjects factor and age as a covariate was performed
for performance on TEA C, TMT-A, and TMT-B. Significant
main effect of GROUP was found for TMT-A only (F = 6.54,
p = 0.015, ηp2 = 0.154) with increased latency for outliers (M
outliers = 34.625, M normal = 25.71) (Figure 3).

Distance from optimal brain
engagement index score

Distance from the optimal BEI score (0.5) is presented
as absolute distance. Correct trials (n = 290) and incorrect
trials (n = 100) were divided into two conditions. One-way
ANOVA with CONDITION yielded a significant main effect
of CONDITION for TEA D only (F = 4.520, p = 0.034,
ηp2 = 0.012) with correct trials in more proximate distance from
the optimal BEI score (M = 0.149, SD = 0.137) than incorrect
trials (M = 0.183, SD = 0.152) (Figure 4).

Discussion

This pilot study was designed to investigate the feasibility
of applying a single-channel, real-time, wireless EEG index
of attention (BEI) during ecological tasks to explore patterns
of sustained attention. First, we demonstrated that sustained
attention is affected by task modality and task complexity in line
with previous findings (Petersen and Posner, 2012). Specifically,
we found a descending pattern of performance and a descending
pattern of BEI through three auditory ecological tasks going
from a simple task (TEA A) to a task with higher complexity due
to distraction (TEA B), to a task with even higher complexity
due to distraction and manipulation (TEA D). The observed
descending linear patterns of performance and BEI across time
and as a function of an increase in task complexity are similar
to the results previously reported by studies using monotonous
tasks such as CPT (Hahn et al., 2012; Esterman and Rothlein,
2019).

A different pattern was observed in the visual task with
manipulation (TEA C), further supporting the impact of
task modality on sustained attention (Szalma et al., 2004).
Participants were expected to perform this task worse or similar
to the auditory task with manipulation (TEA D) and to show a
decrease in performance compared to the simple task (TEA A)
and the task with distraction (TEA B). Interestingly, we found
that performance on the complex visual task was better than on
the similar auditory task (TEA D) and the simple auditory task
with distractors (TEA B).

FIGURE 3

TMT-A as outlier score. Outliers detection model. scatter plot of
outlier scores and TMT-A overall latency with a threshold of –1.2
to determine the two groups.

FIGURE 4

Distance from 0.5 for correct trials. Distance from Optimal BEI
score. Number of correct and incorrect trials on the TEA C task
across participants as a function of absolute distance (absolute)
from the optimal BEI score of 0.5.

Contrary to an increase in performance, BEI significantly
decreased in the visual task with manipulation (TEA C).
This might indicate that participants required less attentional
resources to efficiently perform the task. A possible reason for
this finding is that the visual task is self-paced since there
is no demand for the participants to respond in a restricted
time window and time is measured overall. As such, the use
of an ongoing EEG index of attention helped to reveal a more
comprehensive pattern of sustained attention as a result of task
intensity that could not be detected by performance alone. This
emphasizes the importance of investigating cognitive functions
in a naturalistic setting where participants interact with the
environment without much constraint.

Performance on the visual task with manipulation (TEA C)
was also found to positively correlate with time on the Trail
Making Test. This finding may be understood based on the
design of the two tasks and it is in line with previous findings
(van der Leeuw et al., 2017). The Trail Making Test (TMT A
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and B) is a well-established neurocognitive task that requires
visual screening and sequencing (A) and cognitive flexibility and
switching, as part of attentional control (B). Likewise, successful
performance of the TEA visual task with manipulation requires
both (1) attentional switching with flexibility and (2) sequence
maintenance. Moreover, the correlations between BEI during
the performance of the visual task with manipulation (TEA C)
and TMT (A & B) might reveal a linear association between
behavioral and brain indices.

A model of anomaly detection further revealed
that participants that were outliers in their pattern of
electrophysiological activity during the visual task with
manipulation (TEA C) were significantly slower on the
TMT-A task. Both types of visual tasks, TMT and TEA C
assess processing speed intending time to completion in
addition to success rate. The compatibility between the tasks
in terms of requirement might lead to the activation of similar
mechanisms. Although we present preliminary findings, we
suggest that this type of model for anomaly detection could
be used to mark abnormal dynamics of brain activity during
cognitive tasks. Indeed, Zhang et al. (2021) recently applied
a classification model to monitor changes in attention states
based on continuous measuring with a similar single-channel
EEG device during gradCPT, which allows attention labeling.

