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Motor learning is an essential component of human behavior. Many different

factors can influence the process of motor learning, such as the amount

of practice and type of feedback. Changes in task difficulty during training

can also considerably impact motor learning. Typical motor learning studies

include a sequential variation of task difficulty, i.e., easy to challenging,

irrespective of user performance. However, many studies have reported the

importance of performance-based task difficulty variation for effective motor

learning and skill transfer. A performance-based adaptive algorithm for task

difficulty variation based on the challenge-point framework is proposed in this

study. The algorithm is described for postural adaptation during simultaneous

upper-limb training. Ten healthy participants (28 ± 2.44 years) were recruited

to validate the algorithm. Participants adapted to a postural target of 20◦

in the anterior direction from the initial upright posture while performing a

unimanual reaching task using a robotic device. Results suggest a significant

decrease in postural error after training. The algorithm successfully adapted

the task difficulty based on the performance of the user. The proposed

algorithm could be modified for different motor skills and can be further

evaluated for different applications in order to maximize the potential benefits

of rehabilitation sessions.

KEYWORDS

motor learning, task difficulty, postural adaptation, haptic, challenge-point
framework, robotic rehabilitation, motor adaptation

Introduction

Motor skill acquisition can be considered an integral part of human behavior.
Therefore, it is crucial to identify an optimal training method to maximize the benefits
of motor training sessions. Many factors could influence the process of motor learning.
Previous studies have demonstrated the influence of various practice conditions that
could have an impact on motor learning. Some of the widely studied factors include
extrinsic vs. intrinsic feedback strategies. Many studies have found beneficial effects of

Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.968669
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.968669&domain=pdf&date_stamp=2022-11-24
mailto:d.campolo@ntu.edu.sg
https://doi.org/10.3389/fnhum.2022.968669
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2022.968669/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org


Agarwal et al. 10.3389/fnhum.2022.968669

extrinsic feedback for implicit motor learning and improving
upper limb motor recovery following a stroke (Subramanian
et al., 2010). Some studies have also found the learning
benefits of self-controlled feedback on a delayed transfer
test (Chiviacowsky and Wulf, 2002). Many studies have also
evaluated the effect of various socio-cognitive factors on
the motor learning. Studies have found that positive social-
comparative feedback could enhance the learning of motor skills
in a throwing accuracy task (Ávila et al., 2012). Other widely
studied factors include error augmentation and errorless training
strategies. Many studies have found that error augmentation
could promote information processing related to error detection
and error correction that are essential for motor learning
(Williams et al., 2016). Other studies have found better overall
performance after errorless learning as compared to trial-and-
error learning (Kessels and Olde Hensken, 2009).

One of the major factors that influence motor learning
is task difficulty variation (Christiansen et al., 2018). Typical
motor learning and motor rehabilitation paradigms include
a sequential progression of task difficulty irrespective of the
user’s task performance. However, there is not sufficient
evidence in the literature describing a two-way progression
of task difficulty, i.e., not just sequentially increasing the task
difficulty but also decreasing the task difficulty depending
on the user performance. There has been mixed support
for such sequential difficulty progression in literature—some
studies found evidence that it promotes implicit learning
(Maxwell et al., 2001; Capio et al., 2013), whereas other studies
did not find similar results (Mount et al., 2007). However,
many studies have stressed the importance of adaptive task
difficulty variation, i.e., variation of task difficulty based on
the performance of the user (Krebs et al., 2003; Choi et al.,
2008). Some studies have also reported that adaptivity is
essential for the effective transfer of skills (Holmes et al.,
2009; Jaeggi et al., 2010). Studies have shown that the learning
performance during adaptive schedules outperforms random
scheduling (Choi et al., 2008). Matching task difficulty to the
learner’s skill level would enhance the learning benefits of the
task. Depending on the skill level of the learner, the rate of
performance improvement varies from task to task. Therefore,
adaptive task difficulty based systems could have widespread
application for rehabilitation purposes. Most rehabilitation
processes for neuromuscular disorders such as stroke is a
time-sensitive process. Studies have shown evidence of “sensitive
period” post stroke during which patients show increased
responsiveness to training (Zeiler, 2019). Therefore, adaptive
scheduling would help to maximize the learning benefits of each
rehabilitation session.

In this study, we propose an adaptive algorithm for task
difficulty variation based on the performance of the user.
The described algorithm is primarily based on the challenge
point framework (Guadagnoli and Lee, 2004). According to the
challenge point framework, task difficulty can be divided into

nominal task difficulty and functional task difficulty. Nominal
task difficulty refers to the constant task difficulty irrespective of
who performs the task and under what conditions. Functional
task difficulty refers to task difficulty relative to the skill
level of the performer and environment conditions. Based
on the challenge point framework, learning depends on the
interpretable information available to the user, which depends
on the functional task difficulty of the task. Learning effects
could be detrimental if too much or too little information is
available. Therefore, there should be an “optimal” level of task
difficulty for maximal learning benefit.

