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Autism Spectrum Disorder (ASD) is extremely heterogeneous clinically and

genetically. There is a pressing need for a better understanding of the

heterogeneity of ASD based on scientifically rigorous approaches centered

on systematic evaluation of the clinical and research utility of both phenotype

and genotypemarkers. This paper presents a holistic PheWAS-inspiredmethod

to identify meaningful associations between ASD phenotypes and genotypes.

We generate two types of phenotype-phenotype (p-p) graphs: a direct graph

that utilizes only phenotype data, and an indirect graph that incorporates

genotype as well as phenotype data. We introduce a novel methodology for

fusing the direct and indirect p-p networks in which the genotype data is

incorporated into the phenotype data in varying degrees. The hypothesis is that

the heterogeneity of ASD can be distinguished by clustering the p-p graph. The

obtained graphs are clustered using network-oriented clustering techniques,

and results are evaluated. The most promising clusterings are subsequently

analyzed for biological and domain-based relevance. Clusters obtained

delineated di�erent aspects of ASD, including di�erentiating ASD-specific

symptoms, cognitive, adaptive, language and communication functions, and

behavioral problems. Some of the important genes associatedwith the clusters

have previous known associations to ASD. We found that clusters based on

integrated genetic and phenotype data were more e�ective at identifying

relevant genes than clusters constructed from phenotype information alone.

These genes included five with suggestive evidence of ASD association and

one known to be a strong candidate.

KEYWORDS

autism spectrum disorders, graph-based clustering, PheWAS, genotypes, kNN graphs

Frontiers inHumanNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.960991
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.960991&domain=pdf&date_stamp=2022-10-12
mailto:jmatta@siue.edu
mailto:tayoobafemiajayi@missouristate.edu
https://doi.org/10.3389/fnhum.2022.960991
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2022.960991/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Matta et al. 10.3389/fnhum.2022.960991

1. Introduction

Autism Spectrum Disorder (ASD) is a childhood

neurodevelopmental disorder diagnosed on the basis of

behavioral assessments of social, communicative, and repetitive

symptoms. Although ASD is behaviorally distinctive and

reliably identified by experienced clinicians, it is clinically

and genetically an extremely heterogeneous disorder which

is assumed to reflect multiple etiologic origins (Tammimies

et al., 2015). The heterogeneity in ASD is multidimensional and

complex, including variability in phenotype as well as clinical,

physiological, and pathological parameters. ASD is associated

with a wide range of cognitive and behavioral abnormalities

(Chang et al., 2015). For a set of patients with the same ASD

diagnosis, the clinical phenotypes could be extremely different,

and could also vary significantly in terms of severity (Lovato

et al., 2019). There is a pressing need for a better understanding

of the heterogeneity of autism based on scientifically rigorous

approaches centered on systematic evaluation of the clinical

and research utility of both phenotype and genotype markers

(Georgiades et al., 2013). A key challenge to finding effective

solutions lies in connecting the genetic and etiological data

to behavioral and phenotypic data (Miles, 2011) which is

further compounded by the enormous genetic complexity of

ASD-related conditions. Though there is abundant evidence of

the role of genetics in the disorder, our understanding of the

specific underlying genes is still limited. It is estimated that a

thousand or more genes may be implicated with ASD, but only

about a hundred are considered strongly linked (Brueggeman

et al., 2020). The gene functional network analysis conducted in

Chang et al. (2015) attempts to elucidate the genetic variations

associated with autism and other psychiatric disorders by

incorporating relevant phenotype data. The results suggest

that its pathophysiological heterogeneity is matched by the

diversity of genetic and functional causes associated with the

disorder. The elucidation of the genetics behind ASD has been

contributing significantly to phenotype elucidation (Lovato

et al., 2019; Narita et al., 2020). ASD genotype-phenotype

correlations are important to identify phenotypic subtypes and

for early diagnosis and clinical management (Wu et al., 2020).

Since ASD manifests significant differences across probands,

to further understand how functional properties of implicated

genes affect phenotypic characteristics of the disease, it might

be helpful to identify more homogeneous groups by linking the

phenotype to the genotype. However, ASD’s highly complex

genetic architecture makes it difficult to map its heterogeneity

with specific phenotype-genotype relationships. Approaches

that are more inclusive in relation to both are needed for further

progress in mapping genotype-phenotype relationships in ASD

(Binder, 2021).

Phenome-wide association studies (PheWAS) (Denny et al.,

2010) have contributed substantially to uncovering etiological

links between genes and diseases, as these studies can provide

a more complete understanding of the complex relationships

among genetic architecture and the functions of biological

systems (Tyler et al., 2016; Verma et al., 2019). A PheWAS

study employs regression techniques on genetic information

[single nucleotide polymorphisms (SNPs)] of a given sample

population of probands to derive an association between

observed phenotypes and SNPs. The traditional PheWAS

output yields a plot of the statistical significance power of

association of multiple diseases (for each one) to a single SNP.

The PheWAS concept is very effective as even studies with

small sample sizes have been able to validate previous studies

and enhance single SNP results with pleiotropic relationships

(Hebbring et al., 2013). In Matta et al. (2021), we presented

a simple PheWAS model to identify SNP associations among

ASD phenotypes. Our hypothesis was that by viewing a

heterogeneous disorder, such as ASD, as an aggregate of multiple

subtypes, we could derive a PheWAS model to identify novel

genetic and cross-phenotype associations. In our preliminary

work, a multi-trait mixed regression model was applied to both

SNP and phenotype matrices to emulate the PheWAS model.

A phenotype-phenotype (p-p) network was obtained by linking

phenotypes that have common associated SNPs. The network

was subsequently clustered using the Louvain method to yield

a set of phenotype-based clusters which were analyzed to reveal

their associated genes. Note, this approach differs from the

PheWAS model in Gutiérrez-Sacristán et al. (2021) which is

based on sex differences in ASD and uses certain clinical features

to identify potential disease subgroups.

In this study, we investigate a more holistic PheWAS-

inspired method to identify meaningful associations between

ASD phenotypes and genotypes. This work, as shown in

Figure 1, significantly extends the preliminary results presented

in Matta et al. (2021). We examine multiple methodologies

for implementing a p-p network, creating both direct networks

using only phenotype data as well as indirect networks that

incorporate SNP data. These two types of networks are fused

using a novel algorithm that varies the influence of direct

and indirect factors. The resulting networks are clustered

using a variety of network-based clustering techniques. The

cluster variations among the results, based on the weighted

combinations, are examined using heatmaps. To determine the

optimal clustering result, we utilize an ensemble of six graph-

based validation metrics. We extract the underlying genes of

the highest ranking clustering results and conduct a rigorous

biological analysis of these phenotype clusters and associated

genes to examine their potential clinical significance. Presenting

a new classification system for heterogeneous ASD instances is

beyond the scope of this paper. However, to the best of our

knowledge, most prior ASD clustering work (Bruining et al.,

2010; Matta et al., 2018b) directly clusters the samples in an

attempt to uncover more homogeneous subgroups of the sample
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FIGURE 1

Overall framework of identifying key associations between ASD phenotype and genotype biomarkers.

population. In this research, we demonstrate an empirical

framework for using genotype and phenotype information

to cluster ASD samples in a non-traditional way. With this

approach, we are able to provide empirical evidence that

strengthens the case for including genotype markers in ASD

diagnosis and give additional evidence for the association of

several previously-known ASD-related SNPs.

