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Sustained peripheral somatosensory stimulations, such as high-frequency

repetitive somatosensory stimulation (HF-RSS) and vibrated stimulation, are

effective in altering the balance between excitation and inhibition in the

somatosensory cortex (S1) and motor cortex (M1). A recent study reported

that whole-hand water flow (WF) stimulation induced neural disinhibition in

the M1. Based on previous results, we hypothesized that whole-hand WF

stimulation would lead to neural disinhibition in the S1 because there is a

strong neural connection between M1 and S1 and aimed to examine whether

whole-hand WF stimulation would change the neural balance between

excitation and inhibition in the S1. Nineteen healthy volunteers were studied by

measuring excitation and inhibition in the S1 before and after each of the four

15-min interventions. The excitation and inhibition in the S1 were assessed

using somatosensory evoked potentials (SEPs) and paired-pulse inhibition

(PPI) induced by single- and paired-pulse stimulations, respectively. The four

interventions were as follows: control, whole-hand water immersion, whole-

hand WF, and HF-RSS. The results showed no significant changes in SEPs and

PPI following any intervention. However, changes in PPI with an interstimulus

interval (ISI) of 30 ms were significantly correlated with the baseline value

before whole-hand WF. Thus, the present findings indicated that the whole-

hand WF stimulation had a greater decreased neural inhibition in participants

with higher neural inhibition in the S1 at baseline. Considering previous results

on M1, the present results possibly show that S1 has lower plasticity than M1

and that the duration (15 min) of each intervention may not have been enough

to alter the balance of excitation and inhibition in the S1.

KEYWORDS

whole-hand water flow stimulation, primary somatosensory cortex (S1), paired-
pulse inhibition (PPI), repetitive somatosensory stimulation, somatosensory evoked
potentials (SEP)
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Introduction

Somatosensory function based on somatosensory
information processing in the central nervous system plays a
crucial role in our daily lives. Several brain regions are involved
in somatosensory function, such as the primary somatosensory
cortex (S1), posterior parietal cortex, presupplementary motor
area, and basal ganglia (Pastor et al., 2004; Conte et al., 2012). In
particular, several studies on healthy participants have reported
that the delicate balance between excitatory and inhibitory
processes in the S1 strongly affects somatosensory functions
(Lenz et al., 2012; Rocchi et al., 2016) and is strongly related
to synaptic changes (Abbott and Nelson, 2000; Carcea and
Froemke, 2013), which are critically involved in motor skills,
learning, and sensory functions (Dinse et al., 2003; Höffken
et al., 2007).

Sustained peripheral somatosensory stimulation is effective
for altering the balance between excitation and inhibition
(Godde et al., 1996; Rocchi et al., 2017; Saito et al., 2018),
such as high-frequency repetitive somatosensory stimulation
(HF-RSS), in which a patterned electric stimulation is applied
to the skin through surface electrodes, and tactile coactivation
stimulation, which involved the application of simultaneous
tactile stimuli at several sites of the hand. Both methodologies
alter the balance between excitation and inhibition in the
S1, with sustained stimulation resulting in an increase of the
receptive field of the S1 and the number of neurons recruited
for the response to sensory input (Godde et al., 1996, 2000;
Dinse et al., 2003). Considering these mechanisms, sustained
somatosensory stimulation to a larger site of the hand would
change the balance between excitation and inhibition in the S1.