We have proposed and verified a task difficulty variation
algorithm for postural adaptation during simultaneous
upper-limb training based on the above framework. Indirect
postural adaptation is studied such that based on the postural
error of the trunk, feedback is provided at the reaching task—as
opposed to providing direct feedback at the trunk. This kind
of postural adaptation is especially useful for reducing trunk
compensation during upper-limb rehabilitation in stroke
survivors. The basic idea of the algorithm is that task difficulty
should be optimal. A task that is too easy to perform would
not result in efficient motor learning since mere repetitions do
not lead to change in the performance and do not lead to any
cortical reorganization associated with motor learning (Plautz
et al., 2000). A constant challenge in performing the task is
essential for motor learning to happen. On the other hand,
when the combined nominal and functional task difficulty is
too high, large performance errors could lead to the failure of
motor learning (Sanger, 2004). The developed algorithm has
been validated for postural adaptation to a predefined postural
target using haptic feedback. The current study is an extension
of a previous study that shows that haptic feedback could
be used for postural adaptation to different postural targets
while performing a reaching task (Agarwal et al., 2022). In
the previous study, there was no variation in the task difficulty
during the training. In the current study, haptic feedback is
provided based on the task difficulty computed by the developed
algorithm. The proposed algorithm can also be modified for
different motor skills in future studies.

Materials and methods

Participants

The developed algorithm has been verified on young and
healthy people. Ten healthy participants (seven males and three
females) were recruited for this study. The mean (SD) age,
height, and weight of the participants was as follows: 28 (2.44)
years, 169.21 (5.32) cm, and 71.21 (8.32) kg, respectively. For
performing the reaching task, participants used their dominant
hand. Hand dominance was assessed using the Edinburgh
Handedness Inventory (Oldfield, 1971). All the participants were
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right-handed. All participants had a normal or corrected-to-
normal vision with no history of any neuromuscular injury in
the upper extremity.

This study was approved by the Institutional Review Board
(IRB) of Nanyang Technological University, Singapore. As per
IRB norms, all participants provided written informed consent
prior to their participation in the study.

Experimental setup and protocol

The experimental setup for this study was similar to
the one described in our previous article (Agarwal et al.,
2022). Participants were seated in front of a backdrivable,
two-degree-of-freedom robotic manipulandum called H-man
(manufactured and distributed by Articares Pte. Ltd., Singapore;
Campolo et al., 2014). H-Man is an active, clinically validated
arm rehabilitation device (Chua et al., 2018). To perform the
reaching movement, participants grasped the handle of the
H-Man (end-effector of the manipulandum) and moved the
handle in a 2-D plane (as shown in Figure 1A). H-Man’s handle
movement was replicated as the movement of a cursor on the
screen. Additionally, the trunk posture of the participants was
measured using Inertial Measurement Units (IMUs). Nine-axis
IMUs were used for the study (MPU-9250, Invensense, CA,
USA). One IMU was attached to the participants’ chest at
the sternum (moving-IMU) using a custom-made strap. The
second IMU was fixed at the H-Man (fixed-IMU). Both IMUs
were initially calibrated for hard iron distortions by rotating
the sensor along each axis. The average of minimum and
maximum magnetometer readings was recorded along each
axis after rotation to get each axis’s hard-iron distortion
correction value. Also, the gyroscope and accelerometer noise
were determined from the datasheet of the sensor. A nine-axis
Kalman filter was used for sensor fusion and orientation
estimation (Zihajehzadeh et al., 2014). The orientation of
moving-IMU was measured with respect to the fixed-IMU to get
the trunk posture.

The overall objective of the training was the adaptation of
trunk posture to 20◦ in the anterior direction (as shown in
Figure 1B). The experimental task for this study consisted of
a two-dimensional point-to-point reaching task in a gamified
environment. The game was designed using the Unity game
engine (Unity Technologies, Denmark). To play the game,
participants were required to fly a “drone” to the circles (“visual
target”) appearing on the screen. To fly the drone, participants
moved the H-Man handle, and the movement of the H-Man
handle in the left-right or front-back direction translated to the
movement of the drone in the left-right or up-down direction
on the screen, respectively. Visual targets appeared at five unique
locations on the screen cyclically, in the shape of a star, as shown
in Figure 1C. The first visual target appeared at the left bottom
of the screen (“Visual target A”). On reaching a visual target, the

next one appeared. At any time, only one visual target was visible
on the computer screen. Therefore, targets appeared as follows:
Visual target A—B—C—D—E—A—and so on. Visual target
positions were computed as coordinates of the five-pointed star
as follows:

(x, y) =
(
r ∗ cos (2 ∗ π ∗ k/5 + π/2),

r ∗ sin (2 ∗ π ∗ k/5 + π/2)
)
, where k = 1, ..., 5

(1)

Where r is the distance of each tip of the star from the center.
Therefore, the reaching distance for each trial remained constant
throughout the study. Participants’ movement of the drone from
the first visual target “A” to the second visual “B” target marked
the first trial of the study. Then movement to the next target “C”
marked the second trial, and so on.