2. Methods

2.1. Data

The ASD data analyzed in this work are drawn from

the Simons Simplex Collection (SSC) (Fischbach and Lord,

2010), supported by the Simons Foundation for Autism

Research Initiative (SFARI). (This research has been conducted

under the guidelines and approval of the Institutional Review

Boards at both Southern Illinois University Edwardsville

and Missouri State University). The term simplex indicates

a family in which one child is affected with an autism

spectrum disorder, and the parents and siblings are not

affected. Because the SSC data are simplex, none of the

samples are genetically related. The SSC dataset spans over

2,759 simplex probands who have been diagnosed with

ASD using the Autism Diagnostic Interview−Revised (ADI-

R) (Lord et al., 1994) and Autism Diagnostic Observation

Schedule (ADOS) (Lord et al., 1989). Each proband also

completed the SSC protocol, which included clinical, medical,

behavioral, and family histories; physical, neurologic, and

dysmorphology examinations (conducted for a subset of the

probands). The 51 phenotypes examined in this work span

ASD specific core-symptom measures, cognitive and adaptive

functioning, behavioral problems, neurological indicators, and

dysmorphic biomarker. The dysmorphic biomarker phenotype,

quantified using the Autism Dysmorphology Measure (Miles

et al., 2008), distinguishes complex autism (dysmorphic and/or

microcephalic) (Miles, 2015) from essential autism (non-

dysmorphic and not microcephalic). Given that the distinction

between complex and essential autism is important in dissecting

the ASD etiologic heterogeneity (Miles, 2015; Spencer et al.,

2018), we restricted the sample analyzed in this work to only

the 560 probands who underwent dysmorphology examinations

(Zhao et al., 2019; Matta et al., 2021). All the 51 phenotype

markers utilized in this work are summarized in Table 1. The

phenotype markers are scored using widely varying scales, and

were normalized using the min-max method prior to graph

construction.

The SSC genotype data are derived from DNA specimens

that were genotyped using the Illumina mv1, mv3, and omni2.5

SNP genotyping chip arrays. Similar to Zhao et al. (2019), we

applied a data-driven approach to extract a subset of the available

SNPs based on the strength of known association with the

disease studied, ASD in this context. We utilize information

from the genome-wide SNP prioritization analysis conducted

in Spencer et al. (2018). Their analysis ranked the entire set

of SNPs available by strength of association as ordered by

increasing values of p-value (the smaller the value, the stronger
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TABLE 1 Description of 51 ASD phenotype features.

Cognitive and adaptive

functions

Language and

communication

Vineland socialization Word delay

Vineland daily living Phrase delay

Vineland overall score Regression

Nonverbal IQ Vineland communication

Overall IQ ADI-R overall language

Facial biomarker

Dysmorphic (Yes/No)

Behavioral problems

Repetitive behavior scale (RBS)

scores

Abberant behavior checklist

scores

RBS self injurious ABC inappropriate speech

RBS stereotyped behavior ABC lethargy

RBS compulsive behavior ABC irritability

RBS sameness behavior ABC stereotype

RBS restricted behavior ABC hyperactivity

RBS ritualistic behavior ABC total score

RBS overall score

Social responsiveness scale (SRS)

parent scores

Social responsiveness scale

teacher scores

SRS-P awareness SRS-T awareness

SRS-P cognition SRS-T cognition

SRS-P communication SRS-T communication

SRS-P mannerisms SRS-T mannerisms

SRS-P motivation SRS-T motivation

SRS-P overall T score SRS-T overall T Score

CBCLa externalizing T score CBCLa internalizing T score

Genetic indicators

BAPQb overall average (mother) BAPQb overall average (father)

ASD-specific symptom scores

Autism diagnostic observation

schedule scores

Autism diagnostic

interview-revised scores

ADOS communication ADI-R nonverbal communication

ADOS communication and social ADI-R socialization

ADOS reciprocal social ADI-R abnormality evidence

ADOS social affect

ADOS restricted and repetitive

behavior

ADI-R restricted and repetitive

behavior

ADOS calibrated severity score

(CSS)

ADOS module

aCBCL, child behavior checklist. bBAPQ, broad autism phenotype questionnaire.

the association). Using this ranking, we selected the top most

significant SNPs based on a p-value threshold. In addition, SNPs

that had the same allele representation across all probands were

filtered out, as these SNPs contain no discriminant information.

This yielded a set of 14,564 SNPs, based on a p-value threshold

of < 0.1, utilized for subsequent analysis.

2.2. Graph construction

Let DP and DSNP denote the phenotype and SNP genotype

data, respectively. Our goal is to construct a phenotype-

phenotype (p-p) graph in which the nodes represent the

phenotypes and the edges quantify a degree of relationship

between adjacent phenotypes. The most explicit way to generate

a p-p graph is to construct the graph directly from a matrix

of phenotype features over the entire proband sample. The

phenotype matrix obtained from DP is of size m × p where

m denotes the number of probands (560) and p, the number

of phenotypes (51). We refer to the resulting p-p graph as a

direct graph, GD, since it is generated directly from proband-

phenotype data profiles. Any missing phenotype data for a

given proband is imputed using the mean value. The distance

between each pair of phenotype vectors in the matrix is

calculated using two functions, Euclidean and cosine. Based on

these distances, k-nearest neighbors (kNN) graphs are created,

with each phenotype node being connected to its k nearest

neighbors. The nearest-neighbor relationship is not necessarily

symmetric, implying directed graphs. The graphs are then

converted to undirected graphs. The resulting graphs have 51

nodes, where each node corresponds to a phenotype, and each

node is connected to at least k neighbors. Separate graphs are

constructed for k = 3 to 9. Thus, in the GD graphs, there exists

an edge between two phenotypes if a subset of the probands

share similar phenotype traits where the degree of similarity

shared is influenced by k. Note that in this study none of the

samples are genetically related, so that this possibility is not

considered in graph construction. Our graph model also does

not account for other types of confounding factors, such as sex,

age, geographical location, or socioeconomic status.

Inspired by the PheWAS approach, we also construct

another p-p graph utilizing the SNP data. We refer to this

graph as the indirect graph, GI , since it is generated from the

outcome of the PheWAS analysis applied to SNP-phenotype

data. Specifically, a multi-trait mixed regression model (LIMIX;

Lippert et al., 2014) is applied to both SNP and phenotype

matrices to emulate the PheWAS model. It combines the

two matrices to yield a measure of the correlation between

phenotypes and SNPs. The GI p-p graph is then obtained using

the shared SNP associations identified by the PheWAS-inspired

analysis. Here the LIMIX regression model would compensate

for genetic relatedness, although none is present in our sample.