The interplay between underlying brain activity and
behavior is still debated. In fact, some posit that the traditional
view assuming a binary division between health and pathology
and a linear relation between neural activity and mental
functions is incomplete (Northoff and Tumati, 2019). Recently,
the Cognitive Effort Index (CEI) was used to dynamically
identify the affective and cognitive barriers and the effort to
achieve effective performance (Gillen and Shahaf, 2021); the
authors proposed a complex graduated view of the dynamics
of brain resources in relation to goals and difficulties. In the
current study, we explored a simplified model showing that on
successful trials in the auditory task with manipulation (TEA D)
BEI was closer to the optimal value of 0.5. Although this model
could be tested only on tasks in which there is enough variability
of success rate among participants, it suggested that successful
trials generally require more optimal brain activity.

The scope of the current findings supports the premise that
there is no unitary theory for human performance since we
observed different patterns of behavior and brain activity as a
function of task modality and task complexity. The observed
utility of implementing a one-channel wireless EEG index
(BEI) for the investigation of behavior in ecological settings
is congruent with previous research which demonstrated the
feasibility and utility of wireless EEG monitoring in a variety
of contexts such as for assessing attentiveness to instruction
in class (Liu et al., 2013), driver’s fatigue (Ko et al., 2015),
mental engagement of students during learning tasks (Khedher
et al., 2019), and health state in intensive care units (Caricato
et al., 2020). So, combined behavior and electrophysiological
markers promote an innovative hands-on methodology to

monitor behavior on a sub-second scale, detect outliers and
predict important changes, and finally, personalize diagnosis
and treatment.

The usage of consumer wireless EEG might require
a different type of research than the typical EEG studies
performed in the lab with high-density EEG devices. These
costly high-density EEG devices collect high-quality recordings
which could be later cleaned and processed in ways that are
unavailable to single-channel devices, allowing high temporal
resolution and even spatial specificity (e.g., source localization).
However, studies using these devices are mostly conducted
with a small number of participants in a restricted setting
with very specific stimuli and their data is lengthily processed
offline. Reducing attention-related brain activity to a recording
from a single frontal channel is based on the premises that
(1) it is possible to detect responsiveness from very few
electrodes, even a single electrode (Shahaf et al., 2015), and (2)
attentional functions are supported by spread networks with
prefrontal involvement (Clayton et al., 2015). These premises
allow the shift from EEG as a tool for investigating systems of
attention to a simple electrophysiological signal, similar to other
physiological signals used to monitor states such as in the case
of anxiety.

Understanding fluctuations in sustained attention through
different modalities and the extent of their demands is
critical for everyday functioning. For example, while driving,
we process up to 90% of the information visually, thus,
successful driving requires proper functioning of visual
sustained attention (Ojsteršek and Topolšek, 2019). On the
other hand, academic learning is based on both visual
and auditory sustained attention, being a highly demanding
task in both modalities. Indeed, while the recommended
interval of ongoing driving is 2 h (Chen and Xie, 2014),
the span of academic learning is 30 min (Dunlosky et al.,
2013). Moreover, these findings may further support the
notion that there are differences in sustained attention
functions in everyday tasks depending on the task modality
with attentive drivers may be inattentive learners and vice
versa.