The study consisted of three phases:
pre-training/familiarization phase, training phase, and post-
training/test phase. The training phase consisted of 120 trials,
while the pre-training and post-training phases consisted of
15 trials each.

An adaptive algorithm for task difficulty
progression during postural training

Trunk postural adaptation to predefined postures while
performing a reaching task can be achieved via the use of
haptic-based feedback (Agarwal et al., 2022). A novel algorithm
has been developed to vary the task difficulty during postural
training. The developed algorithm is adaptive such that the
task difficulty is defined based on the performance of the
user. The aim of the algorithm is to “systematically” change
task difficulty during motor skill learning based on predefined
parameters. The basic idea behind the algorithm is that if
the performance of the user during training is consistently
“good,” the task difficulty is increased. Conversely, if the user’s
performance is consistently “bad,” the task difficulty is decreased.
The objective is to keep the user sufficiently challenged during
the training session. Therefore, a novel two-way adaptive
algorithm has been developed in this study. “Two-way adaptive”
implies that depending on the task performance of the user,
task difficulty can be increased or decreased during the
training.

This study aims to ensure postural adaptation to a particular
trunk posture while performing a point-to-point reaching
movement. The target trunk posture defines the “nominal task
difficulty” based on the challenge-point framework (Guadagnoli
and Lee, 2004). If the user deviates from the desired posture,
haptic feedback is provided, and the force required to move
the handle increases. Therefore, if the users move their trunk
towards the desired posture, the haptic feedback decreases,

Frontiers in Human Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2022.968669
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org


Agarwal et al. 10.3389/fnhum.2022.968669

FIGURE 1

(A) H-Man robot: Planar manipulandum called H-Man was used for making reaching movements. (B) Postural target: Desired postural target was
set as 20◦ in the anterior direction from the initial upright posture. (C) Game screenshot: Point-to-point reaching movement-based game with
five visual targets at A, B, C, D, and E.

making it easier to move the handle. The deviation of the
trunk at any time ‘t’ during the trial is represented as follows:
dtu represents the deviation from the upright posture and dtd
represents the deviation from the desired posture. However,
as part of the adaptive algorithm, task difficulty is varied in
terms of a “permissible tolerance” value. Some deviation from
the desired posture is allowed, which is termed tolerance. If the
trunk posture deviation from the desired posture, dtd, is outside

the tolerance, i.e., more than the tolerance value, then haptic
feedback is enabled. However, if the postural deviation, dtd, is
within the allowed tolerance, then no extra force is required
to move the handle. Therefore, permissible tolerance defines
the “functional task difficulty” based on the challenge-point
framework (Guadagnoli and Lee, 2004). Permissible tolerance is
updated after each trial based on task performance as explained
below:
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Tolerance is defined as the permissible deviation from the
desired posture during the ith trial, which is represented by 1i.
Trial error for ith trial, eitr, is defined as the average deviation from
the desired posture during a trial given by:

eitr =
1
T

∑T

t = 0
dtd (2)

Where T represents the total time taken to complete the trial.
Average trial error after ith trial is defined as the moving

average of last n trial errors given by:

eiavtr =
1
n

∑i

j = i−n+1
ejtr (3)

Where i represents the total trials completed, and n ≤ i.
Task error score is calculated after each trial, i. It represents

the error outside the tolerance region given by:

eita =
eiavtr −1

i

σh
(4)

Where σ h represents the standard deviation of the trunk posture
for the healthy population.

Based on the task error, tolerance/permissible deviation
from the desired posture is updated after each trial as follows:

1i+1
= (1− γ) ∗1i

+ α ∗ eita + β ∗
(
eita − ei−1

ta
)

(5)

Where α and β are the adaptive algorithm parameters that
are computed empirically. γ represents the slacking factor.
Therefore, functional task difficulty is varied during the task
based on the performance of the user. So, as part of the
algorithm, the tolerance value is updated after each trial based
on the performance of the user. Hence, tolerance value is
“customized” to the user. If the task performance of the user is
improving, task difficulty will increase. However, if the user’s
task performance is degrading, the task difficulty will decrease.
Hence, this is a two-way adaptive algorithm.