Phenotypic confounding factors are unknown and not part of
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the data, and our model does not account for them. To construct

the indirect graph,DSNP is encoded into a high dimensional SNP

matrix, in which the entries identify the nature of the variant

quantifying the proband’s risk allele to the reference allele. The

resulting SNP matrix is of size m × n where n denotes the

number of SNPs (14,564), while the phenotype matrix (same

as utilized for GD graph) is of size m × p. This yields a matrix

of scores quantifying the association between phenotypes and

SNPs. In addition, we extract a matrix of p-values measuring

the probability of phenotype-SNP correlation, where a smaller

p-value indicates a higher probability of correlation. Unlike

in previous work (Matta et al., 2021), the matrix of p-values

is not filtered based on any threshold. In contrast to Matta

et al. (2021), where the filtered matrix was fed directly into the

clustering model, we convert this matrix to a kNN graph. The

kNN graphs are derived from the p-values matrix using two

distance functions, Euclidean and cosine (same as in the GD

graph). The resulting graphs have 51 nodes, where each node

corresponds to a phenotype, and each node is connected to at

least k nodes for k = 3 to 9. In the GI graph, two phenotype

nodes share an edge if they are likely to have shared similar

underlying SNP associations.

2.3. Construction of fused graphs

In this work, we are interested in a novel methodology for

incorporating the genotype information in the construction of

the p-p network. The strategy is to combine the two p-p graphs

(direct and indirect) in a weightedmanner so we can evaluate the

impact. The indirect (GI) and direct (GD) graphs are combined

as follows. First, the graphs are converted to their corresponding

adjacency matrices (AI and AD) , where an entry of 1 in the

matrix indicates an edge, and 0 indicates no edge. A weighted

matrix,W, is then generated using the formula

W = α × AD + (1− α)× AI (1)

where α is a weighting parameter which varies between 0.0 and

1.0. This enables construction of a mixed, weighted graph, in

which AI and AD can be combined in different proportions. W

is equivalent to AI when α = 0, and likewise, to AD when α = 1.

Both adjacency matrices contribute equally toW when α = 0.5.

W is considered as the adjacency matrix for the constructed

weighted, undirected, fused graphs Gα .

2.4. Cluster analysis and evaluation

We perform clustering on the fused graphs to identify

meaningful phenotype-phenotype associations, particularly

those of clinical importance based on shared underlying

genetic etiology. Clustering the graphs should yield subgroups

of phenotypes that are most similarly linked in conjunction

with the SNP information (applied in varying degrees). Three

different graph-based clustering methods are utilized: Louvain

clustering (Blondel et al., 2008), the Leiden algorithm (Traag

et al., 2018), and Node-Based Resilience Clustering (NBR-Clust)

(Matta et al., 2018a) with integrity (Barefoot et al., 1987).

Louvain clustering (Blondel et al., 2008) is a well-known

algorithm based on optimizing modularity. It has low time

complexity and is frequently employed for clustering large

datasets. The Leiden algorithm (Traag et al., 2018) represents

an improvement over Louvain as it converges to a partition

in which all subsets of all communities are locally optimally

assigned. It is faster than Louvain, uncovers better partitions,

and yields communities that are guaranteed to be connected.

The NBR-Clust algorithm (Matta et al., 2018a) uses network

resilience measures to partition a given graph into clusters

by identifying an attack set of nodes S ∈ V whose removal

partitions the network into some number of disconnected

components. In this work, the resilience measure is integrity,

which is approximated using betweenness centrality (Matta,

2017). For all these clustering methods, the number of clusters

is not specified a priori.

Clustering is a multi-optimization problem which implies

that more than one solution could exist. It is imperative to

have an objective means to evaluate the results and determine

the most optimal solution. We apply six varied graph-based

metrics (Yang and Leskovec, 2015) to objectively quantify the

connectivity characteristics of the given graph based on the

edges and nodes. Given that a cluster in an undirected graph

G(V ,E) is a set of nodes S, each metric can be defined as a

function f (S) that characterizes how cluster-like the connectivity

of the nodes in S are. Let nS be the number of nodes in S and

mS, the number of edges in S; mS = |(u, v) ∈ E : u ∈ S, v ∈ S|.

Let cS be the number of edges on the boundary of S, cS =

|(u, v) ∈ E : u ∈ S, v 6∈ S|. Newman-Girvan modularity, given by

f (S) = 1
m

∑
c∈S(mS −

(2mS+cS)
2

4m ), is the difference between the

fraction of edges within a cluster and the expected number of

such edges if distributed according to a null model. Erdos-Renyi

modularity [f (S) = 1
m

∑
c∈S(mS −

m(nS)(nS−1)
n(n−1)

)] is a variation

of Newman-Girvan based on the assumption that the vertices in

a network are randomly connected with a constant probability p.

Expansion is the proportion of edges per node pointing outside

the cluster, given by f (S) =
cS
nS
. Cut-ratio is the fraction of

edges, out of all possible edges, that leave the cluster, given by

f (S) =
cS

nS(n−nS)
. Conductance measures the fraction of total

edge volume pointing outside the cluster, i.e., f (S) =
cS

2mS+cS
.

Average out degree fraction is the average fraction of edges of

the nodes in a cluster that point outside the cluster itself, i.e.,

f (S) = 1
nS

∑
u∈S

|{(u,v)∈E : v 6∈S}|
d(u)

, where d(u) is the degree of

node u.

We utilize an ensemble ranking approach to leverage these

varied measures to determine the optimal results. In this
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ensemble ranking approach (adapted from Nguyen et al., 2018),

the score of each measure is computed for each clustering result.

Based on these scores, the graphs are ranked, where the best

scoring graph is ranked number 1, and graphs with worse scores

are given larger numerical rankings. The overall score for each

graph is obtained by summing the graph’s rank over all six

metrics, where a lower value indicates a more optimal result.

2.5. Model significance and interpretation

After identifying the optimal clustering results based on

varied graph properties, the final step is to evaluate the

significance of the results by analyzing the biological relevance

of each cluster of phenotypes and the associated sets of SNPs.

Our overall goal is to identify the set of discriminant genes for its

corresponding subgroup of phenotypes from the clustered p-p

graphs. To understand the shared properties of their phenotype

members and the relevance of the important genes represented,

each cluster of phenotypes is characterized using the PheWAS

analysis results, similar to Matta et al. (2021). If a cluster

contains more than three phenotypes with the same significant

SNP (based on the p-value), that SNP is considered relevant

to the cluster. The exact number of occurrences of the SNP is

noted as well. For these SNPs, their respective gene information

is obtained and analyzed to see if they are known to have

significant associations with the phenotypes in question or ASD

in general.