Altogether, the current study reveals patterns of sustained
attention during ecological tasks through behavioral and
electrophysiological indices as a function of task modality and
complexity. Moreover, applying models to detect outliers and
optimal range of attention were the first steps in exploring
the practical use of such an electrophysiological index (BEI).
The study nonetheless has several limitations. First, given the
EEG prefrontal recording, there is always concern regarding
the contamination of the EEG signal with noise coming from
muscles and eye movements (EMG and EOG). However, eye
blink rate and frontal muscle activity are considered by some
researchers to be an index of attention and therefore are
not necessarily removed in line with traditional methods of
artifact rejection (Maffei and Angrilli, 2018). Future studies
are encouraged to combine additional measurements such as
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EOG and EMG. Regarding the principal task, only the auditory
task was graduated through three separated subtests, while
the visual task was graduated during the trials of the visual
subtest. Even though this was dictated by the design of the
TEA, the only available ecological test of attention for the
target population, this methodological issue may prevent a
full comparison between modalities. We recommended further
development and validation of ecological attentional tasks to
enable in-depth investigation of the effects of task complexity.
Additionally, the subtests of the TEA were administered in
a fixed order, limiting our ability to conclude the possible
confounds between task complexity and time on task. Important
limitations of the study are related to the participants due to
convenience sampling which restricts large-scale generalization
of the findings, inequitable representation of sexes with 68%
females, and the need for a higher cutoff score for the MoCA
as well as other methods to ensure intact cognitive functioning.
Further research is needed to explore the implementation
of BEI in larger groups, in different populations, and using
various cognitive tasks and setups to deepen our understanding
of failures in sustained attention in real life. Finally, other
models compatible with continuous measurement in ecological
settings should be tested to advance the personalization of
neurocognitive diagnosis and intervention.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed
and approved by the Tel Aviv University Ethic Committee. The

patients/participants provided their written informed consent to
participate in this study.

Author contributions

LL-V conceptualized and designed the study. KA was
responsible for the data interpretation. NG was responsible
for the data analysis. RK carried out the data collection.
All authors actively involved in different stages of the
manuscript preparation.

Acknowledgments

We express our deep gratitude to all of the study
participants. In addition, we acknowledge Yael Ben-Sason, Israel
Zelikovich, Ammy Cohen, Coral Aharoni, Mor Ben-David, and
Dafna Lumich for their help with the data collection.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Bartur, G., Joubran, K., Peleg-Shani, S., Vatine, J.-J., and Shahaf, G. (2017).
An EEG tool for monitoring patient engagement during stroke rehabilitation: A
feasibility study. Biomed Res. Int. 2017:9071568. doi: 10.1155/2017/9071568

Berger, I., Slobodin, O., and Cassuto, H. (2017). Usefulness and validity of
continuous performance tests in the diagnosis of attention-deficit hyperactivity
disorder children. Arch. Clin. Neuropsychol. 32, 81–93. doi: 10.1093/arclin/acw101

Bowie, C. R., and Harvey, P. D. (2006). Administration and interpretation of the
Trail Making Test. Nat. Protoc. 1, 2277–2281. doi: 10.1038/nprot.2006.390

Caricato, A., Della Marca, G., Ioannoni, E., Silva, S., Markushi, T. B., Stival, E.,
et al. (2020). Continuous EEG monitoring by a new simplified wireless headset in
intensive care unit. BMC Anesthesiol. 20, 1–6. doi: 10.1186/s12871-020-01213-5

Chen, C., and Xie, Y. (2014). Modeling the safety impacts of driving hours and
rest breaks on truck drivers considering time-dependent covariates. J. Safety Res.
51, 57–63. doi: 10.1016/j.jsr.2014.09.006

Clayton, M. S., Yeung, N., and Cohen Kadosh, R. (2015). The roles of cortical
oscillations in sustained attention. Trends Cogn. Sci. (Regul Ed) 19, 188–195.
doi: 10.1016/j.tics.2015.02.004

Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., and Willingham, D. T.
(2013). Improving students’ learning with effective learning techniques: Promising
directions from cognitive and educational psychology. Psychol. Sci. Public Interest
14, 4–58. doi: 10.1177/1529100612453266

Egeland, J., and Kovalik-Gran, I. (2010). Measuring several aspects of attention
in one test: The factor structure of conners’s continuous performance test. J. Atten.
Disord. 13, 339–346. doi: 10.1177/1087054708323019

Esterman, M., and Rothlein, D. (2019). Models of sustained attention. Curr.
Opin. Psychol. 29, 174–180. doi: 10.1016/j.copsyc.2019.03.005

Fortenbaugh, F. C., DeGutis, J., Germine, L., Wilmer, J. B., Grosso, M.,
Russo, K., et al. (2015). Sustained attention across the life span in a sample of

Frontiers in Human Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2022.971314
https://doi.org/10.1155/2017/9071568
https://doi.org/10.1093/arclin/acw101
https://doi.org/10.1038/nprot.2006.390
https://doi.org/10.1186/s12871-020-01213-5
https://doi.org/10.1016/j.jsr.2014.09.006
https://doi.org/10.1016/j.tics.2015.02.004
https://doi.org/10.1177/1529100612453266
https://doi.org/10.1177/1087054708323019
https://doi.org/10.1016/j.copsyc.2019.03.005
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-971314 September 24, 2022 Time: 15:6 # 9

