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Everyday experiences are dynamic, driving fluctuations across simultaneous

cognitive processes. A key challenge in the study of naturalistic cognition is

to disentangle the complexity of these dynamic processes, without altering

the natural experience itself. Retrospective behavioral sampling (RBS) is

a novel approach to model the cognitive fluctuations corresponding to

the time-course of naturalistic stimulation, across a variety of cognitive

dimensions. We tested the effectiveness and reliability of RBS in a web-

based experiment, in which 53 participants viewed short movies and listened

to a story, followed by retrospective reporting. Participants recalled their

experience of 55 discrete events from the stimuli, rating their quality of

memory, magnitude of surprise, intensity of negative and positive emotions,

perceived importance, reflectivity state, and mental time travel. In addition,

a subset of the original cohort re-rated their memory of events in a follow-

up questionnaire. Results show highly replicable fluctuation patterns across

distinct cognitive dimensions, thereby revealing a stimulus-driven experience

that is substantially shared among individuals. Remarkably, memory ratings

more than a week after stimulation resulted in an almost identical time-

course of memorability as measured immediately following stimulation. In

addition, idiosyncratic response patterns were preserved across different

stimuli, indicating that RBS characterizes individual differences that are

stimulus invariant. The current findings highlight the potential of RBS as a

powerful tool for measuring dynamic processes of naturalistic cognition. We

discuss the promising approach of matching RBS fluctuations with dynamic

processes measured via other testing modalities, such as neuroimaging, to

study the neural manifestations of naturalistic cognitive processing.
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Introduction

Can we describe the sequence of cognitive processes
engaged while watching a movie? Everyday experiences are
dynamic, complex and multisensory in nature, supported by
the interaction and regulation of simultaneously activated
processing mechanisms (Hasson et al., 2004; Sonkusare et al.,
2019). A fundamental challenge in the study of real-life
cognition lies in tracking the cognitive processes that govern
one’s continuously-changing experience of unfolding events.
In recent years, a multitude of neuroimaging research groups
has ventured beyond reductionist paradigms to mimic real-
life experiences, such as watching a movie or listening to a
story, while recording brain activation (e.g., Spiers and Maguire,
2007; Simony et al., 2016; Chen et al., 2017; Zadbood et al.,
2017; Baldassano et al., 2018; Eickhoff et al., 2020; Brandman
et al., 2021; Finn and Bandettini, 2021). Characterizing the
fluctuations in cognitive states is key to understanding the
fluctuations in neural and physiological states recorded during
naturalistic stimulation.

There are three crucial problems in characterizing the
cognitive dynamics driven by naturalistic stimuli as movies
and stories. Unlike reductionist manipulations that isolate
a specific target mechanism by onset [e.g., face perception:
Farah et al. (1998); tone prediction: Bendixen et al. (2009)],
the multidimensional nature of naturalistic stimulation drives
many simultaneous mechanisms of varying time-scales (Hasson
et al., 2008). These can include a wide range of perceptual,
semantic and emotional processes, social inference and memory
encoding (e.g., McGurk and MacDonald, 1976; Loftus et al.,
1978; Yeshurun et al., 2017). Furthermore, as information
is continuously changing throughout unfolding events, we
cannot predict how each of these simultaneous mechanisms
will fluctuate throughout the movie. Thus, the first problem is
disentangling the multitude of simultaneous processes, and the
second problem is tracking their fluctuations across time. In
addition, as we are interested in the natural, unaltered, human
experience, our third problem is the act of measurement itself,
which may affect in real-time the exact process we are trying to
measure. This is widely known as the measurement problem,
which, analogous to its origin in quantum physics, stipulates that
“the mental content is invariably altered when the attention is
concentrated on any special feature of it” (Bohr, 1958; Malach,
2007). How then, can we disentangle simultaneous cognitive
processes activated during movie viewing, and measure their
fluctuations along the time-course of the movie, without
interfering with the natural ongoing experience?

To tackle these challenges posed by naturalistic stimulation,
we developed a new approach termed retrospective behavioral
sampling (RBS), which models the cognitive dynamics of
human experience across a variety of cognitive dimensions. The
central premise of this approach is based on previous work
using autobiographical interview techniques (Berntsen, 2002;

Levine et al., 2002), demonstrating that we can gain insight into
one’s subjective past experience by reactivating their memory
of it in retrospect. Such reactivation has been shown to
evoke neural activity containing representations of the original
experience (Gelbard-Sagiv et al., 2008; Chen et al., 2017;
Zadbood et al., 2017; Norman et al., 2019). Following this logic,
RBS is designed to reconstruct the cognitive state throughout
the time-course of a dynamic stimulus, by deconstructing
the experience into discrete events for reactivation. Following
uninterrupted stimulation, the memory of each event is
reactivated, and the (retrospective) subjective experience at the
moment of the event (i.e., how one remembers the experience) is
systematically reported across an array of cognitive dimensions.