To determine the relevance of the gene with ASD, our

preliminary work (Matta et al., 2021) had focused strictly on

an extensive literature review to quantify the strength of the

association, which had some flaws. In this current work, we

employ a more rigorous approach by incorporating the gene

scoring process from the SFARI gene database (Abrahams et al.,

2013) along with the literature review. This is a more stringent

process as the gene scoring system takes into account all available

evidence supporting a gene’s relevance to ASD risk and places

each gene into a category reflecting the overall strength of

that evidence. ASD genes could be classified as syndromic (S),

category 1 (high confidence), category 2 (strong candidate), or

category 3 (suggestive evidence).

3. Results

We are interested in evaluating the effect of the fused graphs

on the clustering results and clinical relevance. The weighting

parameter for the fused graph, α, is varied from 0 to 1 (0:0.1:1).

Each kNN (k = [3:1:9]) graph is constructed using 2 distance

metrics (Euclidean and cosine) and three clustering methods

are applied. From the preliminary evaluation of the clustering

results using the graph based metrics, we observed that NBR-

Clust did not produce any top results, while Louvain and Leiden

produced highly similar outcomes. As Leiden is known to be

an improvement on Louvain, which mitigates the well-known

resolution effect, we chose to focus on the Leiden clustering

results for the remainder evaluation and analysis.

The clustering results obtained by varying α values between

0 and 1 were compared using the adjusted Rand index (ARI),

which is a simple way of determining the similarity of two

clusterings. This allows us to evaluate the effect of varying the

weighting parameter on the clustering results. A high ARI value

indicates that the compared partitions have a high degree of

similarity. The ARI results are visualized using heatmaps in

Figure 2 per distance metric. In the heatmap, the lighter the

color, the higher the degree of similarity between the results. The

commutative property of the ARI function assures a score of 1.0

along the diagonal of both heatmaps, and both are symmetric.

From Figure 2, we observe that the darkest regions are along

the edges of the heatmaps for both distances which implies

that the results are very different for α = 0.0 compared to α =

1.0. However, it appears that the effect of α is less pronounced

with the cosine distance metric as there are relatively more

dark regions in Figure 2A (Euclidean) compared to Figure 2B

(cosine).

To determine the set of optimal clustering results from

the fused (Gα), indirect (GI), and direct (GD) p-p graphs (for

both Euclidean and cosine distances), we applied six graph-

based evaluation metrics using the ensemble ranking approach

(see Section 2.4). Our goal is to compare results obtained

from the fused graphs to those from the direct and indirect

graphs per type of distance measure employed. Therefore, the

clustering results were ranked separately in three categories: α

= 0.0, α = 1.0, and α = [0.1:0.1:0.9]. The kNN graphs with k

varied from 3 to 9, yielded a set of seven graphs for the direct

and indirect graphs, respectively, per each distance measure

while the combinations of k and α values produced 63 fused

graphs per distance measure. The top results per category are

shown in Table 2. For the fused graph, we present the top two

for each distance measure, since we had many more graphs

to rank.

The best possible overall score under our ranking system

is 6. As can be observed from Table 2, the direct and indirect

graphs seem to yield better overall rank scores compared to the

fused graphs. However, we need to keep in mind that they were

ranked separately and had a much smaller pool. The rank score

may not translate directly in comparing one pool to another but

is useful for ranking results within a given pool. The top two

results for the cosine fused graphs are very closely ranked (10

vs. 11). The individual metrics all yielded the same value except

for Newman-Girvan modularity. Both graphs (k = 3 α = 0.2

and α = 0.6) also produced identical clustering results. The

slight difference in the modularity score was a result of minimal

differences in the edges. It is interesting to note that most of

the optimal results (except one) were obtained with k=3. This

aligns with previous evidence presented in favor of the use of a

minimal connectivity parameter k in the construction of kNN

graphs (Matta et al., 2018b).
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FIGURE 2

Heatmap evaluation of similarity between clustering results (k = 3, kNN graphs, α = [0:0.1:1]) per distance metric (Euclidean vs. cosine) using

adjusted Rand index. (A) Results using Euclidean. (B) Results using Cosine.

TABLE 2 Top ranking graphs based on weighted combination of metrics.

Graph

(k/α/metric)

Overall

rank

Erdos-Renyi

modularity

Newman-Girvan

modularity

Average

ODF∗

Conductance Cut ratio Expansion

Fused (Gα): α=[0.1:0.1:0.9]

3/0.3/Euclidean 9 0.476 (2) 0.493 (2) 2.448 (1) 0.326 (2) 0.060 (1) 2.448 (1)

3/0.5/Euclidean 14 0.480 (1) 0.494 (1) 2.474 (3) 0.328 (4) 0.061 (2) 2.474 (3)

3/0.2/Cosine 10 0.560 (1) 0.598 (3) 1.649 (1) 0.276 (3) 0.039 (1) 1.649 (1)

3/0.6/Cosine 11 0.560 (1) 0.592 (4) 1.649 (1) 0.276 (3) 0.039 (1) 1.649 (1)

Indirect (GI ): α = 0

3/0.0/Euclidean 6 0.691 (1) 0.670 (1) 0.465 (1) 0.110 (1) 0.011 (1) 0.465 (1)

3/0.0/Cosine 7 0.694 (1) 0.677 (1) 0.596 (1) 0.133 (2) 0.014 (1) 0.596 (1)

Direct (GD): α = 1

3/1.0/Euclidean 6 0.732 (1) 0.708 (1) 0.470 (1) 0.109 (1) 0.011 (1) 0.470 (1)

4/1.0/Cosine 8 0.610 (2) 0.573 (2) 0.983 (1) 0.165 (1) 0.024 (1) 0.983 (1)

∗ODF, Out degree fraction. Individual ranks are indicated in parenthesis.

We compared the clustering results for the highest ranked

graph per subcategory in Table 3 across all 51 phenotype features

(see Table 1) that span ASD-specific symptoms, cognitive and

adaptive functions, language and communication, behavioral

problems, genetic indicators, and facial biomarker. The similar

clusters across results are matched by color, for ease of

comparison. Interestingly, in each category, there were both

5 and 6 clusters results. The cosine metric yielded 6 cluster

results for both the indirect and fused graphs while the

Euclidean produced a 6 cluster result for the direct graph.

Based on the visual inspection of the clusters, we observe

that for both the indirect and fused graphs, the 6 cluster

results appeared most aligned with the known subgroups of the

phenotype features. It seems that the cosine distance resulted

in more clearly defined clusters. For the remainder of this

paper, for brevity, we conduct the model interpretation analysis

for the cosine fused graph (Gα = 0.2), cosine indirect graph

(GI), and Euclidean direct graph (GD) clustering results. We

also compare the outcomes to our prior work (Matta et al.,

2021).
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TABLE 3 Phenotype clusters identified by color for the top ranking cosine and Euclidean graphs in the indirect, fused, and direct categories.