During the rehabilitation of stroke patients, the training
objective would be to reduce compensatory trunk movement.
Therefore, the desired posture would be an upright posture in
this case.

Haptics based on the developed adaptive
algorithm

During the pre- and post-training phases, no haptic forces
were enabled. Therefore, participants experienced no extra force
while moving the end-effector. During the training phase, haptic
feedback was enabled. Therefore, the force required to move
the end-effector depends on the participant’s trunk posture. The
adaptive algorithm was applied during the training as follows:

Before the first trial

Task difficulty for each trial was predetermined based on
the developed adaptive algorithm. Task difficulty implies the
permissible tolerance, ∆. Initial tolerance for the first trial was
defined based on the standard deviation of trunk posture for a
healthy population as follows:

1i
= c ∗ σh (6)

Where σh represents the standard deviation of trunk posture
for a healthy population σh = 0.92, and c is a constant
to determine the initial difficulty in terms of standard
deviation (c = 12).

The standard deviation of the trunk posture for a healthy
population was determined from the baseline measurement
of the data collected in the previous study (Agarwal et al.,
2022). In that study, 24 healthy participants performed a
reaching task using H-Man. During the baseline phase of the
study, participants performed reaching tasks freely without the
influence of any haptic-based feedback. This baseline phase
data have been used to compute the standard deviation of a
healthy population to be used in the verification of the adaptive
algorithm.

During each trial

Participants performed reaching movements to the visual
target displayed on the screen during each trial while their
trunk posture was monitored. If the participants’ trunk posture
was detected to be outside the permissible tolerance of that
trial ∆i, i.e., deviation from the desired posture was more
than the tolerance value, ∆i, then haptic feedback was applied.
Haptic feedback was applied in the form of a resistive, velocity-
dependent force experienced on the end-effector, Fb, in the form
of linear damping, b, as follows:

Fb = b ∗ v (7)

Where v represents the velocity of the movement of the H-Man
end-effector.

Damping, b, was determined based on a sigmoidal decay
function as follows:

b = max
{
bm, bm

/((
1+ exp

(
5−

(
dd −1i)

∗ 10
/
pd
)))}

(8)

Where bm represents the maximum damping value (200 Ns/m),
pd represents the desired posture (20 degrees), ∆i represents
the permissible tolerance value of that trial (in degrees), and dd
represents the measured deviation from the desired posture (in
degrees).
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After each trial

After each trial, the average deviation from the desired
posture during the trial is computed as the trial error using
Equation (2). Then average trial error is computed using
Equation (3) with a moving average window size of eight trials
as follows:

eiavtr =
1
8

∑i

j = i−7
ejtr (9)

Then, task error is computed using Equation (4), and permissible
tolerance is updated for the subsequent trial using Equation (5)
with slacking factor, γ = 0.2. Adaptive algorithm parameters α
and β are computed experimentally (α = 0.45 and β = 0.24).
The updated tolerance value is used during the subsequent trial,
and hence task difficulty is updated after each trial based on the
participant’s performance.

Data analysis

Reaching movement data such as position and velocity
of end-effector were recorded from H-Man at 1,000 Hz.
Trunk posture orientation data were recorded using IMU
at 100 Hz. Postural adaptation performance was evaluated
using mean postural error. The mean postural error for each
trial was defined as the average deviation from the desired
posture, i.e., 20◦ in the anterior direction. Mean postural error
for each trial during pre-training, training, and post-training
phases were compared to determine whether haptic feedback-
based training resulted in any change in the trunk posture.
Adaptive algorithm performance was evaluated based on
the change in permissible tolerance value during training.
Permissible tolerance was defined as the allowed deviation
from the desired posture, beyond which haptic feedback was
active. It determined the functional task difficulty of the task.
The functional task difficulty (FTD) score, defined as the
difference between postural error at the beginning of the
trial and permissible tolerance value during that trial, was
evaluated to compute the change in task difficulty during
the course of training. Change in damping and force at the
end effector were also evaluated for the training phase to
evaluate the task difficulty in terms of moving the H-Man end-
effector. Reaching movement performance was evaluated using
the change in velocity of movements during the beginning
and end of the training phase. Straightness and smoothness
of movements were also compared before and after the
postural training (Kamper et al., 2002; Balasubramanian et al.,
2015).

Statistical analysis of the data was performed using SPSS
(IBM SPSS Statistics, Version 28.0). Friedman ANOVA was
performed to investigate the overall difference in mean postural
error between pre-training, training, and post-training phases.