We examined the effectiveness and reliability of RBS as a
method for modeling cognitive dynamics driven by naturalistic
stimuli such as movies and stories. To clarify, the dynamics
captured by RBS describe changes in cognitive states across
discrete events throughout the movie, not continuous moment-
to-moment fluctuations within an event. The results presented
below show that RBS patterns are informative and highly
replicable across groups and testing sessions, and that individual
differences are largely stable across stimuli. We assess the
strengths and the limitations of RBS, and discuss its potential for
matching cognitive processes with neural dynamics, individual
clinical markers and other testing modalities.

Materials and methods

Retrospective behavioral sampling began with
uninterrupted stimulation using movies or stories, followed
by a behavioral questionnaire collecting a systematic report
of the cognitive experience corresponding to each event
in the movie. The details of the approach are presented in
Figure 1. To reactivate one’s experience of a specific event, it
was described by a textual reminder, with time taken to silently
recall all details of the event and the subjective experience it
had evoked. Thereafter, the experience was rated on a series
of cognitive scales measuring the quality of memory for the
event, how surprising it was at the time, the intensity of positive
and negative emotions triggered by the event, and perceived
importance of the event to the main storyline. In addition,
introspective rating questions were aimed at modeling one’s
state-of-mind around the time of the event. These included the
extent to which one felt immersed in the movie or reflective in
thought, at the time leading into the event and later as triggered
by the event. Finally, mental time-travel referred to the extent
to which such reflections concerned the past or the future.

Participants

Fifty-three participants were included in the study, in two
groups: Group I included 26 participants (13 female, ages
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FIGURE 1

Experimental approach. (A) In the first part of the task, participants viewed four short movies (in random order) and listened to a story,
sequentially with no interruptions. The duration of each stimulus is detailed as min:s. The stimuli were streamed online to participants’ personal
devices. (B) Prior the experiment, textual descriptions were generated to match a total of 55 stimulus events, with four events in Movie #1 (M1),
seven in Movie #2 (M2), 11 for each of Movies #3 (M3) and #4 (M4), and 22 events for the story (S). Event onset and offset (as min:s) match the
beginning and end of the happenings described in the textual event reminder. (C) In the second part of the task, participants filled out the
retrospective behavioral sampling (RBS) questionnaire, in which they viewed the textual reminder for each event (in random order within each
stimulus block) and rated their experience of it on an array of cognitive dimensions. Time-courses represent hypothetical rating data. The
yellow line illustrates where the example Event #31 falls within each of the rating time-courses.

33.08 ± 10.17) based in the USA. Group II included 27
participants (15 female, ages 34.48 ± 8.33) based in the UK.
All participants were native English speakers with fluent writing
abilities, and had intact hearing and eyesight (or corrected
eyesight). Pre-screening further included a high approval record
of at least 95% on previous web-surveys submitted on the
survey platform, and technological compatibility criteria (see
Section “Experimental apparatus”). Two additional participants,
not included above, had completed the experiment, but were
excluded from analysis due to suspected cheating. This was

determined by zero variance across measures on one or more
events, reflecting repetition of the same rating response (usually
“1”) throughout a long consecutive series of questions.

Stimuli

The stimuli for this study included four short documentary
movies and an auditory story. Two of the movies, “Human
Body” (1:03 min; BBC) and “Pockets” (3:08 min; Pilgrim
Films), were adapted from the stimulus set of the Human
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Connectome Project (HCP) (Cutting et al., 2012; Van Essen
et al., 2013). The former was a narrated clip depicting people
in extraordinary circumstances (e.g., a blind rock climber),
and the latter was a street-interview clip in which passers-
by presented and explained the content of their pockets. Two
additional movies were narrated nature documentaries adapted
from Planet Earth II (BBC), depicting Great Bowerbirds nesting
and mating strategies (4:38 min), and Hyenas coexisting with
humans in the city of Hara in Ethiopia (5:07 min). Finally,
the auditory piece was a real-life story, “Pie Man” (7:18 min;
Jim O’Grady), recorded at a live storytelling performance (“The
Moth” storytelling event, New York City), and adapted from
the stimulus set used in earlier work (Simony et al., 2016).
The choice of stimuli was aimed at maximizing variability on
all tested cognitive dimensions, for example, by including tight
and lose storylines, positive, negative and neutral emotional
content, positively and negatively surprising events, etc. The
objective was to minimize the chance of confounding multiple
measures such that they are indissociable [e.g., confounded
emotional intensity and surprise in a suspenseful Hitchcock
video; Brandman et al. (2021)].

Experimental procedure

Experimental procedures were approved by the institutional
review board (IRB; approval reference # 533-2) of the Weizmann
Institute of Science.

Individuals who matched the pre-screening criteria on the
web-survey platform were directed to an introductory page
with a description of the task and technical compatibility
requirements. Those who chose to continue and confirmed
compatibility proceeded to the experiment. Participants then
went through two additional screening steps to make sure that
they could view the videos in their intended dimensions and that
they could hear and see the stimuli well with their current setting
(see Section “Experimental apparatus”).