Indirect (GI) Fused (Gα) Direct (GD)

Features Cosine k = 3 α = 0.0 Euclidean k = 3 α=0.0 Cosine k = 3 α = 0.2 Euclidean k = 3 α = 0.3 Cosine k = 4 α = 1.0 Euclidean k = 3 α = 1.0

6 clusters 5 clusters 6 clusters 5 clusters 5 clusters 6 clusters

ASD-specific symptom scores

ADOS communication C6 C5 C4 C4 C3 C1

ADOS communication and social C6 C5 C4 C4 C3 C4

ADOS reciprocal social C6 C5 C4 C4 C3 C5

ADOS social affect C6 C5 C4 C4 C3 C4

ADOS restricted and repetitive behavior C6 C5 C4 C1 C3 C1

ADOS calibrated severity score (CSS) C6 C5 C4 C4 C3 C5

ADOS module C1 C1 C1 C1 C4 C1

ADI-R nonverbal communication C1 C1 C1 C4 C2 C5

ADI-R socialization C1 C1 C1 C2 C2 C3

ADI-R abnormality evidence C1 C1 C2 C1 C2 C1

ADI-R restricted and repetitive behavior C2 C2 C2 C4 C2 C5

Cognitive and adaptive functions

Vineland socialization C1 C1 C1 C2 C4 C2

Vineland daily living C1 C1 C1 C2 C4 C2

Vineland overall score C1 C1 C1 C2 C4 C2

Nonverbal IQ C1 C2 C1 C2 C4 C2

Overall IQ C1 C1 C1 C2 C4 C2

Language and communication

ADI-Revised overall language C1 C1 C1 C2 C2 C6

Word delay C1 C1 C1 C2 C2 C6

Phrase delay C1 C1 C1 C2 C2 C6

Regression C1 C1 C4 C2 C3 C6

Vineland communication C1 C1 C1 C2 C4 C2

Behavioral problems

ABCa inappropriate speech C2 C2 C5 C1 C1 C1

ABC lethargy C2 C3 C2 C3 C1 C5

ABC irritability C3 C2 C5 C3 C1 C4

ABC stereotype C3 C2 C3 C1 C1 C1

ABC hyperactivity C3 C2 C5 C3 C1 C3
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TABLE 3 (Continued)

Indirect (GI) Fused (Gα) Direct (GD)

Features Cosine k = 3 α = 0.0 Euclidean k = 3 α=0.0 Cosine k = 3 α = 0.2 Euclidean k = 3 α = 0.3 Cosine k = 4 α = 1.0 Euclidean k = 3 α = 1.0

6 clusters 5 clusters 6 clusters 5 clusters 5 clusters 6 clusters

ABC total score C3 C2 C5 C3 C1 C2

CBCLb externalizing T score C3 C2 C5 C3 C2 C2

CBCL internalizing T score C2 C3 C2 C3 C2 C2

RBSc self injurious C3 C2 C5 C1 C1 C1

RBS stereotyped behavior C4 C2 C3 C1 C1 C1

RBS compulsive behavior C4 C2 C3 C1 C1 C1

RBS sameness behavior C4 C2 C3 C1 C1 C5

RBS restricted behavior C4 C2 C3 C1 C1 C1

RBS ritualistic behavior C4 C2 C3 C1 C1 C1

RBS overall score C4 C2 C3 C1 C1 C3

SRSd-P awareness C2 C3 C2 C3 C1 C4

SRS-P cognition C2 C3 C2 C3 C1 C3

SRS-P communication C2 C3 C2 C3 C1 C3

SRS-P mannerisms C2 C3 C3 C3 C1 C3

SRS-P motivation C2 C3 C2 C3 C1 C3

SRS-P overall T score C2 C3 C2 C3 C2 C2

SRS-T awareness C5 C4 C6 C5 C5 C4

SRS-T cognition C5 C4 C6 C5 C5 C4

SRS-T communication C5 C4 C6 C5 C5 C3

SRS-T mannerisms C5 C4 C6 C5 C5 C4

SRS-T motivation C5 C4 C6 C5 C5 C4

SRS-T overall T score C5 C4 C6 C5 C2 C2

Genetic indicators

BAPQe mother C2 C4 C2 C1 C2 C1

BAPQ father C2 C1 C2 C1 C2 C1

Facial biomarker

Dysmorphic (Yes/No) C2 C4 C2 C2 C2 C6

aABC, aberrant behavior checklist. bCBCL, child behavior checklist. cRBS, repetitive behavior scale. dSRS, social responsiveness scale. eBAPQ, broad autism phenotype questionnaire. Colors denote similar clusters aligned across results.
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4. Biological relevance of results

Given that we are interested in evaluating the effect

of clustering the phenotypes using the fused approach

compared to simply direct or indirect approach in identifying

relevant genotype-phenotype associations, the final step involves

evaluating the significance of the results. This involves analyzing

the biological relevance of each cluster of phenotypes and their

associated sets of SNPs/discriminant genes (see Section 2.5). The

summary of the analysis for each of the three graphs is shown in

Tables 4–6. In each of the tables, the list of relevant SNPs along

with the exact number of occurrences and their associated genes

is presented for each cluster of phenotypes. Genes identified by

the SFARI gene database as having potential relevance to ASD

risk are shown in bold.

For the fused graph (Gα = 0.2), shown in Table 4, cluster

C1 consists of all the features associated with cognitive and

adaptive functions, most of the language and communication

features (except regression), ADOS module, ADI-R nonverbal

communication, and ADI-R socialization. Important genes

aligned with this set of phenotypes are RARB, TENM4,

ZDHHC7, LOC105369506, and MGAT4A. RARB is a known

neurodevelopmental delay gene Doan et al. (2019). ZDHHC7

is deemed to be directly related to possible ASD candidate

genes by biological function (Hedges et al., 2012). There is some

evidence for association of LOC105369506 (Ruisch et al., 2019)

to childhood antisocial behavior, while MGAT4A (Sanders et al.,

2017) shows links to schizophrenia. TENM4 is known to play

an important role in central nervous system development and

could be a candidate gene for schizophrenia (Xue et al., 2019).

We observe from Table 3 that GI C1 overlaps strongly with

this cluster, with two additional phenotypes: ADI-R abnormality

evidence and regression. Interestingly, these two clusters also

have the same important genes (Table 5). Given that the fused

graph has an α = 0.2, closer to 0, it is intuitive that the

fused graph clusters are relatively closer to the indirect than the

direct graph. When compared to the clusters from GD (Table 3),

we observe that Gα = 0.2 C1 overlaps across both the C2 and

C6 clusters from GD. From Table 6, C2 and C6 consist of all

the cognitive and adaptive function phenotypes, the language

and communication phenotypes, as well as ABC total score,

CBCL externalizing and internalizing scores, and SRS parent

and teacher overall scores. Out of the five genes associated with

GD C2, three of themwere also identified in theGα = 0.2 C1 gene

list. One of them, OBSCN, is listed among the genes associated

with both Gα = 0.2 clusters C2 and C3. OBSCN is possibly an

ASD risk gene (Krupp et al., 2017). It seems to be connected with

the SRS parent and teacher overall scores phenotypes.