Wilcoxon signed-rank test was used for pairwise post-hoc
analysis to compute the difference in mean postural error
between phases. A one-tailed Wilcoxon singed-rank test was
used to compute the difference in the following parameters
at the beginning and end of the training phase: permissible
tolerance, FTD score, force at the end-effector, damping on
the end-effector, velocity of reaching movement. The difference
in smoothness and straightness of reaching movement before
and after the training phase was also evaluated using Wilcoxon
signed-rank test. A significance level of 0.05 was chosen for
all statistical tests, and Bonferroni correction was applied for
multiple comparisons.

Results

Mean postural error

Mean postural error for a particular trial is defined as the
average deviation from the desired posture during the trial.
The mean postural error during the pre-training, training, and
post-training phase of this study is shown in Figure 2. The
desired posture in this study is 20◦ in the forward direction from
the initial upright posture. Haptic feedback-based on an adaptive
algorithm was enabled during the training phase.

It was found that the participants’ postural error differed
significantly between the three phases of the study (Friedman
ANOVA: p < 0.001, W = 1.00, where effect size estimate
W is Kendall’s W value), as shown in Figure 3. Mean
postural error decreased during the training phase on the
application of haptic feedback. This was supported by post-hoc
analysis using the Wilcoxon-signed rank test with Bonferroni
correction. It was found that the mean postural error during
the training phase was significantly less than the postural
error during the pre-training phase (p = 0.003, r = 0.627,
where r is the effect size). Moreover, we found that postural
error during the post-training phase is significantly less
compared to the postural error during the baseline phase
(p = 0.003, r = 0.627), and there was no significant difference
between the training and post-training phase (p = 0.646,
r = 0.102). Taken together, this suggests that the participants
retained the posture during the post-training phase after
the haptic feedback was turned off. Motor learning during
training can be modeled using an exponential decay curve of
the form:

y = A ∗ e(−
x
t ) + y0 (10)

Postural error during training follows this exponential decay
curve as shown in Figure 2; where based on Equation (10), y
denotes postural error during training for each trial, x denotes
the trial number, and A, t, yo are computed to be 11.33 ± 0.25,
32.01± 1.84, 5.02± 0.16, respectively.
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FIGURE 2

Postural error: Postural error is shown for pre-training (solid black line), training (blue line), and post-training (pink line) phases for each trial.
The shaded region around the mean line represents the standard deviation of the postural error. Haptic feedback is enabled during the training
phase based on the task difficulty determined by the adaptive algorithm. As a result, postural error decays exponentially during the training phase
(dotted black line) compared to the pre-training phase. A decrease in postural error is maintained during the post-training phase after the removal
of haptic feedback.

Permissible tolerance value during
training

In this study, task difficulty varied during the training
phase in terms of permissible tolerance value. Participants
received haptic feedback if their postural error was more than
the permissible tolerance value computed using an adaptive
algorithm. The tolerance value was updated after each trial. The
tolerance value during the training phase is shown in Figure 4.
We found that the tolerance value at the end of the training phase
was significantly less than the tolerance at the beginning of the
training phase (p = 0.004, r = 0.604). Therefore, tolerance value
decreased throughout the training as participants adapted to the
desired postural target.

We also found a high correlation between the predefined
tolerance value of each trial and the postural error during
that trial (Pearson correlation, r = + 0.9768, p < 0.0001).
Therefore, the tolerance value was successfully adapted based on
the participant’s posture (postural error and tolerance values for
two representative participants are shown in Figure 5). We also
found that the predefined tolerance value of a particular trial
remained significantly less than the participant’s postural error

during that trial (p< 0.0001, effect size: r =−0.614). This implies
that the participants always experienced some level of challenge
in completing the task during the entire training phase. However,
as training progressed, the distance between the tolerance value
and the participant’s postural error decreased. The functional
task difficulty (FTD) score is defined as the difference between
postural error at the beginning of the trial and the predefined
tolerance value of that trial. At the end of the training, the FTD
score was significantly less than at the beginning (p = 0.003,
effect size: r = 0.615). The functional task difficulty decreased as
the training progressed and participants adapted to the desired
postural target.

H-Man force and damping during
training

In this study, participants experienced haptic feedback in the
form of damping if their postural error exceeded the tolerance
value. Maximum damping was set to 200 Nm/s. Mean H-Man
damping during each trial in the training phase is shown in
Figure 6. Overall, the damping experienced by the participants’
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FIGURE 3

Box plot for change in mean postural error during different
phases: Postural error during training and post-training phases
is significantly less than in pre-training phases. Double asterisks
signify the p-value < 0.01. There is no significant difference
between the training and the post-training phase (p > 0.1).