After passing all screening stages, participants were
presented with the four videos in random order, and the
auditory story presented last. Only after all stimuli were viewed
participants were directed to the RBS questionnaire, in which
they responded to each stimulus in turn, by order of initial
stimulation. For each stimulus, participants first typed an open-
ended free recall of the entire viewing experience, including
all they could remember from the movie/story and their own
reactions when watching. The free recall was followed by a series
of rating questions corresponding to the same movie/story, in
which each time, participants were reminded of a single event
in the movie/story and rated how well they remembered it,
understood it, how much it surprised them, the intensity of
any positive and negative emotions it triggered, how important
the event was to the main storyline of the movie/story, how
much they were reflecting in thought versus immersed in

stimulation at the beginning and at the end of the event,
and how much the event prompted them to think about the
past or the future. Altogether, participants completed five free-
recall sessions, corresponding to the five stimuli, and 495 rating
questions, corresponding to nine measures X 55 sampled events.

Upon completing the RBS questionnaire, participants were
asked to report their age and gender, and were asked whether
they had been exposed to any of the five stimuli before
participating in this experiment.

Experimental apparatus

The experiment was conducted in an online web-survey
written in HTML/CSS and JavaScript, and carried out on survey
platforms Amazon Mechanical Turk (Group I) and Prolific.com
(Group II). Technological compatibility screening included a
computer operated with Windows, Mac, Linux or UNIX, Wifi
connection sufficient for downloading ∼200 MB video content,
working sound device, and a screen large enough to view
the videos at fixed presentation size. Videos were presented
at 200 mm × 112.5 mm, and participants were instructed
to maintain a distance of about 30 cm from the screen.
Screen size was validated in an interactive procedure, in which
participants increased their browser window size until a button
appeared allowing them to proceed with the experiment. Video
presentation quality was validated with a practice video sample
followed by catch questions to confirm participants both saw
and heard the sample well. Prior test stimulation, participants
were instructed to view every video and listen to the auditory
story in full, without pausing, rewinding or skipping ahead.
Pauses were recorded and viewing time was monitored to assure
full and continuous viewing of each stimulus.

The retrospective behavioral sampling
questionnaire

We developed the RBS questionnaire to track the temporal
fluctuations in cognitive states along the stimuli timeline. To
achieve this, we densely sampled events along the stimulus
timeline at intervals of around 15–30 s. The main consideration
for selection of events within these interval timeframes was that
they could be coherently described, i.e., that something distinct
was happening that could be used as a reminder to recall the
event. Throughout the four movie clips, 33 events were sampled,
and 22 more events were sampled throughout the auditory story,
resulting in a total of 55 events.

The questionnaire was blocked by stimulus, such that after
viewing all stimuli consecutively, participants completed the
entire RBS questionnaire by order of stimulus viewing. Each
stimulus block began with a typed free recall of the entire movie
or story, including the subjective experience of the participant
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while viewing. The main objective of the free recall was to
verify that web-based participation had included actual viewing
and attending to the stimulus being played. After free recall,
participants received instructions for event rating, in which they
were asked to refer specifically to each event, meaning no more
than a few seconds before or after the described moment in
the movie/story. General instructions for the event rating phase
were given as follows: “In the next pages, you will be prompted
on particular events in the movie/story. Each time, you will
receive a description of an event. For example: narrator: "Lions
can see well in the moonlight. This one is on the lookout for
prey". (1) You will be asked to recall the precise moment in the
movie/story–no more than a few seconds before and after this
event (not the entire scene)–and rate the quality of your memory
of it. (2) You will be asked to answer a series of questions about
your experience in that moment of the movie/story. Read the
instructions of each question carefully, and use the full range
of the scale between 1 and 7 to provide a response that most
accurately describes your experience, as you remember it, at
the time of watching/hearing the particular event in question.
The answers should describe your personal experience while
watching/listening, as accurately as you can remember.”

Following these general instructions for event rating,
participants began the event-rating phase of the block. Each
time participants would be probed on a single event from the
movie/story and rate it on all tested measures in a sequence
of multiple-choice questions. All sampled events for the
movie/story were rated. Events were probed in random order.

Each event began with a textual reminder. For example:
Mustached man eating little sweets: "Yes it’s salty, and... it’s
licorice" (all event reminders are listed in Supplementary
Table 1). This screen appeared for 30 s, in which participants
were instructed to silently recall the event in their mind,
including everything they could remember about what
happened and their own subjective viewing experience. The
exact instructions were: “Please take a moment to recall this
exact moment of the movie, what happened, what you saw,
what you heard, what were your own thoughts, emotions
and/or physical sensations at that moment, etc.” The objective
of the silent recall was to bring the earlier experience of
viewing the event into mind. When the time was up, the screen
automatically changed to the first rating question.

Each rating question appeared in single page, with the event
reminder kept at the top of the page during the entire rating
sequence. No time limit was given for response. Upon response
(key press between 1 and 7), participants were automatically
forwarded to the next question.

Rating questions
Memory

Before rating any specific type of experience, participants
were asked to rate their quality and detail of memory for the
recalled event. The exact phrasing was: “How would you rate

your quality of memory for this event as compared to other
events? Consider the full range of the scale and provide an
accurate response between 1—no memory at all—to 7—best and
most detailed remembered event in this video.”

Comprehension sanity check

“How would you rate your comprehension of this event?
Consider the full range of the scale and provide an accurate
response between 1—did not understand what was happening—
to 7—understood perfectly what was happening.”