Avirame et al. 10.3389/fnhum.2022.971314

10,000: Dissociating ability and strategy. Psychol. Sci. 26, 1497–1510. doi: 10.1177/
0956797615594896

Gaudino, E. A., Geisler, M. W., and Squires, N. K. (1995). Construct validity in
the trail making test: What makes Part B harder? J. Clin. Exp. Neuropsychol. 17,
529–535. doi: 10.1080/01688639508405143

Gillen, G. (2008). Managing attentional deficits to optimize functioning. In
Gillen, G. (Ed). Cognitive and perceptual rehabilitation: Optimizing function.
Amsterdam: Elsevier Health Sciences. 184-209.

Gvion, A., and Shahaf, G. (2021). Real-time monitoring of barriers to patient
engagement for improved rehabilitation: A protocol and representative case
reports. Disabil. Rehabil. Assist. Technol. 1–13. doi: 10.1080/17483107.2021.
1929513

Hahn, B., Robinson, B. M., Kaiser, S. T., Matveeva, T. M., Harvey, A. N., Luck,
S. J., et al. (2012). Kraepelin and Bleuler had it right: People with schizophrenia
have deficits sustaining attention over time. J. Abnorm. Psychol. 121, 641–648.
doi: 10.1037/a0028492

Hall, C. L., Valentine, A. Z., Groom, M. J., Walker, G. M., Sayal, K., Daley,
D., et al. (2016). The clinical utility of the continuous performance test and
objective measures of activity for diagnosing and monitoring ADHD in children:
A systematic review. Eur. Child Adolesc. Psychiatry 25, 677–699. doi: 10.1007/
s00787-015-0798-x

He, B. J., and Zempel, J. M. (2013). Average is optimal: An inverted-U
relationship between trial-to-trial brain activity and behavioral performance. PLoS
Comput. Biol. 9:e1003348. doi: 10.1371/journal.pcbi.1003348

Kamzanova, A. T., Kustubayeva, A. M., and Matthews, G. (2014). Use of EEG
workload indices for diagnostic monitoring of vigilance decrement. Hum. Fact.
56, 1136–1149. doi: 10.1177/0018720814526617

Khedher, A. B., Jraidi, I., and Frasson, C. (2019). Tracking students’ mental
engagement using EEGsignals during an interaction with a virtual learning
environment. J. Intell. Learn Syst. Appl. 11, 1–14. doi: 10.4236/jilsa.2019.111001

Ko, L. W., Lai, W. K., Liang, W. G., and Chuang, C. H. (2015). “Single channel
wireless EEG device for real-time fatigue level detection,” in proceeding of the 2015
International joint conference on neural networks (IJCNN), (Killarney: IEEE), 1.

Lau-Zhu, A., Lau, M. P. H., and McLoughlin, G. (2019). Mobile EEG in
research on neurodevelopmental disorders: Opportunities and challenges. Dev.
Cogn. Neurosci. 36:100635. doi: 10.1016/j.dcn.2019.100635

Liu, N.-H., Chiang, C.-Y., and Chu, H.-C. (2013). Recognizing the degree of
human attention using EEG signals from mobile sensors. Sensors 13, 10273–10286.
doi: 10.3390/s130810273

Maffei, A., and Angrilli, A. (2018). Spontaneous eye blink rate: An index of
dopaminergic component of sustained attention and fatigue. Int. J. Psychophysiol.
123, 58–63. doi: 10.1016/j.ijpsycho.2017.11.009

Murphy, G., Groeger, J. A., and Greene, C. M. (2016). Twenty years of load
theory—Where are we now, and where should we go next? Psychon. Bull. Rev.
23, 1316–1340. doi: 10.3758/s13423-015-0982-5

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead,
V., Collin, I., et al. (2005). The Montreal Cognitive Assessment, MoCA: A brief
screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699.
doi: 10.1111/j.1532-5415.2005.53221.x

Northoff, G., and Tumati, S. (2019). “Average is good, extremes are bad” —
Non-linear inverted U-shaped relationship between neural mechanisms and
functionality of mental features. Neurosci. Biobehav. Rev. 104, 11–25. doi: 10.1016/
j.neubiorev.2019.06.030