FIGURE 4

Permissible tolerance: Permissible tolerance value is computed
using an adaptive algorithm. The tolerance value decreased
during the training phase based on the performance of the
participants.

during training was much lower than the maximum damping
force. Participants tried to adjust their posture to minimize

FIGURE 5

Postural error and tolerance values for two participants: The left
(thin, black) axis represents the postural error, and the right (thick,
blue) axis represents the tolerance value. Solid lines represent
participant number 1, and dotted lines represent participant
number 2. Despite similar postural errors at the end of the
training, the postural error trajectory is different for both the
participants. Computed tolerance values are adapted to the
postural performance of individual participants.

the damping force during the training. Mean damping at the
end of the training was significantly lower as compared to the
damping at the beginning of the training phase (p = 0.003, effect
size: r = 0.615). As the training progressed and participants
adapted to the desired posture, the difference between postural
error and tolerance value decreased, and the damping force
also decreased.

Force experienced by the participants at the H-Man handle
also decreased as training progressed. Force due to damping at
the end of the training was significantly lower as compared to
the force experienced at the beginning of the training (0.026,
effect size: r = 0.433). Therefore, as the training progressed and
participants adapted to the required postural target, performing
the task became easier due to the lower damping force.

Reaching movement performance

The primary task of the study comprised of making reaching
movements using the end-effector. We found that the speed
of reaching movements was significantly greater at the end of
the training as compared to the speed at the beginning of the
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FIGURE 6

Damping at the end-effector: as participants adapted to the
desired postural target, damping at the end-effector decreased
during training. Overall damping varied between 5.99 and
34.96 Nm/s.

training (p = 0.003, effect size: r = −0.615). During the course
of training, as participants adapted to the desired postural target,
they performed reaching movements at a faster speed. The trial
duration reduced significantly at the end of the training phase
compared to the beginning (p = 0.003, effect size: r = 0.615).
As participants started adapting to the desired posture, reaching
movements became faster, and the time taken to complete each
trial decreased.

The smoothness of the reaching movement did not change
significantly before and after the training (p > 0.5). Moreover,
there was no significant change in the straightness of reaching
movement before and after the haptic intervention (p >
0.5). Therefore, there was no significant improvement or
deterioration in the reaching movement performance during
postural training.

Discussion

In this study, we have developed a novel two-way adaptive
algorithm for postural adaptation applications. The primary
objective of this study was to verify the proposed algorithm
for healthy people. Healthy people played a reaching task
based game while their posture was continuously monitored.
If they deviated from the desired posture, they received haptic

feedback-based on the task difficulty determined by the adaptive
algorithm.

Previous studies have shown that haptic feedback-based
methods can be effective to improve motor learning outcomes
(Basalp et al., 2021). Vibrotactile feedback has also been proven
effective in virtual motor learning (Islam and Lim, 2022).
A previous study has also shown that haptic feedback can
be used for indirect postural adaptation applications while
performing a one-dimensional reaching task (Agarwal et al.,
2022). A similar feedback strategy is used in the present
study in combination with task difficulty variation. In the
present study, task difficulty was determined using an adaptive
algorithm in the form of a permissible tolerance value. The
participants received the haptic feedback only if their posture
was outside the permissible tolerance values. Here, speculation
is that continuously changing the task parameters could lead
to an effect of contextual interference. Previous studies have
shown that high contextual interference could degrade task
performance during skill acquisition (Brady, 1998; Barreiros
et al., 2007). Therefore, it is essential to verify that there
is no negative interference due to the algorithm and that
there is an overall postural adaptation during training. The
average deviation from the desired posture is shown in
Figure 2. It is evident that there is an overall decrease in
postural error during the training. The postural adaptation
is maintained even after switching off the haptic feedback.
Therefore, there was no negative interference of any kind due
to the task difficulty variation. The force feedback related to the
participant’s trunk posture guided the participants towards the
desired posture.

The objective of using such an adaptive algorithm is to
set some level of “optimal task difficulty” (Guadagnoli and
Lee, 2004). The nominal task difficulty in this study remained
constant, i.e., adaptation to the desired postural target of 20◦