Surprise

“How surprising was the event? Consider the full range of
the scale and provide an accurate response between 1—did not
surprise me at all—to 7—no other event in this video surprised
me this much.”

Negative emotion

“How much negative emotion did this event cause you?
Consider the full range of the scale and provide an accurate
response between 1—no detectable negative emotion—to 7—
more intensely negative than any other in this video.”

Positive emotion

“How much positive emotion did this event cause you?
Consider the full range of the scale and provide an accurate
response between 1—no detectable positive emotion—to 7—
more intensely positive than any other in this video.”

Importance

“How important was this event for understanding the main
storyline of this video? Consider the full range of the scale and
provide an accurate response between 1—insignificant—to 7—
more important than any other event in this video.”

Initial reflectivity

“When this event came up, at what state of mind did it
"catch" you? How much were you reflecting on things either
related or unrelated to the movie immediately before this event
happened? (such as recounting previous events or personal
memories, predicting what would happen next, analyzing the
plot or characters, or any other type of thought). Consider the
full range of the scale and provide an accurate response between
1—completely immersed in video, no other thought—to 7—
most reflective moment in this video.”

Triggered reflectivity

“How did this event affect your state of mind? How much
did this event make you reflect on things either related or
unrelated to the movie immediately after it happened? (such
as recounting previous events or personal memories, predicting
what would happen next, analyzing the plot or characters, or any
other type of thought). Consider the full range of the scale and
provide an accurate response between 1—completely immersed
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in video, no other thought—to 7—most reflective moment in
this video.”

Mental time travel

“What did this event make you think of - did it send your
thoughts into the past or into the future? In other words, how
much did it remind you of past events or make you predict what
would happen next? Consider the full range of the scale and
provide an accurate response between 1—vivid recollection of
past events—to 7—vivid prediction of future events.”

Follow-up testing

A subset of 23 participants from Group I re-rated their
memory of all events between 1 and 2 weeks following original
testing. During follow-up testing, participants did not view
the stimuli again, and were directly taken to a stripped-down
version of the RBS questionnaire. In each block, they completed
the typed free recall of the entire stimulus, and the silent
recall and memory rating for every event, as in the original
questionnaire, but were not asked any further questions.

Data processing

Trial exclusion
In the case that a participant had reported previous exposure

to a stimulus, i.e., that the experiment had not been their first
viewing of a certain movie/story, only the events corresponding
to that stimulus were excluded from that participant’s data.
Previous exposure was reported for the Bowerbird video in
three participants and for the Hyena video in 6 participants.
In addition, in the case that a participant presented poor
understanding of a certain stimulus, all events corresponding to
that stimulus were excluded from their data. Particularly, one
participant rated their comprehension between 1 and 3 (out of
7) for 16 out of the 22 events in the auditory story, whereas the
same participant’s comprehension ratings for the movie events
were high. We therefore excluded the story events from this
participant’s results. Notably, unremembered events (memory
rating of 1) were reported at an average of less than one event
per subject, and were not excluded from the analysis.

Sanity checks
Following trial exclusion as described above, comprehension

ratings were examined as a sanity check, to ensure overall
coherency of sampled events and their textual reminders. Means
across subjects of event comprehension suggest that all events
and probes were sufficiently coherent, with comprehension of
5.74 (out of 7) on average across all events, and the lowest mean
comprehension of 4.83 on Event #9.

Scoring
To prepare rating data for statistical testing, z-scoring

was performed along the entire dataset of each participant
separately, by subtracting the mean and dividing by
standard deviation.

Individual typicality
The typicality index for each participant was defined by the

following equation, as the Euclidean distance (d) between the
feature vector of each participant (q) and that of the group (p),
given by the square root of the sum of squared deltas for each
element i of q and p between 1 and n. Euclidean distance was
scaled by the square root of vector length (n).

d
(
p, q

)
=

√∑n
i = 1 (qi − pi)

2

√
n

(1)

Results

We analyzed participants’ retrospective responses to 55
events throughout the movies and story, which were rated
on scales of Memory, Surprise, Negative Emotion, Positive
Emotion, Importance, Initial Reflectivity, Triggered Reflectivity,
and Mental Time Travel.

How effective is retrospective
behavioral sampling for dynamic
cognitive tracking?

We set out to assess the efficacy of RBS as a reliable and
informative method for cognitive tracking of dynamic natural
experience. To this end, we tested the replicability of the
sampled cognitive dynamics across independent groups and
testing sessions, as well as their stability by group size, and
informativeness across time.

First, we examined whether RBS is generally informative
of differences between events and between measures. Indeed,
we found significant differences between sampled events, which
further varied as a function of cognitive measure. This was tested
in repeated-measures ANOVA of ratings, with event (1 through
55) and cognitive measure (memory, surprise, negative emotion,
positive emotion, importance, initial reflectivity, triggered
reflectivity, mental time travel) as within-subject factors, which
revealed main effects of event [F(54,2430) = 19.23, P < 0.001], and
measure [F(7,315) = 105.99, P < 0.001], as well as an interaction
between them [F(378,1.7e4) = 11.68, P < 0.001]. These effects
indicate that ratings significantly differed across the 55 events,
in a pattern that varied by the type of cognitive measure.