Recently, our research group developed whole-hand water
flow (WF) stimulation in which sustained somatosensory
stimulation by water flow to a large site of the hand is
applied; this induces neural disinhibition in the primary motor
cortex (M1) (Sato et al., 2015). In vivo experiments identified
the anatomic substrate for this cross-systemic plasticity as
topographically and functionally specific reciprocal connections
between the primary motor cortex (MI) and the primary
somatosensory cortex (SI) (Rocco and Brumberg, 2007). Other
animal studies have shown that the M1 receives projections
from homotopic and heterotopic S1 (Fabri and Burton, 1991;
Izraeli and Porter, 1995). In humans, using diffusion MRI,
a tractography study demonstrated that the M1 and S1 are
directly connected through short U-shaped fibers running
beneath the central sulcus (Catani et al., 2012). Additionally,
recent neurophysiological mapping findings demonstrated that
the sensory input to the S1 projected to homotopic and
heterotopic M1 and that the sensorimotor integration involves
center-inhibition and surround-facilitation in the M1 hand area
(Dubbioso et al., 2017). Therefore, the previously observed
plastic change in the M1 by whole-hand WF stimulation would
be attributed to the change in the balance between excitation

and inhibition in the S1 induced by the sustained somatosensory
input. In addition, the whole-hand WF stimulation induces not
only tactile but also proprioceptive stimulation from a large site
of the hand (Sato et al., 2015), which may result in more neurons
recruited for the response to sensory input and increase the
size of the receptive field of the S1. That is, whole-hand WF
stimulation may be a more powerful tool to observe plasticity
induction in the S1.

The paired-pulse paradigm has become a standard
procedure for evaluating the balance between excitation and
inhibition in human participants. It involves the application of
pairs of stimuli in close succession (paired-pulse stimulation),
which can be used as a marker of intracortical excitability in
the S1. In the case of the S1, paired-pulse inhibition (PPI)
expresses the result of paired-pulse peripheral stimulations
with a short interstimulus interval (ISI), in which the cortical
responses to the second stimulus are more significantly
suppressed compared to the first stimulus. The PPI is
quantified by calculating the ratio of the amplitude of
the second response divided by the amplitude of the first
response. Small ratios indicate higher PPI, whereas large
ratios indicate lower PPI, which is used as a marker for
enhanced excitation.

The present study aimed to clarify the effect of whole-hand
WF on the balance between excitation and inhibition in the S1
using a paired-pulse paradigm. As previous evidence has shown
that whole-hand WF produces simultaneous somatosensory
stimulation to a large area of the hand (Sato et al., 2015), we
hypothesized that whole-hand WF would decrease PPI due to
an increase in the receptive field of the S1 and the number
of neurons recruited for the response to sensory input (Godde
et al., 1996, 2000; Dinse et al., 2003). Elucidating the cortical
somatosensory process induced by WF stimulation and its
effects on the processing of other sensory inputs will help
delineate the mechanisms of sensory integration and facilitate
the development of improved aquatic therapies for patients with
neurological disabilities.

Materials and methods

Participants

Nineteen healthy right-handed participants (10 men and 9
women; mean age, 23.10 ± 3.41 years; height, 165.13 ± 9.11 cm;
weight 59.45 ± 11.10 kg) participated in the present study.
None of the participants had a history of neurological or
psychiatric diseases. All participants signed a written informed
consent form, which provided a full explanation of this study
and methods before the experimental session. This study was
conducted in accordance with the Declaration of Helsinki and
approved by the Ethics Committee of Niigata University of
Health and Welfare (18712-210823).
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Interventions

The interventions (15 min) were as follows: non-immersed
control (CON), whole-hand water immersion (WI), whole-
hand WF stimulation (WF), and HF-RSS. In all interventions,
the participants were instructed to place their right hand in
the sluicing device, keeping it relaxed. The left hand was
placed on a soft support beside the body and was kept
relaxed. The hands were fixed in the same position for
whole-hand WF interventions, using a belt to avoid muscle
contractions. For whole-hand WF, WF was applied to the palm
of the right hand using a sluicing device (Japan Aqua Tec,
Sasebo, Nagasaki, Japan) at ∼40 L/min (Sato et al., 2015).
In all the interventions, the participants were instructed to
focus their gaze on the wall facing them throughout the
experiments to divert their attention from their right hand.
For each intervention by water, the ambient temperature was
29◦C ± 1◦C, and the water temperature was 33◦C ± 1◦C.
The ambient and water temperatures were modulated to avoid
changing the skin temperature. The experimental protocol is
shown in Figure 1. All participants underwent these four
conditions in random order, with an interval of at least 5 days
between the experiments.