Cluster C2 of Gα = 0.2 seems more closely associated with

phenotypes related to behavioral problems. It consists of ADI-R

abnormality evidence, ADI-R restricted and repetitive behavior,

ABC lethargy, CBCL internalizing score, all the SRS parent

scores except mannerisms, BAPQ father and mother, and

dysmorphic facial biomarker. There are several important genes,

of which OBSCN has already been mentioned. RNF38 has

been identified by the SFARI gene database (Abrahams et al.,

2013) with a score of 3, indicating suggestive evidence of a

link with ASD. WDR33 is also mentioned in connection with

ASD in Stessman et al. (2017) with an exclusive male bias.

Interestingly, it is the only gene not also replicated in any cluster

of either the direct or indirect graphs. The Gα = 0.2 cluster

C2 also overlaps with cluster C2 (GI) and C3 (GD). The GI

cluster C2 does not contain ADI-R abnormality evidence and

also includes ABC inappropriate speech and SRS-Pmannerisms.

All its important genes are a subset of Gα = 0.2 C2 genes

(Table 5). The GD cluster C3 contains the SRS-P scores, except

for awareness and overall T score. In addition, it also consists of

ADI-R socialization, ABC hyperactivity, RBS overall score, and

SRS-T communication. Important additional genes linked with

this cluster include SPATA13, FAM155A and RBPJ. SPATA13

has been identified as possibly associated with ASD in males

(Kong et al., 2012). Interestingly, these genes also seem to

be genetically associated with related disorders such as social

behavior (SPATA13, Bourbia et al., 2019), ADHD (FAM155A,

Yang et al., 2018; RBPJ, Martin et al., 2014), and impulsive

behavior (FAM155A, Vevera et al., 2019).

Cluster C3 of Gα = 0.2 also seems to consist mainly of RBS

behavioral problem phenotypes (except for self injurious), as

well as ABC stereotype behavior and SRS-P mannerisms. It is

associated with the DCC gene which has a SFARI gene score of

2, i.e., a strong candidate for ASD. This cluster is also associated

with OBSCN and TSCHZ2 (a gene differentially expressed in

Phelan-McDermid syndrome, which has a high risk of ASD;

Breen et al., 2020). For comparison, this cluster is similar to the

GI cluster C4, containing the same RBS behavioral scores, but

without the ABC stereotype and SRS-Pmannerisms phenotypes.

The GI cluster C4 has only DCC as an important gene. These

clusters overlap weakly with the GD cluster C1, which contains

all RBS scores, except sameness behavior and overall score. In

addition, GD cluster C1 contains the BAPQ average father and

mother scores, some ADOS scores (communication, restricted

and repetitive behavior), ADOS module, ADI-R abnormality

evidence, ABC inappropriate speech, and ABC stereotype. Like

Gα = 0.2 C3 and GI C4, GD C1 is associated with DCC. Other

important genes are CFAP65, SPATA13, and SH3D19. CFAP65

is a candidate gene for epilepsy (Poirier et al., 2017), which

appears to have some asserted genetic association to autism.

SPATA13, as discussed in relation to C2 of the fused graph, is

a potential relevant ASD gene.

Cluster C4 of Gα = 0.2 appears to be mainly a set of

ADOS diagnosis scores. It is made up of all six ADOS scores,

except ADOS module (found in C1), along with the regression

phenotype. The three genes (LRBA, SEMA3E, and XCL1)

associated with this cluster appear to all have some ASD

risk relevance. According to the SFARI gene scoring system

(Abrahams et al., 2013), LRBA is a category 3 (suggestive
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TABLE 4 Important genes per phenotype cluster for cosine k = 3 α = 0.2 fused graph (Gα = 0.2).

Cluster

number

Phenotypes SNPs (occurrences) Important genes

1 ADOS module, ADI-R scores (nonverbal

communication, socialization, revised overall

language), Vineland scores (socialization, daily living,

overall, communication), nonverbal IQ, overall IQ,

word delay, phrase delay, BAPQ father

rs1864086 (9), rs7174994 (8), rs11665578 (8), rs6765578

(8), rs948396 (8), rs7192876 (8), rs9826422 (7),

rs12715538 (7), rs17042412 (7), rs1563119 (7),

rs9637712 (7), rs1792136 (7), rs11215264 (7), rs7984277

(6), rs10173578 (6), rs700873 (6), rs1718031 (6),

rs1522026 (6), rs855017 (6)

RTTN, RARB, TENM4,

ZDHHC7,

LOC105369506,

MGAT4A

2 ADI-R scores (abnormality evidence, restricted and

repetitive behavior), ABC lethargy, CBCL internalizing

T score, SRS-P scores (awareness, cognition,

mannerisms, motivation, overall T score), BAPQ scores

(mother, father), dysmorphic

rs17141324 (6), rs4653939 (4), rs2087121 (4), rs4653942

(4), rs16930719 (4), rs17328164 (4), rs16085 (4),

rs826021 (4), rs855025 (4), rs700874 (4), rs7034595 (4),

rs7863199 (4), rs2109217 (4), rs35765056 (4),

rs13013415 (3), rs12005201 (3)

OBSCN, CCDC77,

RNF38, WDR33

3 ABC stereotype, RBS scores (stereotyped behavior,

compulsive behavior, sameness behavior, restricted

behavior, ritualistic behavior, overall score), SRS-P

mannerisms

rs9945776 (6), rs6943423 (5), rs9582807 (5), rs6707140

(5), rs9959803 (5), rs4653939 (4), rs2087121 (4),

rs4653942 (4), rs6555976 (4), rs2024672 (4), rs17329797

(4), rs593949 (4), rs2461697 (4), rs6582086 (4),

rs2220158 (4)

DCC, OBSCN, TSHZ2

4 ADOS scores (communication, communication and

social, reciprocal social, social affect, restricted and

repetitive behavior, calibrated severity score), regression

rs16860907 (5), rs1933099 (5), rs3753938 (5),

rs12476865 (5), rs2535370 (5), rs1927636 (5),

rs16973788 (5), rs8084578 (5), rs4851946 (4), rs6534010

(4), rs10006459 (4), rs7688689 (4), rs12505042 (4),

rs1599167 (4), rs2290847 (4)