Next, we asked whether these cognitive dynamics, given
by the time-courses of ratings across events, can be replicated
across the two independent groups of participants (N1 = 26,
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N2 = 27). Correlation analysis revealed robust replicability of
cognitive dynamics across groups in all tested measures (FDR
corrected P < 0.001). Specifically, mean ratings were correlated
across the 55 events between the two groups at R = 0.9 for
Importance, Positive Emotion, Negative Emotion, and Surprise,
R = 0.8 for Memory, R = 0.7 for Triggered Reflectivity and
Mental Time Travel, and R = 0.5 for Initial Reflectivity. Detailed
correlation values are presented in Figure 2A.

To further examine the stability of these results as a function
of group size, we calculated the correlations of randomly
assigned groups sampled 100 times for each group size, ranging
from 1 to 23 participants per group (of the 46 participants
with full trial data). This bootstrap analysis revealed high
stability, with mean correlations reaching R > 0.4 with as few as
three participants for Surprise, Memory, Importance, Negative

Emotion and Positive Emotion, and with four participants for
Mental Time Travel, relative to moderate stability of Initial
and Triggered reflectivity, which reached R > 0.4 with 17 and
10 participants, respectively. Detailed correlation values are
presented in Figure 2B.

Finally, to assess test-retest reliability of RBS, we examined
the replicability of memory ratings in a subset of participants
(N = 23) who had rated their memory of all events a second time,
between 1 and 2 weeks after stimulation. We found strikingly
high replicability across the two rating sessions, with mean
ratings of Memory correlated across the 55 events between the
two testing sessions at R = 0.9 (P < 0.001) (Figure 3). We note
that, while this confirms test-retest reliability, it does not rule
out potential effects of initial reporting on memory ratings in
the follow-up session.

FIGURE 2

Replicability and stability of cognitive dynamics. (A) Comparison of mean ratings across subjects between Group I–Mturk subjects (green;
N = 26), and Group II–Prolific subjects (blue; N = 27). Dynamics were significantly correlated between groups in all tested cognitive measures
(FDR corrected P < 0.001). Ratings are presented as mean and SEM across subjects. (B) Stability of group dynamics as a function of group size in
a 100-iterations bootstrapping procedure. Each iteration randomly assigned 23 participants to each of two independent groups and tested the
correlation across group means for each group size between 1 and 23. Bootstrapping results are presented as mean and SEM across sampling
iterations.
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FIGURE 3

Test-retest reliability of memory ratings. Mean memory ratings
across subjects who participated in the follow-up test (N = 23),
were compared between the first rating session immediately
after stimulation (blue) and second rating session ∼10 days later
(green). Dynamics were significantly correlated across rating
sessions (P < 0.001). Ratings are presented as mean and SEM
across subjects.

How are cognitive measures related to
one another?

To examine the relationship among the different cognitive
measures, we constructed their pair-wise correlation matrix for
each participant, by correlating across the 55 events between
each pair of cognitive measures. The group means of within-
subject correlations are presented in Figure 4A. In addition,
we calculated the correlations between each pair of measures
across the two independent groups of participants, such that
each measure in one group was correlated with the second
measure in the second group. The symmetrized matrix of
correlations between groups is presented in Figure 4B. In
both correlation matrices, the four largest collinearities among
cognitive measures were observed between Initial Reflectivity
and Triggered Reflectivity, Positive and Negative Emotion
(inverse), Memory and Importance, and Memory and Surprise
(FDR corrected P < 0.001).

These collinearities raise the question of redundancy, i.e.,
whether any one measure could be fully explained by its shared
variance with other measures. To test this, we computed the
partial correlations across measures and groups. This was done
by correlating each single measure in Group I with the same
measure in Group II, while controlling for correlations between
Group I and all other measures in Group II. Partial correlations
were calculated in both directions, i.e., between Group I and
II while controlling for all other measures in Group II and
vice versa, then averaged across the two results. Mean partial
correlations: Importance R = 0.83 (FDR corrected P < 0.001),
Surprise R = 0.79 (cor. P < 0.001), Memory R = 0.73 (cor.

FIGURE 4

Collinearities among cognitive measures. Correlations were
calculated between each pair of cognitive measures across all
55 events. (A) Presents the mean across subjects of correlations
calculated for each individual participant. Significance for each
pair of measures was assessed in a t-test of the
Fisher-transformed correlation coefficients, across subjects,
against zero. (B) Presents the symmetrized matrix of correlations
between the two groups. Significance for each pair was tested
on its mean correlation coefficient. *FDR corrected P < 0.05.

P < 0.001), Positive Emotion R = 0.66 (cor. P < 0.001), Negative
Emotion R = 0.64 (cor. P < 0.001), Mental Time Travel R = 0.47
(cor. P = 0.002), Initial Reflectivity R = 0.19 (cor. P = 0.596)
and Triggered Reflectivity R = 0.17 (cor. P = 0.674). Thus, only
collinearities among measures of Reflectivity (both initial and
triggered) explained the full variance driving replicability of
these two measures across groups.