High-frequency repetitive
somatosensory stimulation

The HF-RSS consisted of 20-Hz trains of square wave
electrical pulses of 200-µs duration delivered for 1 s, with 5-s
intertrain intervals, for 15 min. Stimuli were administered using
a constant current stimulator (Electronic Stimulator SEN-7023;
Nihon Kohden Co., Tokyo, Japan) through the isolator (SS-104;
Nihon Kohden Co., Tokyo Japan) to surface adhesive electrodes
of an approximately 1 cm2 area, with the anode located on the
distal phalanx of the right index finger and the cathode located
on the proximal phalanx of the same finger. The intensity was set
to the maximal intensity tolerated without pain minus 0.1 mA
(Ragert et al., 2008; Kattenstroth et al., 2012; Schlieper and
Dinse, 2012; Rocchi et al., 2017).

Somatosensory evoked potentials and
paired-pulse inhibition recording and
analysis

Somatosensory input from peripheral nerves activates
several cortical areas, and this modulation can be evaluated
using somatosensory evoked potentials (SEPs). We measured
SEPs before and after each intervention, according to a
previously described methodology (Lenz et al., 2012; Rocchi
et al., 2016; Saito et al., 2018). SEPs were recorded, and the
N20-P25 component from the active electrode was placed at
C3’ (located 2 cm posterior to C3), and the reference electrode

FIGURE 1

Experimental procedure. Somatosensory evoked potential and
paired-pulse inhibition were assessed before and after each
intervention for 15 min. Each intervention was conducted in
random order for each participant.

was placed at Fz, according to the international 10–20 system
using a Brain Products amplifier system (Brain Products GmbH,
Gilching, Germany) and Brain Vision Professional Recorder
(Brain Products GmbH, Gilching, Germany).

Single-pulse SEP and PPI were measured to assess the
balance between cortical excitation and inhibition in the S1.
Paired-pulse electrical stimulation of the median nerve was
applied with ISIs of 5 ms and 30 ms in combination with SEP
recording. The ISIs were determined in two separate sequences
based on the methods reported in previous studies (Höffken
et al., 2007; Ragert et al., 2008; Rocchi et al., 2016, 2017).
PPIs have different GABAergic modulations depending on the
ISI. PPIs with ISI of 5 and 30 ms were mainly modulated by
synaptic GABAA and GABAB receptor activities, respectively
(Chowdhury and Rasmusson, 2003). Based on this observation,
the present study measured PPIs with two ISI of 5 and 30 ms to
examine the mechanism of WF stimulation-induced plasticity in
S1. Single-pulse and paired-pulse stimulations were randomly
applied at a frequency of 2 Hz, which was controlled by a
pulse control system (Pulse Time II; Medical Try System,
Tokyo, Japan). The participants were seated in a comfortable
chair and instructed to relax but stay awake with their eyes
closed. Median nerve stimulation was performed with a surface
electrode placed on the right wrist with constant current
stimulation (Electronic Stimulator SEN-7023; Nihon Kohden
Co., Tokyo Japan) through an isolator (SS-104; Nihon Kohden
Co., Tokyo, Japan) with the anode placed on the wrist crease
and the cathode placed 2 cm proximal. The two electrodes were
attached with double-faced tape and covered with a waterproof
transparent film (Tegaderm Hydrocolloid Dressing; 3M Japan,
Tokyo, Japan). A monophasic wave pulse of 200-µs duration
was delivered at 250% of the sensory threshold and a frequency
of 2 Hz. For each type of stimulus, 400 stimulation trials
were performed, and the sequences were randomized (1,200
stimulations). All the data were collected at a sampling rate
of 5 kHz. Continuous electroencephalogram data were band-
pass filtered at 3–2 kHz, and the signal was recorded from
–20 to 100 ms with regard to the pulse. The 20-ms period
before the stimulus was the baseline. Epochs with responses
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exceeding ± 70 µV were rejected from the analysis, and the
remaining data were averaged.