XCL1, SEMA3E, LRBA

5 ABC scores (inappropriate speech, irritability,

hyperactivity, total score), CBCL exernalizing T score,

RBS self injurious

rs3828139 (5), rs2195086 (4), rs17552548 (4), rs4113420

(4), rs10789439 (3), rs441196 (3), rs4510173 (3),

rs6707140 (3), rs250791 (3), rs11961507 (3), rs17586672

(3), rs10098925 (3), rs13293564 (3), rs12573176 (3),

rs7326004 (3)

ST3GAL3, CCDC149,

FAM155A, KDM4A,

SLC8A1-AS1, DIAPH1,

UNC13B

6 SRS-T scores (awareness, cognition, communication,

mannerisms, motivation, overall)

rs716897 (6), rs6687487 (5), rs10017022 (5), rs4705000

(5), rs9314498 (5), rs7871600 (5), rs12306561 (5),

rs9566309 (5), rs1884606 (5), rs6135739 (5), rs2144885

(5), rs6810871 (4), rs771662 (4), rs655089 (4),

rs9576449 (4)

EPHB2, SGCD, CSMD1,

LINGO2, KSR2, KIF16B

Genes identified by the SFARI gene database as having potential relevance to ASD risk are shown in bold.

evidence) ASD risk gene. XCL1 lies in the region of copy

number variants of high interest identified in children with

ASD (Davis et al., 2009). SEMA3E (Lin et al., 2018) was

found to be upregulated in a family quartet with ASD. From

Table 3, this cluster is also replicated in the GI clustering

results (C6) with the same important genes. However, it

doesn’t seem to overlap with any particular set of clusters

when compared to the GD results. Interestingly, two of

these genes (LRBA, SEMA3E) are not found in any of the

important genes listed for the direct graph across all its clusters

(Table 6).

The smallest cluster in Gα = 0.2 is C5 with 6 phenotypes,

consisting of the ABC aberrant behavior scores (inappropriate

speech, irritability, hyperactivity, and total score), CBCL

externalizing T score, and RBS self injurious. The important

genes associated with this cluster are ST3GAL3, CCDC149,

FAM155A, KDM4A, SLC8A1-AS1, DIAPH1, and UNC13B. The

ST3GAL3 gene is linked to non-syndromic autosomal recessive

intellectual disability (Hu et al., 2011) as well as ADHD (Zhao

et al., 2018). FAM155A, also identified with clusters C1 and C3

of the direct graph, is associated with ADHD and impulsive

behavior disorders (Yang et al., 2018; Vevera et al., 2019).

KDM4A has been shown to increase copy number gains in

copy number variants associated with ASD (Cogill et al., 2018).

DIAPH1 plays a crucial role in human brain development and is

linked to microcephaly (Ercan-Sencicek et al., 2015). It is closely

related to DIAPH3, an ASD candidate gene (Vorstman et al.,

2011). UNC13B is potentially associated with epilepsy (Wang

et al., 2021). This cluster overlaps closely with GI cluster C3,

which does not include ABC inappropriate speech but has ABC
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TABLE 5 Important genes per phenotype cluster for cosine k = 3 α = 0 indirect graph (GI).

Cluster

number

Phenotypes SNPs (occurrences) Important genes

1 ADOS module, ADI-R scores (nonverbal

communication, socialization, abnormality evidence.

revised overall language), Vineland scores

(socialization, daily living, overall, communication),

nonverbal IQ, overall IQ, word delay, phrase delay,

regression

rs1864086 (9), rs7174994 (8), rs11665578 (8), rs6765578

(8) rs948396 (8), rs7192876 (8), rs9826422 (7),

rs12715538 (7), rs17042412 (7), rs1563119 (7),

rs9637712 (7), rs1792136 (7), rs11215264 (7), rs7984277

(6), rs10173578 (6)

RTTN, RARB, TENM4,

ZDHHC7,

LOC105369506,

MGAT4A

2 ADI-R restricted and repetitive behavior, ABC scores

(inappropriate speech, lethargy), CBCL internalizing T

score, SRS-P scores (awareness, cognition,

communication, mannerisms, motivation, overall),

BAPQ (mother and father), dysmorphic

rs17141324 (7), rs4653939 (5), rs2087121 (5), rs4653942

(5), rs16085 (5), rs11650915 (5), rs826021 (5) rs700874

(5), rs7034595 (5), rs7863199 (5), rs2109217 (5),

rs35765056 (5), rs16930719 (4), rs17328164 (4),

rs4890127 (4), rs1960715 (4)

OBSCN, RNF38,

CCDC77

3 ABC scores (irritability, stereotype, hyperactivity,

total), CBCL externalizing T score, RBS self injurious

rs3828139 (4), rs2195086 (4), rs17552548 (4), rs4113420

(4), rs2279867 (4), rs10789439 (3), rs441196 (3),

rs4510173 (3), rs6707140 (3), rs250791 (3), rs11961507

(3), rs17586672 (3), rs10098925 (3), rs13293564 (3)

ST3GAL3, CCDC149,

FAM155A, EMP2,

KDM4A, SLC8A1,

DIAPH1, UNC13B

4 RBS scores (stereotyped behavior, compulsive behavior,

sameness behavior, restricted behavior, ritualistic

behavior, overall)

rs9945776 (6), rs9582807 (5), rs9959803 (5), rs6943423

(4), rs6707140 (4), rs593949 (4), rs2461697 (4),

rs6582086 (4), rs2220158 (4), rs17329797 (3), rs1471655

(3), rs16885002 (3), rs7732186 (3), rs16885032 (3),

rs6555976 (3)

DCC

5 SRS-T scores (awareness, cognition, communication,

mannerisms, motivation, overall)

rs716897 (6), rs6687487 (5), rs10017022 (5), rs4705000

(5), rs9314498 (5), rs7871600 (5), rs12306561 (5),

rs9566309 (5), rs1884606 (5), rs6135739 (5), rs2144885

(5)

EPHB2, SGCD, CSMD1,

LINGO2, KSR2, KIF16B

6 ADOS scores (communication, communication and

social, reciprocal social, social affect, restricted and

repetitive behavior, calibrated severity score)

rs16860907 (5), rs1933099 (5), rs3753938 (5),

rs12476865 (5), rs2535370 (5), rs1927636 (5),

rs16973788 (5), rs8084578 (5), rs4851946 (4), rs6534010

(4), rs10006459 (4), rs7688689 (4), rs12505042 (4),

rs1599167 (4), rs2290847 (4)

XCL1, SEMA3E, LRBA

Genes identified by the SFARI gene database as having potential relevance to ASD risk are shown in bold.

stereotype (not present in Gα = 0.2 C5). All the genes associated

with Gα = 0.2 C5 are a subset of GI C3 genes, which also contain

EMP2.

Cluster C6 of Gα = 0.2 consists of SRS teacher component

and overall scores. It is identical to cluster C5 of GI (Table 5).