How effective is retrospective
behavioral sampling for studying
individual differences?

To test the potential use of RBS for the study of individual
differences, we calculated participants’ (a)typicality index,
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defined as the scaled Euclidean distance between his or her
rating pattern and that of the group mean (Figure 5A; Ramot
et al., 2020). Thus, the typicality index provides an assessment
of how different an individual is in his or her unique pattern of
response relative to the group. For example, a rating time-course
similar to the group mean would be indexed as typical—given by
a low typicality index, whereas a rating pattern more different
from the group mean would be indexed as less typical—given
by a high typicality index (Figure 5B). We note that the results
reported below did not change when, instead of using the full
group mean, typicality scores were calculated against the group
mean excluding the target subject.

To test whether individual typicality captured by RBS
dynamics is a reliable marker of individual differences, we asked
whether it is stimulus-invariant, i.e., whether it would be stable
across different types of narrative stimuli–even when they differ
in content and modality. To test this, we calculated the typicality
index for movies (33 events) and, separately, the typicality index
for the auditory story (22 events), for each participant with
complete trial data (N = 46). The distribution of typicality
indices is illustrated in Figure 5C in reduced dimensionality.
We then measured the correlation across participants’ typicality
indices between the two types of stimuli, revealing a robust
correlation of R = 0.78 (P < 0.001), which thereby explains
61% of the variance across individuals (R2 = 0.61). As visible
in Figure 5D, all participants showed stable typicality across
stimuli.

While the above typicality analysis harnessed the full
variability of the temporal response patterns across individuals,
we additionally calculated the specific typicality indices
corresponding to each cognitive measure separately (see
Supplementary Figure 1). Correlations across stimuli varied
by measure: Mental Time Travel R = 0.77 (FDR corrected
P < 0.001), Memory R = 0.75 (cor. P < 0.001), Negative Emotion
R = 0.72 (cor. P < 0.001), Triggered Reflectivity R = 0.62 (cor.
P < 0.001), Initial Reflectivity R = 0.62 (cor. P < 0.001), Positive
Emotion R = 0.49 (corrected P < 0.001), Importance R = 0.18
(cor. P = 0.255), Surprise R = 0.10 (corrected P = 0.498).

Discussion

Retrospective behavioral sampling was developed as a novel
approach to reconstruct the fluctuations in cognitive states
driven by naturalistic stimuli such as movies and stories.
With RBS, we aimed to disentangle simultaneous cognitive
processes, and model their fluctuations along the time-course
of stimulation, without interfering with the direct natural
experience. Results clearly show that RBS is both effective
and reliable in characterizing these cognitive fluctuations. RBS
captured changes in the cognitive state across events, which
differed as a function of cognitive measure. These cognitive
dynamics were highly replicable across independent groups

of participants, indicating a substantial and reliable stimulus-
driven experience. RBS was highly effective in tracking these
shared dynamics, exhibiting striking replicability even with
small sample sizes, as well as across separate testing sessions.
Furthermore, RBS was informative of individual differences
in subjective experience, showing consistency of individual
typicality across different narratives and stimulus modalities.

Disentangling simultaneous cognitive
processes

Cognitive dynamics, measured by RBS rating time-
courses, varied across the eight tested cognitive measures,
consistently beyond individual variability. Furthermore, the
specific dynamics corresponding to each cognitive process,
separately, exhibited robust reliability. Together, these results
suggest that RBS can effectively dissociate the temporal
dynamics of several cognitive processes within a single
questionnaire. Note, however, that the ability to dissociate these
processes does not rule out the existence of collinearities among
them, as well as non-linear interactions. In the current data,
we see the largest collinearities among memory, surprise and
importance—consistent with concepts of predictive processing,
i.e., that deviance from expectation strengthens encoding
(Rescorla and Wagner, 1972; Schultz, 1998), as well as between
positive and negative emotion, and between initial and triggered
reflectivity. Nevertheless, after controlling for all collinearities,
the resultant unique component of each measure that is
replicable across groups, remained high for all measures other
than reflectivity. This suggests that the two reflectivity measures
could be collapsed into a single question in future, with no
expected loss of information.

Measuring stimulus-driven cognitive
dynamics

As we have seen, rating time-courses exhibited robust
replicability across independent groups of participants,
suggesting that stimulus-driven experience encompasses
typical patterns of cognitive dynamics that are shared across
individuals. This can be viewed as analogous to the shared
component of response found in stimulus-driven neural
fluctuations, when correlating neuroimaging responses across
individuals using dynamic inter-subject correlation techniques
(Hasson et al., 2004; Simony et al., 2016). Such shared neural
dynamics have been previously shown to reflect high-level
cognitive representations that are shared across individuals
[e.g., narrative interpretation: Nguyen et al. (2019); social
inference: Ramot et al. (2020)]. In the current study, the
shared element of cognitive experience was found to be
effectively and reliably measures by RBS along the stimuli

Frontiers in Human Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2022.956708
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-956708 November 8, 2022 Time: 10:53 # 10