The peak-to-peak amplitudes of the cortical N20 and
P25 response components for the first and second paired-
pulse stimulations were analyzed. In the paired-pulse trial,
the responses after the second response were obtained by
subtracting a single SEP (Figure 2). Each PPI was calculated
as the ratio of the response of a single pulse and the second
response of the subtracted paired pulse.

Statistical analyses

Single-pulse SEP amplitudes (N20, P25, and N20-P25),
latency (N20, P25), PPI ratio (N20, P25, N20-P25), and sensory

FIGURE 2

Single- and paired-pulse somatosensory evoked potential
waveforms and subtracted waveform. Filled and open triangles
show first and second electrical stimulation, respectively.

FIGURE 3

Sensory threshold before each intervention. There was no
significant difference among the four interventions, as shown by
the Friedman test. HF-RSS, high-frequency repetitive
somatosensory stimulation.

thresholds were analyzed using statistical software (SPSS version
18; IBM, Chicago, USA).

The distributions of all data were confirmed by the Shapiro–
Wilk test. Sensory threshold was entered into a Friedman test
with “intervention” (CON, HF-RSS, WI, and WF) as the within-
subject factor. Other parameters were entered into a generalized
linear mixed model (GLMM) with “intervention” and “time”
(pre and post) as the within-subject factors.

Pearson or Spearman correlation analysis was performed
to assess the relationship between PPI at pre-intervention
and the change in PPI with each ISI. Statistical significance
was set at p < 0.05. All data are expressed as the
mean ± standard deviation.

Results

Figure 3 shows the sensory thresholds before each
intervention. The sensory threshold did not change significantly
across the four interventions (X2 = 5.654, p = 0.13).

For single-pulse SEP, GLMM revealed no significant
interactions and main effect in N20, P25, and N20-P25 peak-
to-peak, except for the main effect of “intervention” in N20-P25
peak-to-peak (Table 1 and Figure 4).

Figures 5, 6 present the PPI_5 ms and PPI_30 ms before
and after each intervention, respectively. GLMM revealed no
significant interactions [PPI_5 ms: F (3, 51) = 2.319, p = 0.086,
η2p = 0.120; PPI_30 ms: F (3, 51) = 0.792, p = 0.504, η2p = 0.045].
There was no main effect of “intervention” [PPI_5 ms: F (2.116,
35.965) = 3.080, p = 0.056, η2p = 0.153; PPI_30 ms: F (1.863,
31.674) = 0.218, p = 0.790, η2p = 0.013] and “time” [PPI_5 ms:

TABLE 1 Statistical results of single-pulse SEP components.

df F-value P-value

N20 amp. Intervention (3,126) 2.383 0.073

Time (1, 126) 1.549 0.216

Interaction (3, 126) 0.460 0.710

N20 lat. Intervention (3,126) 1.771 0.156

Time (1, 126) 1.546 0.216

Interaction (3, 126) 2.137 0.099

P25 amp. Intervention (3,126) 2.003 0.117

Time (1, 126) 1.455 0.230

Interaction (3, 126) 1.864 0.139

P25 lat. Intervention (3,126) 1.144 0.334

Time (1, 126) 0.336 0.563

Interaction (3, 126) 0.397 0.755

N20-P25 Intervention (3,126) 4.112 0.008

Time (1, 126) 3.139 0.079

Interaction (3, 126) 0.610 0.610

Amp., amplitude; lat., latency; N20-P25, N20-P25 peak-to-peak; SEP, somatosensory
evoked potential.
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FIGURE 4

Single-pulse N20-P25 amplitude before and after each intervention: (A) Control, (B) HF-RSS, (C) Whole-hand WI, and (D) Whole-hand WF.
Generalized linear mixed model revealed that there was no significant interaction or main effect of “intervention” and “time,” except for the main
effect of “intervention.” HF-RSS, high-frequency repetitive somatosensory stimulation.