in the anterior direction while performing the reaching tasks.
Higher task difficulty could lead to a feeling of frustration
resulting from a lack of success at the desired task. Previous
studies have shown that this kind of frustration from high task
difficulty could negatively impact the motor learning outcome
(Marteniuk, 1976; Sanger, 2004). In this study, functional task
difficulty changed based on the permissible tolerance value.
The resulting functional task difficulty is designed to always
remain lower than or equal to the nominal task difficulty,
i.e., permissible tolerance values will always be positive.
Moreover, previous studies indicate that the task difficulty
should not be lower than the participant’s performance levels
for a prolonged period of time, i.e., there should be a sustained
challenge for the participants while performing the task to
ensure motor learning (Lövdén et al., 2010; Christiansen et al.,
2018). Results of the present study suggest that the permissible
tolerance value always remained lower than the Participants’
postural error resulting in a continuous challenge during the
motor training.
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The overall objective of the training is to ensure motor
adaptation to the nominal task difficulty level. This study
shows that the permissible tolerance decreases during training
and slowly starts to reach the nominal task difficulty levels.
There is an overall adaptation of the Participants’ posture to
the desired postural target. However, the difficulty level is
progressively changed throughout the training depending on
the task performance of the participant. There is a strong
correlation between the predetermined tolerance value for the
particular trial and the participant’s postural error during that
trial. Therefore, the proposed algorithm ensures that the task
difficulty is adapted based on the participant’s performance. To
enhance motor learning benefits, the importance of adaptive
variation of task difficulty has been emphasized consistently
in literature (Zhang, 1994; Choi et al., 2008). An example of
the adaptive variation of task difficulty is shown in Figure 5.
The postural error and corresponding tolerance values for two
representative participants with similar postural errors before
and after the training are shown. Despite having a comparable
postural error at the end of the training, the trajectory of
postural error decay was evidently different between these two
participants. As shown in Figure 5, the tolerance value computed
using the proposed algorithm is adaptive to the learning curve of
the individual participant.

The gradual increment of task difficulty is one of the
significant advantages of this algorithm. In our previous study,
postural adaptation using haptic feedback was evaluated using
sudden perturbation without any variation in task difficulty
(Agarwal et al., 2022). In that study, we observed that the
postural error quickly reduced to a lower level during the
beginning of the training and then remained at that level
till the end of the training, leading to a ceiling effect on
motor performance. However, overall adaptation was less when
compared to the present study. In the present study, the difficulty
is changed gradually, leading to an exponential decay of motor
error, as shown in Figure 2. There is growing evidence in the
literature that gradual perturbation leads to a more complete
adaptation and longer after-effects than a sudden perturbation
(Kagerer et al., 1997; Michel et al., 2007; Reisman et al., 2007).
Studies have shown that the abrupt introduction of high task
difficulty leads to large motor errors, and participants are
generally aware of the change. However, if rotation is introduced
gradually, added error during each increment falls within the
bounds of motor noise, and adaptation occurs without awareness
(Taylor and Ivry, 2013). This type of “implicit learning” is
beneficial for indirect postural adaptation applications due to its
lesser dependence on working memory as it frees up attention
for other secondary tasks (Poolton and Zachry, 2007). Moreover,
individuals who receive gradual training exhibit a slower rate of
decay of motor performance, indicating that they adapt more
thoroughly as compared to those who receive sudden training
(Buch et al., 2003; Huang and Shadmehr, 2009; Sawers and
Hahn, 2013). Studies have also shown that not everyone is

responsive to sudden training and gradual training leads to
better retention as well as a better generalization (Reisman et al.,
2010; Musselman et al., 2011). Moreover, the rate of exponential
decay of the motor error observed during the training phase in
the present study could change when the desired postural target
is changed. Future studies could be done to evaluate the change
in the decay rate for different target postures.

Speculation is that as participants’ performance at the
given task improves during training, they slowly become more
“skilled” at the task. There is a fixed upper limit to the task
performance in this task, determined by the nominal task
difficulty level, i.e., adaptation to the 20◦ postural target in the
anterior direction. In the proposed algorithm, slacking factor
plays a part while determining the task difficulty. It works
similar to a ramp function while updating the permissible
tolerance value for the subsequent trial. This ramp function
could theoretically keep decreasing the tolerance value, even
if the participant’s performance is constant. Previous studies
indicate that there could be a ceiling effect in terms of motor
performance, especially for tasks with lower task difficulty
(Bonassi et al., 2020; Freidle et al., 2021). To ensure the
algorithm’s stability, permissible tolerance should stabilize when
the user’s performance approaches ceiling values. In the present
study, the functional task difficulty (FTD) score determines
the difference between the permissible tolerance value and
the participant’s postural error. As Participants’ performance
approaches the ceiling values during the course of training, the
FTD score slowly decreases towards the end of the training
compared to the FTD score at the beginning of the training.
Hence, functional task difficulty is not constant throughout
the training but instead adapts to a stable value when the
participant reaches the upper limit of motor performance during
the training task.