Ojsteršek, T., and Topolšek, D. (2019). Influence of drivers’ visual and cognitive
attention on their perception of changes in the traffic environment. Eur. Transp.
Res. Rev. 11:45. doi: 10.1186/s12544-019-0384-2

Petersen, S. E., and Posner, M. I. (2012). The attention system of the human
brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89. doi: 10.1146/annurev-neuro-
062111-150525

Pike, N. A., Poulsen, M. K., and Woo, M. A. (2017). Validity of the
montreal cognitive assessment screener in adolescents and young adults with
and without congenital heart disease. Nurs. Res. 66, 222–230. doi: 10.1097/NNR.
0000000000000192

Rieiro, H., Diaz-Piedra, C., Morales, J. M., Catena, A., Romero, S., Roca-
Gonzalez, J., et al. (2019). Validation of electroencephalographic recordings
obtained with a consumer-grade, single dry electrode, low-cost device: A
comparative study. Sensors 19:2808. doi: 10.3390/s19122808

Robertson, I. H., Ward, T., Ridgeway, V., and Nimmo-Smith, I. (1994). Test of
everyday attention (TEA). San Antonio, TX: Psychological Corporation.

Robertson, I. H., Ward, T., Ridgeway, V., and Nimmo-Smith, I. (1996). The
structure of normal human attention: The test of everyday attention. J. Int.
Neuropsychol. Soc. 2, 525–534. doi: 10.1017/S1355617700001697

Robertson, I. H., and O’Connell, R. (2010). “Vigilant attention,” in Attention and
time, eds A. C. Nobre and J. T. Coull (New York, NY: Oxford University print, Inc).

Rupp, G., Berka, C., Meghdadi, A. H., Kariæ, M. S., Casillas, M., Smith, S.,
et al. (2018). EEG-based neurocognitive metrics may predict simulated and on-
road driving performance in older drivers. Front. Hum. Neurosci. 12:532. doi:
10.3389/fnhum.2018.00532

Schmidt, E. A., Schrauf, M., Simon, M., Fritzsche, M., Buchner, A., and
Kincses, W. E. (2009). Drivers’ misjudgement of vigilance state during prolonged
monotonous daytime driving. Accid. Anal. Prev. 41, 1087–1093. doi: 10.1016/j.aap.
2009.06.007

Serrano-Barroso, A., Siugzdaite, R., Guerrero-Cubero, J., Molina-Cantero, A. J.,
Gomez-Gonzalez, I. M., Lopez, J. C., et al. (2021). Detecting attention levels in
ADHD children with a video game and the measurement of brain activity with a
single-channel BCI headset. Sensors 21:3221. doi: 10.3390/s21093221

Shahaf, G., Kuperman, P., Bloch, Y., Yariv, S., and Granovsky, Y. (2018a).
Monitoring migraine cycle dynamics with an easy-to-use electrophysiological
marker-a pilot study. Sensors 18:3918. doi: 10.3390/s18113918

Shahaf, G., Nitzan, U., Erez, G., Mendelovic, S., and Bloch, Y. (2018b).
Monitoring attention in ADHD with an easy-to-use electrophysiological index.
Front. Hum. Neurosci. 12:32. doi: 10.3389/fnhum.2018.00032

Shahaf, G., Yariv, S., Bloch, B., Nitzan, U., Segev, A., Reshef, A., et al. (2017). A
pilot study of possible easy-to-use electrophysiological index for early detection of
antidepressive treatment non-response. Front. Psychiatr. 8:128. doi: 10.3389/fpsyt.
2017.00128

Shahaf, G., Fisher, T., Aharon-Peretz, J., and Pratt, H. (2015). Comprehensive
analysis suggests simple processes underlying EEG/ERP - Demonstration with the
go/no-go paradigm in ADHD. J. Neurosci. Methods 239, 183–193. doi: 10.1016/j.
jneumeth.2014.10.016

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen,
J. D., et al. (2017). Toward a rational and mechanistic account of mental
effort. Annu. Rev. Neurosci. 40, 99–124. doi: 10.1146/annurev-neuro-072116-0
31526

Staal, M. A. (2004). Stress, cognition, and human performance: A literature review
and conceptual framework. Mountain View, CA: Moffett Field, California: Ames
Research Center.