F (1, 17) = 0.071, p = 0.792, η2p = 0.004; PPI_30 ms: F (3,
17) = 0.239, p = 0.631, η2p = 0.014].

Figures 7, 8 present the relationship between each PPI at
pre-intervention and the ratio of PPI with ISIs in HF, WI, and
WF interventions. The PPI at pre-intervention was significantly
correlated with the ratio of PPI_30 ms in WF alone (r = –0.589,
p = 0.010).

Discussion

The present data showed that 15-min whole-hand WF, HF-
RSS, whole-hand WI, and CON did not affect the balance
between excitation and inhibition in the S1, as measured by
the N20-P25 amplitude of SEP and PPI. Additional findings
revealed that the change in PPI with longer ISI (30 ms) was
negatively correlated with the baseline value in whole-hand WF.

The PPI reflects the inhibitory influence of the first stimulus
on the response to the second stimulus. This technique is
useful for investigating changes in the balance between cortical
excitation and intracortical inhibition. The present results

indicate that 15-min whole-hand WF and other interventions
do not change the balance of neural excitation and inhibition
at both cortical and subcortical levels of the somatosensory
afferent pathway. Animal studies have suggested that, following
the previous activation of pyramidal cells, calbindin (CB)-
expressing inhibitory interneurons inhibit pyramidal cells
within the microcolumn through synapses on superficial
dendrites (Gulyás and Freund, 1996). Additionally, pyramidal
cells synapse on parvalbumin (PV)-expressing inhibitory
interneurons viaN-methyl-D-aspartate receptors located within
layers IV/V of SI (Labedi et al., 2014). These PV cells synapse
perisomatically on the pyramidal cell itself and synapse with the
basal dendrites of pyramidal cells in neighboring macrocolumns
(Blatow et al., 2003; Freund, 2003; Markram et al., 2004; Howard
et al., 2005; Feldmeyer et al., 2018). The inhibition provided
by CB-expressing, perisomatic PV-expressing, and lateral PV-
expressing cells may account for the overall inhibition of
pyramidal cells and thus contribute to the reduced amplitude of
SEP induced by the second stimulus compared to the first one.
The N20 and P25 components of the SEP are generated in the
posterior bank of the central sulcus and anterior crown of the
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FIGURE 5

PPI_5 ms of N20-P25 amplitude before and after each intervention: (A) Control, (B) HF-RSS, (C) Whole-hand WI, and (D) Whole-hand WF.
Generalized linear mixed model revealed that there was no significant interaction or main effect of “intervention” and “time.” HF-RSS,
high-frequency repetitive somatosensory stimulation.

postcentral gyrus, respectively (Allison et al., 1989; McCarthy
et al., 1991). PPI at a shorter ISI of 5 ms is generally hypothesized
to be due to inhibitory interactions in the S1 (Emori et al.,
1991; Ugawa et al., 1996). At longer ISIs, inhibition of the N20-
P25 component may involve subcortical structures within the
somatosensory pathway, such as the dorsal column nuclei or
thalamus (Lüders et al., 1984; Höffken et al., 2010). Therefore, no
change in PPI with all ISI suggests that the present interventions,
including whole-hand WF, whole-hand WI, and HF-RSS in
15 min, do not affect inhibitory interactions at the cortical (S1)
and subcortical levels.