Brandman et al. 10.3389/fnhum.2022.956708

FIGURE 5

Individual typicality of cognitive dynamics. (A) Individual typicality was measured by the Euclidean distance (d) between the feature vector of
each participant (q) and that of the group (p), given by the square root of the sum of squared deltas for each element i of q and p between 1 and
n. Euclidean distance was scaled by the square root of vector length. Individual typicality was separately measured across the 33 movie events
and across the 22 story events, over eight cognitive measures (movies n = 264, story n = 176). Panels (B–D) illustrate the stability of individual
typicality across movies and story, highlighting two example participants, #40 (cyan) and #11 (pink), relative to the group mean (black).
(B) Rating dynamics of the two example participants overlaid on the z-scored group means, and their typicality indices. (C) Illustration of the
distances between every participant and the group mean, under Isomap 2D dimensionality reduction. Each node represents a single participant
and each edge represents the participant’s Euclidean distance from the group mean (center node). (D) Individual typicality scores, calculated in
full dimensionality, were significantly correlated across subjects between movies (X axis) and story (Y axis). Each data point represents a single
participant. *P < 0.001.

timeline, with minimal sample size. This makes RBS an ideal
tool to generate predictor variables that can be applied to
the analysis of fluctuations in a variety of testing modalities
(Simony and Chang, 2020). In essence, using RBS, we can
associate cognitive processes with any other dynamic process
corresponding to the same stimulus, e.g., as measured with
neuroimaging, electrophysiology, dynamic physiological indices
or eye-tracking.

Showcasing its potential, our previous work using an earlier
(provisional) version of RBS, uncovered correlations between
default mode network (DMN) coactivations and experienced
surprise, pointing to an important role of the DMN in predictive
processing of movie narratives (Brandman et al., 2021). The
discovery was made possible by comparing the RBS surprise

ratings collected in a web-based experiment, with neural
dynamics from earlier functional magnetic resonance imaging
(fMRI) studies (Chen et al., 2017; Zadbood et al., 2017), thereby
matching cognitive and neural fluctuations across independent
groups of participants. This highlights an important advantage
of RBS, namely, that it does not require that the same
participants undergo both RBS and neuroimaging. Thus, RBS
can be used to extract cognitive regressors for an entirely
independent dataset, allowing for its immediate implementation
to investigate the cognitive processes reflected in brain signals
recorded in earlier neuroimaging and electrophysiological
studies. The only prerequisite is that RBS be collected for the
same stimuli as in the dataset to be matched. In addition, using
a similar approach, we could compare the dynamics of human
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experience, as measured with RBS, with computer inference, as
given by artificial neural-network output to the same stimuli.

Individual differences in cognitive
dynamics

Retrospective behavioral sampling rating patterns were
indicative of the extent to which an individual’s reported
experience was typical relative to the common experience of the
group. Individual typicality was found to be stable across movies
and story stimuli, thereby tapping into stimulus-invariant
individual response tendencies. These results highlight the
functional power of coding through similarity distances, which
have been previously shown to explain perceptual differences as
well as brain specializations (Davidesco et al., 2014; O’Connor
et al., 2017; Finn et al., 2020; Ramot et al., 2020; Levakov et al.,
2021; Malach, 2021).

When examining each cognitive measure on its own, we
found stimulus-invariant typicality for all but surprise and
importance, yet no clear relationship or trade-off was observed
between stability of individual typicality and the robustness of
group dynamics (i.e., replicability). At this point, we refrain
from inferring about long-term cognitive traits from these
data, as further research will be needed to assess whether RBS
typicality is informative of stable trait information beyond a
single session (i.e., by splitting stimulus sets by testing days).

The current findings call for two potential approaches
to examine individual differences utilizing RBS individual
typicality. The first approach is applicable when neural
(or physiological) responses are recorded during sensory
stimulation, e.g., movie viewing, prior to applying RBS to the
same stimuli. In this case, RBS can be used to match individual
cognitive typicality to its corresponding neural typicality for
the same movie, such as the distance between the participant
and the group in the activation of a region of interest [inter-
subject correlation: Hasson et al. (2004)], or its coactivation
with another region (Simony et al., 2016; Simony and Chang,
2020). This type of comparison does not rely on stimulus-
invariant information, and thus can potentially relate cognitive
processes that lack that invariance to simultaneous neural
processes, in a manner that reflects subjective fluctuations in
the neurocognitive state. Thereby, RBS typicality can be used to
explore the neural mechanisms related to subjective processing
of specific cognitive dimensions, which may be canceled-
out in the common group dynamics. The second potential
application of RBS typicality extends to stimulus-invariant
information. In this case, RBS typicality, being a special
form of representational distance measure, could be matched
with any marker of individual differences, in any modality,
regardless of stimulation (e.g., Grossman et al., 2019). For
example, future research could examine the diagnostic value of
behavioral naturalistic-stimulation settings, by comparing RBS

typicality with performance scores on clinical questionnaires
or tasks. A similar approach using representational distances
has been successfully applied in previous clinical research
(Hahamy et al., 2015).