It overlaps slightly with cluster C4 of GD (Table 6), which

also includes other phenotypes such as ADOS communication

& social, ADOS social affect, SRS-P awareness, and ABC

irritability. The genes associated with C6 of Gα = 0.2 are

EPHB2, KSR2, CSMD1, SGCD, LINGO2, KIF16B. According

to the SFARI gene scoring system (Abrahams et al., 2013),

EPHB2, KSR2, and CSMD1 belong to category 3 (suggestive

evidence for ASD). CSMD1 is also associated with cognitive

function (Athanasiu et al., 2017). Copy number variants of

LINGO2 have been found in ASD cases (Williams et al.,

2019), and LINGO2 deletions have been reported in individuals

with developmental delay, autistic behavior, and craniofacial

abnormalities (Jansen et al., 2019). Bi-allelic variants in the

KIF16B gene may be linked to autosomal recessive intellectual

disability syndrome (Alsahli et al., 2018). We observe from

the clustering results of GD (Table 3), that its cluster C5 does

not align with any of the clusters from the fused or indirect

graphs. This cluster consists of some ADOS and ADI-R scores,

ABC lethargy, and RBS sameness behavior phenotypes. The

associated genes are ADGRL2 (a variant of which is linked to

severe microcephaly; Vezain et al., 2018), XCL1 and SLC35F4.

The prior work had identified seven (not eight asmentioned)

genes with strong previous evidence of association to ASD,

as well as 14 genes with weaker previous evidence of links

to ASD and other related conditions, based on the literature

review presented.Most of these genes are identified in Tables 4–6

other than CACNG4, KRT26, NHEJ1, and TNIK. Upon further

investigation of the genes that were deemed to have strong

ASD association evidence, we now clarify that genes XCL1,
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TABLE 6 Important genes per phenotype cluster for Euclidean k = 3 α = 1 direct graph (GD).

Cluster

number

Phenotypes SNPs (occurrences) Important genes

1 ADOS scores (communication, restricted and repetitive

behavior, module), ADI-R abnormality evidence, ABC

scores (inappropriate speech, stereotype), RBS scores

(self injurious, stereotyped behavior, compulsive

behavior, restricted behavior, ritualistic behavior),

BAPQ scores (mother, father)

rs16973788 (5), rs9325190 (5), rs6555976 (4), rs6943423

(4), rs17757512 (4), rs9582807 (4), rs12465007 (4),

rs1471655 (4), rs7335101 (4), rs9945776 (4), rs1581586

(3), rs6703099 (3), rs9284874 (3), rs10520104 (3),

rs1864086 (3)

CFAP65, SPATA13,

DCC, SH3D19

2 Vineland scores (socialization, daily living, overall,

communication), nonverbal IQ, overall IQ, ABC total

score, CBCL scores (externalizing T score, internalizing

T score), SRS-P overall T score, SRS-T overall T score

rs4653939 (8), rs2087121 (8), rs4653942 (8), rs12488867

(6), rs1864086 (6), rs948396 (6), rs6707140 (5),

rs855025 (5), rs700874 (5), rs9576452 (5), rs9566309

(5), rs7982105 (5), rs12715538 (5), rs1563119 (5),

rs6765578 (5), rs11215264 (5), rs7174994 (5)

LOC105369506, OBSCN,

GPR149, TENM4, RARB

3 ADI-R socialization, ABC hyperactivity, RBS overall

score, SRS-P scores (cognition, communication,

mannerisms, motivation), SRS-T communication

rs7335101 (4), rs826021 (4), rs4653939 (4), rs2087121

(4), rs4653942 (4), rs17141324 (4), rs716897 (3),

rs11961507 (3), rs7326004 (3), rs2788856 (3),

rs17329797 (3), rs700874 (3), rs795892 (3), rs7575760

(3), rs12005201 (3), rs7034595 (3)

SPATA13, OBSCN,

FAM155A, RBPJ, RNF38

4 ADOS scores (communication and social, social affect),

ABC irritability, SRS-P awareness, SRS-T scores

(awareness, cognition, motivation, motivation)

rs4705000 (4), rs716897 (4), rs519866 (3), rs655089 (3),

rs6687487 (3), rs10017022 (3), rs9314498 (3), rs7871600

(3), rs12306561 (3), rs9566309 (3), rs1884606 (3),

rs6135739 (3), rs2144885 (3)

SGCD, EPHB2, CSMD1,

LINGO2, KSR2, KIF16B

5 ADOS scores (reciprocal social, calibrated severity

score), ADI-R scores (nonverbal communication,

restricted and repetitive behavior), ABC lethargy, RBS

sameness behavior

rs2296698 (3), rs16860907 (3), rs1933099 (3), rs3753938

(3), rs7155706 (3)

ADGRL2, XCL1,

SLC35F4

6 ADI-R overall language, word delay, phrase delay,

regression, dysmorphic

rs4305581 (3), rs4871046 (3) None

Genes identified by the SFARI gene database as having potential relevance to ASD risk are shown in bold.

SEMA3E, and SPATA13 are possibly linked to ASD (not strongly

associated as previously suggested). The previously stated strong

association genes (DIAPH1 and RARB) as well as ST3GAL3,

SGCD, and TENM4 have no known verifiable link to ASD but

may be associated with related conditions. EPHB2 has suggestive

evidence (not strong) for ASD, according to SFARI gene scoring

system (Abrahams et al., 2013).

5. Conclusion

This paper presented a holistic PheWAS-inspired method

to identify meaningful associations between ASD phenotypes

and genotypes. We generated p-p graphs utilizing genotype

data by fusing direct and indirect graphs based on a weighting

parameter α. We compared the outcome to the direct and

indirect approaches. The rigorous biological analysis approach

taken in this work highlights 28 genes associated with the fused

graph clustering results, of which six genes (DCC, RNF38,

LRBA, EPHB2, CSMD1, and KSR2) are also identified in the

SFARI gene scoring system. The indirect graph also contains

these six genes, though the ordering of the phenotype clusters

and total genes differ slightly. The direct graph clustering results

have five of these genes reflected in the outcomes. Due to

the limited ASD simplex sample analyzed, the generalizability

of current findings is limited, and we do not present a

classification system that fully explains the heterogeneity of

ASD. However, our study contains several useful and novel

results. First, while ASD is typically diagnosed based on

behavioral assessments, this research provides evidence of the

utility of including genotype markers in diagnosis. Second, we

provide a methodology for identifying meaningful phenotype-

phenotype associations, particularly those of clinical importance

based on shared underlying genetic etiology. Third, the utility

of the methodology of combining genotype and phenotype

information is proved empirically by fact that our direct

implementation did not discover all the genes that were

discovered by incorporating genetic information, including

one that the SFARI gene database indicates has suggestive

evidence of association with ASD. Fourth, we are able to
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provide evidence of association that correlates with evidence

in the SFARI gene database, strengthening current knowledge.

Last, the overall closeness between our results and previously

known categorizations helps to both validate existing knowledge

and to suggest a path to discovering new genotype-phenotype

associations. Future research should include replication with

different and larger sample sizes.
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