Paired-pulse evoked inhibition has been reported to occur
regardless of modality in the motor, visual, auditory, and
somatosensory cortices (Kujirai et al., 1993; Carandini et al.,
2002; Freeman et al., 2002; Shapley et al., 2003; Fitch et al.,
2008; Lenz et al., 2012; Gómez-Nieto et al., 2020). In the
motor domain, paired-pulse transcranial magnetic stimulation
has been widely used to study the intracortical inhibition of

the human motor cortex. Previous pharmacological studies
have provided several lines of evidence for the critical role
of GABAergic, presumably GABAA-modulated, inhibition
(Kujirai et al., 1993; Ziemann et al., 1996), although the
involvement of GABAB has also been advocated (Porter and
Nieves, 2004). Our previous study examined paired-pulse
modulated inhibitory circuits after whole-hand WI and WF and
showed that whole-hand WF induces temporary attenuation of
GABAA-modulated inhibition in the M1, but not WI (Sato et al.,
2015). Considering these results in the M1, we hypothesized that
whole-hand WF would decrease PPI in the S1, but not in line
with the present hypothesis.

A possible explanation for this is the difference in neural
plasticity between S1 and M1. A previous study demonstrated
that quadripulse transcranial magnetic stimulation (QPS),
which is the most powerful and reliable non-invasive brain
stimulation method to induce neural plasticity in humans
(Matsumoto and Ugawa, 2020), was applied to S1 and M1
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FIGURE 6

PPI_30 ms of N20-P25 amplitude before and after each intervention: (A) Control, (B) HF-RSS, (C) Whole-hand WI, and (D) Whole-hand WF.
Generalized linear mixed model revealed that there was no significant interaction or main effect of “intervention” and “time.” HF-RSS,
high-frequency repetitive somatosensory stimulation.

separately and significantly increase the neural excitability in
M1 but not S1 (Nakatani-Enomoto et al., 2012). This may
indicate that M1 has higher plasticity than S1. Therefore,
no plasticity change in S1 after all interventions in the
present study would be due to the lower plasticity of the S1
compared to M1. Another possible explanation for this is the
shorter duration of intervention (15 min) to induce plastic
alterations in the S1. Almost all previous studies reported that
30 min or more of peripheral electrical stimulation affects
the balance between excitatory and inhibitory circuits (Freyer
et al., 2013; Rocchi et al., 2017; Saito et al., 2018). However,
the response to peripheral electrical stimulation is inconsistent
across stimulus durations, such as increased PPI_5 ms after a
45-min intervention (Rocchi et al., 2017), decreased PPI_30 ms
after a 3-h intervention (Höffken et al., 2007), and unchanged
PPI_100 ms after a 30-min intervention (Saito et al., 2018).
Additionally, considering the present results in line with the
hypothesis that the present HF-RSS would not change S1

excitability due to its short stimulus duration, it is possible
that a stimulation time of 45 min or longer is required for
peripheral stimulation, including whole-hand WF, whole-hand
WI, or HF-RSS, to alter S1 excitability.

Interestingly, we found that the higher the PPI_30 ms
at pre-intervention, the more the disinhibition after whole-
hand WF intervention, but not after other interventions. The
results, in which the participants with higher PPI_30 ms at
pre-intervention had more disinhibition after whole-hand WF,
could be explained by the relationship between the cortical
inhibition and neural plasticity. Previous studies have reported
that lower cortical inhibition, when assessed by a paired-
pulse paradigm, was related to lower neural plasticity in S1
(Erro et al., 2018). Cortical inhibitory circuits finely tune
and regulate the neural interaction and induce the plastic
change in the cerebral cortex [see review by Artinian and
Lacaille (2018)]. Therefore, more disinhibition by whole-hand
WF intervention could be attributed to higher inhibitory
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FIGURE 7

Correlation between PPI_5 ms at pre-intervention and the ratio of before to after each intervention: (A) Control, (B) HF-RSS, (C) Whole-hand WI,
and (D) Whole-hand WF. There was no significant correlation in any intervention. HF-RSS, high-frequency repetitive somatosensory stimulation.