The measurement trade-off: Real-time
versus retrospective reporting

Retrospective behavioral sampling was designed to
reconstruct the cognitive processes evoked by naturalistic
stimulation, without interfering with the natural experience as
it is happening. This is fundamentally different from methods of
real-time tracking, such as the continuous rating of emotional
intensity while watching a movie (Raz et al., 2012, 2016), or
real-time interruption of the movie at fixed intervals to collect
emotional ratings (Jaaskelainen et al., 2008). Rather, one of the
central goals of RBS was to allow for passive uninterrupted
stimulation. Thereby, we avoid the measurement problem, by
which the introspective attention and reflection upon one’s own
experience, required for explicit reporting in real time, risks
altering the experience itself (Bohr, 1958; Goldberg et al., 2006;
Malach, 2007). Instead of interrupting the natural experience,
retrospective reporting relies on one’s memory of it. Particularly,
RBS was inspired by previous work showing that one’s subjective
past experience can be reactivated through memory, in great
detail that goes beyond episodic recall of the facts to include
emotional and introspective perceptions (Berntsen, 2002;
Levine et al., 2002). Accordingly, in RBS, the experience of
each event is first reactivated in a silent-recall stage, followed
by the rating of subjective experience. In addition, a practical
advantage of RBS over real-time reporting is the wider scope of
information that can be recovered. Unlike real-time reporting,
which is limited in the number of simultaneous processes to
which one can attend and report on at a given moment, RBS
probes a variety of distinct processes that are each recalled from
memory in turn.

On the other hand, the reliance on memory for retrospective
reporting comes at a price, namely, that we are measuring the
memory of an experience, not the experience itself. Hence,
in RBS, positive emotion is the memory of feeling good, and
surprise is the memory of being surprised, etc. The gap between
experience and the memory of it has been the main rational
for advocates of real-time rather than retrospective paradigms
(Kahneman and Riis, 2005; Schwarz, 2007). By this logic, in the
lack of an associated real-time measure, we cannot disentangle
RBS real-time validity from memory distortion. Yet RBS was
developed with the idea in mind of matching retrospective
reports with real-time neuroimaging dynamics. Critically, when
matching RBS with any real-time recorded measure, such as
neuroimaging, their shared variance across events will represent
a real-time component of experience. In this approach, the
resultant real-time component will not be contaminated by

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2022.956708
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-956708 November 8, 2022 Time: 10:53 # 12

Brandman et al. 10.3389/fnhum.2022.956708

interruptions to stimulation. By contrast, real-time cognitive
reporting by neuroimaging participants will require interference
with stimulation during neuroimaging recording, thereby
contaminating both measurement modalities in a way that is
irrecoverable. We therefore argue that, considering all aspects
of the measurement trade-off, RBS is beneficial for achieving
high validity of neurocognitive processes, while maximizing the
ecological nature of real-time experience.

Open questions for future testing

We note a few open questions that could not be directly
addressed with the current data. First, following on the previous
section, without an external real-time comparison we cannot
measure the difference between the memory of experience
measured by RBS, and the real-time experience. Future studies
could compare RBS ratings with recent techniques of real-
time measurement (e.g., Chang et al., 2021). Second, we cannot
rule out the influence of the event reminders themselves on
participants’ responses [see Loftus and Palmer (1974)]. While
this is unlikely, given strong emotional responses even to neutral
event reminders (i.e., events that seem neutral when isolated
from context, e.g., Event #29; Supplementary Table 1), such
potential impact of the cue cannot be ruled out. This may be an
inherent limitation of any cued-recall task, as we cannot reliably
differentiate the cognitive response to the cue from the recalled
memory in participants’ reports, as these cannot be separately
tested without substantially changing the task from a recall
task to a judgement/tagging task. Nevertheless, when matching
RBS reports with any real-time measurement (neuroimaging,
electrophysiology, etc.), the shared component would represent
the stimulus-driven real-time response. Third, we point out
that, in RBS, events are pre-defined by the experimenter based
on temporal intervals and coherency, potentially missing other
moments of the movie that were significant to participants.
In a related approach, Spiers and Maguire (2006) assessed
retrospective experience from memory by replaying a video of
the recalled experience, at a pace determined by the participants,
while collecting open-ended recall of their cognitive state. This
technique could be of potential use in pinpointing significant
moments in the movie, which could be compared with RBS
time-courses. Lastly, the RBS questionnaire is long, thereby
limiting the number of events that can be tested in a single
session. Future studies could assess the necessity, or minimal
length, of the silent recall for reporting reliability, which could
reduce the time spent on each event in the questionnaire.

Conclusion

Retrospective behavioral sampling is shown to be an
informative and reliable method to track natural cognitive

dynamics, successfully tackling the central challenges of
naturalistic stimulation; RBS effectively disentangles a
wide range of simultaneous cognitive processes, depicts
them along the time-course of stimulation, and does this
without interfering with the real-time experience. The
robust replicability of RBS time-courses makes it a powerful
tool to characterize the shared stimulus-driven cognitive
experience. These shared dynamics can be applied to ascribe
specific cognitive processes to neural and physiological
time-courses driven by the same stimuli. RBS was further
shown to carry stimulus-invariant information on individual
differences, which could be tested against neural and clinical
individual markers to study idiosyncratic neurocognitive
states and traits. In sum, RBS is a promising new tool to
advance the study of naturalistic cognition and its neural and
physiological manifestations.
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