The results of this study indicate that towards the end of
the training, though participants were able to adapt to the
desired posture successfully, the adaptation was not complete.
Postural error decreased significantly towards the end of the
training compared to the beginning of the training, but the
mean postural error at the end of the training was still more
than the standard deviation of the healthy population. There
could be a multitude of reasons to account for the incomplete
adaptation. The force feedback was provided in the form of a
damping force. As expected, the damping value and force due
to damping decreased as the training progressed. Participants
worked towards minimizing the overall force experienced by
them at the end-effector of the manipulandum. Near the
end of the training, the damping value is only 10.44 N/ms.
Speculation is that the low damping force could be below
humans’ perceptual capabilities, which would imply a lack of
meaningful feedback to improve the motor learning process.
Previous studies have reported that human force discrimination
capabilities can be degraded for low forces compared to the
larger forces (Hatzfeld and Werthschützky, 2012). The smallest
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change in stimulus intensity to invoke a change in perception
of the stimulus is termed as “Just Noticeable Difference” (JND).
According to Weber’s law, the ability to perceive a change in
the stimulus is directly proportional to the stimulus intensity.
However, the perception of the stimulus of low intensity does not
follow Weber’s law (Jones, 1989). Furthermore, previous studies
indicate that the discrimination threshold of force magnitude
is more when the hand is moving than the discrimination
threshold for static conditions (Yang et al., 2008). Therefore, high
haptic force may be required for feedback to be appropriately
perceived in a reaching task and result in motor learning. A
lower limit to the damping force value could be established in
future studies to ensure a relatively complete adaptation to the
desired posture.

The task in this study consisted of playing a reaching
movement-based game. Simultaneous postural adaptation
could have interfered with the reaching task (Klingberg and
Roland, 1997; Herath et al., 2001). Moreover, resistive force
feedback-based on postural performance could have further
interfered with and diminished the performance of the reaching
movement. However, the results of this study indicate no such
negative interference of postural adaptation or haptic feedback
and reaching movements. In terms of performance at reaching
movement, no significant difference was noted for smoothness
or straightness of movement before and after the training.
Future studies could explore this kind of haptic feedback-based
postural adaptation in more challenging tasks such as bimanual
reaching movements, 3-dimensional reaching movements,
tracing tasks, etc.

Overall, our study indicates that the proposed algorithm
could be used to compute functional task difficulty for postural
adaptation applications. Haptic force feedback could be used to
“gradually” guide the participants towards the desired posture.
Our algorithm can easily be modified for learning different
motor skills. The postural error can be substituted with other
performance metrics for different motor skills. Moreover, in the
present version, task difficulty is updated after every trial, which
works well for discrete tasks such as reaching movements. The
algorithm can also be modified such that task difficulty updates
at regular time intervals for continuous tasks such as tracing
tasks.

Furthermore, the results of the present study can be
evaluated to decrease trunk compensation during the
rehabilitation of stroke patients. Stroke survivors often
tend to compensate for the impaired upper limb function
by moving their trunk (Levin et al., 2002). This is termed
“trunk compensation.” Such compensation leads to short-term
functional gains but could lead to many long-term issues such as
pain, learned non-use, etc. Therefore, therapists aim to reduce
such compensatory strategies during rehabilitation, often using
trunk restraints (Zhang et al., 2020). But such restraint-based
methods are associated with several disadvantages and often
require constant supervision of the patients. The present study

has evaluated the haptic feedback postural adaptation system for
healthy people to a non-upright posture. The experiment task
is designed to be purposefully inconvenient. Trunk adaptation
to the chosen non-upright posture can be considered an
inconvenient posture for the young, healthy participants. Based
on the results of the present study, it can be said that participants
moved to an inconvenient/unnatural posture rather than
applying extra force to counter the provided haptic feedback.
This can prove especially useful for stroke rehabilitation since
maintaining an upright posture is inconvenient for stroke
patients. Moreover, since the target posture is an upright posture
during the rehabilitation of the stroke patients, appropriate
changes in the current experimental setup would be required
to restrict the propensity of leaning on the back of the chair
during rehabilitation. Therefore, future studies can explore the
efficacy of the algorithm for stroke patients to reduce trunk
compensation during rehabilitation.

Conclusion

We have proposed a novel two-way adaptive algorithm for
task difficulty variation for simultaneous postural adaptation
during upper limb training tasks based on the challenge-point
hypothesis. We have experimentally validated the algorithm for
healthy people. Our study shows that the proposed algorithm for
task difficulty variation shows promising results. The algorithm
controlled the functional task difficulty during training based
on the task performance of the participants. Postural error
decreased during training, and participants adapted to the
desired postural target after haptic feedback-based training. This
could be especially suitable for reducing trunk compensation
during stroke rehabilitation. However, future studies on stroke
patients are required to clearly validate the algorithm for
clinical use. Moreover, future studies could modify the proposed
algorithm for computing task difficulty during training for
different motor skills and validate the algorithm for different
applications. Such strategies to maximize the effects of motor
learning could substantially enhance the rehabilitation outcomes
for several neuromuscular disorders such as stroke, cerebral
palsy, etc.
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