circuit in S1. In addition, we wondered why this correlation
was observed only during the whole-hand WF intervention.
This result may be due to the distinct somatosensory inputs
induced by WF and other factors. Whole-hand WF has been
reported to induce tactile and vibratory stimulations by skin
movement, whereas tactile stimulation alone has been reported
in whole-hand WI (Sato et al., 2015) and HF-RSS (Rocchi
et al., 2017). Because somatosensory inputs involving skin and
muscle spindle movements reach BA3a, 2, and 4, whereas tactile
inputs mainly reach BA3b and 1, whole-hand WF and other
interventions may affect different inhibitory circuits (Cooper
et al., 1975; Jones, 1983; Terumitsu et al., 2009). Regarding the
relationship between inhibitory circuits and PPI at different ISIs,
pre- and post-synaptic GABAB receptor antagonists induced
more inhibition at ISIs longer than 25 ms, whereas post-
synaptic GABAA receptor antagonists induced more inhibition
at ISIs of 5 ms than at longer ISIs, although both antagonists
produced disinhibition at ISIs of 5 ms and more (Chowdhury
and Rasmusson, 2003). Further pharmacological studies are
required to confirm this possibility.

The sensorimotor cortex hyperexcitability represents
an important pathogenic mechanism underlying several

neurological diseases such as familial adult myoclonic epilepsy
type 2 (FAME2) (Dubbioso et al., 2022), ALS (Ranieri et al.,
2020), dystonia (Erro et al., 2018), fibromyalgia (Lim et al.,
2015), and schizophrenia (Daskalakis et al., 2020). These
diseases are typically caused by the abnormal neural balance
between excitation and inhibition. Therefore, the present
result in which the change in PPI with longer ISI (30 ms)
was negatively correlated with the baseline value in whole-
hand WF suggests the potential effect of whole-hand WF on
hyperexcitability in neurological diseases. However, since the
present results were obtained from healthy young participants,
future studies are needed with such patients.

The present study has several limitations. First, the sample
size is small; it was determined on the basis of previous
studies, whereas it should have been based on a power
analysis. Second, we measured only SEP and PPI to evaluate
S1 excitability. To clarify the change in neural balance between
excitation and inhibition in the S1 in greater detail, it would
be preferable to investigate other biomarkers of inhibitory
function such as early and late components of SEP high-
frequency oscillation (e- and l-HFO) (Erro et al., 2018;
Dubbioso et al., 2022; Tomasevic et al., 2022), which reflect
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FIGURE 8

Correlation between PPI_30 ms at pre-intervention and the ratio of before to after each intervention: (A) Control, (B) HF-RSS, (C) Whole-hand
WI, and (D) Whole-hand WF. There was a significant negative correlation only in whole-hand water immersion, but not in other interventions.
HF-RSS, high-frequency repetitive somatosensory stimulation.

the activity of thalamocortical fibers directed to areas 3b and
1 within S1 and intracortical inhibition in S1, putatively a
result of local GABAergic interneurons. Third, the effects of
the present interventions on several somatosensory functions
remain unclear. Previous studies indicate that PPIs are related
to some behavioral parameters such as somatosensory temporal
discrimination threshold (STDT) and two-point discrimination
(TD) performance. Interestingly, STDT and TD performance
have been reported to be modulated by PPI with a shorter
ISI of 5 ms (Tamura et al., 2008; Rocchi et al., 2016)
and longer ISI of 30 ms (Lenz et al., 2012), respectively.
Therefore, future research should examine whether the change
in PPI by whole-hand WF modulates behavioral performance.
Finally, we did not examine whether whole-hand WF affects
GABAergic neural activities because we used indirect non-
invasive evaluation for GABAergic intracortical inhibition in S1
in the present study.

Conclusion

The present data showed that 15-min whole-hand WF, HF-
RSS, whole-hand WI, and CON did not affect the balance

between excitation and inhibition in the S1, as measured by
the N20-P25 amplitude of SEP and PPI. Additional findings
revealed that the change in PPI with longer ISI (30 ms) was
negatively correlated with the baseline value in whole-hand
WF. These results indicated that even a 15-min whole-hand
WF can induce intracortical disinhibition in the participants
with high inhibition in S1, which raises the possibility
that whole-hand WF could be a useful tool for improving
somatosensory function.
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