Szalma, J. L., Warm, J. S., Matthews, G., Dember, W. N., Weiler, E. M., Meier,
A., et al. (2004). Effects of sensory modality and task duration on performance,
workload, and stress in sustained attention. Hum. Factors 46, 219–233. doi: 10.
1518/hfes.46.2.219.37334

Tan, C. M., and Thamarapani, D. (2019). The impact of sustained attention
on labor market outcomes: The case of Ghana. Rev. Develop. Econ. 23,
155–171.

Tyson, P. J., Laws, K. R., Flowers, K. A., Mortimer, A. M., and Schulz, J. (2008).
Attention and executive function in people with schizophrenia: Relationship with
social skills and quality of life. Int. J. Psychiatry Clin. Pract. 12, 112–119. doi:
10.1080/13651500701687133

van der Leeuw, G., Leveille, S. G., Jones, R. N., Hausdorff, J. M., McLean, R.,
Kiely, D. K., et al. (2017). Measuring attention in very old adults using the test
of everyday attention. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 24,
543–554. doi: 10.1080/13825585.2016.1226747

Zhang, S., Yan, Z., Sapkota, S., Zhao, S., and Ooi, W. T. (2021). Moment-to-
moment continuous attention fluctuation monitoring through consumer-grade
EEG device. Sensors 21:3419. doi: 10.3390/s21103419

Frontiers in Human Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2022.971314
https://doi.org/10.1177/0956797615594896
https://doi.org/10.1177/0956797615594896
https://doi.org/10.1080/01688639508405143
https://doi.org/10.1080/17483107.2021.1929513
https://doi.org/10.1080/17483107.2021.1929513
https://doi.org/10.1037/a0028492
https://doi.org/10.1007/s00787-015-0798-x
https://doi.org/10.1007/s00787-015-0798-x
https://doi.org/10.1371/journal.pcbi.1003348
https://doi.org/10.1177/0018720814526617
https://doi.org/10.4236/jilsa.2019.111001
https://doi.org/10.1016/j.dcn.2019.100635
https://doi.org/10.3390/s130810273
https://doi.org/10.1016/j.ijpsycho.2017.11.009
https://doi.org/10.3758/s13423-015-0982-5
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1016/j.neubiorev.2019.06.030
https://doi.org/10.1016/j.neubiorev.2019.06.030
https://doi.org/10.1186/s12544-019-0384-2
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1097/NNR.0000000000000192
https://doi.org/10.1097/NNR.0000000000000192
https://doi.org/10.3390/s19122808
https://doi.org/10.1017/S1355617700001697
https://doi.org/10.3389/fnhum.2018.00532
https://doi.org/10.3389/fnhum.2018.00532
https://doi.org/10.1016/j.aap.2009.06.007
https://doi.org/10.1016/j.aap.2009.06.007
https://doi.org/10.3390/s21093221
https://doi.org/10.3390/s18113918
https://doi.org/10.3389/fnhum.2018.00032
https://doi.org/10.3389/fpsyt.2017.00128
https://doi.org/10.3389/fpsyt.2017.00128
https://doi.org/10.1016/j.jneumeth.2014.10.016
https://doi.org/10.1016/j.jneumeth.2014.10.016
https://doi.org/10.1146/annurev-neuro-072116-031526
https://doi.org/10.1146/annurev-neuro-072116-031526
https://doi.org/10.1518/hfes.46.2.219.37334
https://doi.org/10.1518/hfes.46.2.219.37334
https://doi.org/10.1080/13651500701687133
https://doi.org/10.1080/13651500701687133
https://doi.org/10.1080/13825585.2016.1226747
https://doi.org/10.3390/s21103419
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/

	A multimodal approach for the ecological investigation of sustained attention: A pilot study
	Introduction
	Materials and methods
	Participants
	Measures
	Cognitive screening
	Experimental cognitive tasks
	Brain engagement index

	Procedure
	Data processing
	Outliers detection
	Distance from optimal brain engagement index score

	Statistical analysis

	Results
	Performance on the test of everyday attention tasks
	Brain engagement index on the test of everyday attention tasks
	Correlational analyses
	Outliers detection
	Distance from optimal brain engagement index score

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


