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The introduction of Augmented Reality (AR) has attracted several

developments, although the people’s experience of AR has not been

clearly studied or contrasted with the human experience in 2D and 3D

environments. Here, the directional task was applied in 2D, 3D, and AR using

simplified stimulus in video games to determine whether there is a difference

in human answer reaction time prediction using context stimulus. Testing of

the directional task adapted was also done.

Research question: Are the main differences between 2D, 3D, and AR able to

be predicted using Markov chains?

Methods: A computer was fitted with a digital acquisition card in order to

record, test and validate the reaction time (RT) of participants attached to

the arranged RT for the theory of Markov chain probability. A Markov chain

analysis was performed on the participants’ data. Subsequently, the way

certain factors influenced participants RT amongst the three tasks time on

the accuracy of the participants was sought in the three tasks (environments)

were statistically tested using ANOVA.

Results: Markov chains of order 1 and 2 successfully reproduced the average

reaction time by participants in 3D and AR tasks, having only 2D tasks with

the variance predicted with the current state. Moreover, a clear explanation

of delayed RT in every environment was done. Mood and coffee did not show

significant differences in RTs on a simplified videogame. Gender differences

were found in 3D, where endogenous directional goals are in 3D, but no

gender differences appeared in AR where exogenous AR buttons can explain

the larger RT that compensate for the gender difference. Our results suggest

that unconscious preparation of selective choices is not restricted to current

motor preparation. Instead, decisions in different environments and gender

evolve from the dynamics of preceding cognitive activity can fit and improve

neurocomputational models.

KEYWORDS

augmented reality, cognitive neuroscience, decision task, environment design, Go-
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GRAPHICAL ABSTRACT

Introduction

In the modern world, 3D stimuli is now commonplace,
with most people having experienced it through education
or entertainment in the form of 3D TV, as well as 3D and
2D stimuli on 2D screens. More recently, augmented reality
(AR) has become more common, now being one of the main
ways to receive information and in videogame controlling (e.g.,
DeMarle, 2017). The AR of incoming stimulus has a role in
memory and cognitive load, but how AR changes memory is not
clear (Schneider et al., 2020). In this study, how attention and
the previous response manage AR were addressed by means of
stimulus in 2D, 3D, and AR environments.

The Posner paradigm of Posner permits the cost and benefit
of reaction times (RTs) to be quantified (Posner, 1980), in
the order of 80% valid goal stimulus in events, stimulus was
presented in the area of the screen indicated by a warning
signal (arrow). In 1984, this paradigm was used to study
the RTs of people with damage to the parietal cortex with
a greater difference observed in contralateral and ipsilateral
in right parietal patients (Posner et al., 1984). Later, Posner’s
paradigm was used to study task responses via ocular saccadic
movement or by the pressing of a keyboard button as seen
in Figure 1. The Posner paradigm has also demonstrated that
microsaccades can be used to map visual orientation. This is
due to the amplitude of the saccadic movement and showed
RTs being higher for disabled stimuli compared to neutral
stimulus or even children (Engbert and Kliegl, 2003). Moreover,
Posner and colleagues have shown neuroimaging differences
according to the RTs in the Attention Network Task (ANT;
Fan et al., 2005) where alerting was found mainly on fronto-
parietal and thalamic activation. Orienting has also been found

in the parietal areas and in the frontal eye fields (FEF) and
executive control has been shown to activate the Anterior
Cingulate Cortex (ACC) along with other areas. An auditory
version of this paradigm found a similar and complementary
activation of frontal areas changing with the difference between
conditions and the previous condition as well (Mugruza-Vassallo
et al., 2021). This means, the warning signal in visual studies
has shown real outcomes from the analysis done by cognitive
human computation. The present research removed this possible
covariate with a simplified version of an arrow in a videogame in
2D, 3D, and AR.

Recently, Go-Go experiments and variants of Posner’s
paradigm such as ANT, coupled with tested memory, found
that there was not necessarily any change in attention after
the first episode of mania. However, it is possible to change
other cognitive measures such as IQ, processing speed, memory
work, verbal fluency, and certain executive functions (except for
Go/No-Go tasks) with p < 0.05 (Daglas et al., 2017). Menozzi
et al. (2007) tested AR stimuli of 200, 300, and 600 ms duration
to locate the visual stimulus “3” in a sequence of numbers and
interpreted this to mean that localisation depends on the ability
to focus attention to one stimulus in an undetermined time after
the signal or arrow was sent (Posner, 1980). Moreover, at the
time of drawing up this manuscript a patent application has been
made for an invention that relies on the benefit of the reaction
time of Posner’s paradigm (1980) to improve the virtual reality
teaching environment using warning signals for the adjustment
of the screen, which has the advantage of attracting the attention
of the user (Shahal, 2018). Alternatively, Torres-Tejada et al.
(2020) developed videogames and showed for five types of visual
stimuli (four types of Go-Go events, see adaption of their screens
in top left part of graphical abstract). They found that the
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FIGURE 1

Experimental screens similar to Posner et al. (1984), Torres-Tejada et al. (2020), and Mugruza-Vassallo and Potter (2019). Those works allow us
to make a simplified video-game experiment and also to ask: Are 2D, 3D, and augmented reality (AR) main differences processed able to predict
with Markov chains?

angle of presentation and the relative size of the stimulus were
significant for computations between 2D and 3D. Torres-Tejada’s
videogames used arrows as a guide in a similar way to the Posner
paradigm. In this work, the hypothesis posed asks: is it possible
to simplify the number of stimuli in a videogame and does the
Go-Go task allow you to study the difference between 2D, 3D,
and AR stimuli?

Therefore, in the present research, AR was compared to 2D
and 3D to assess selective attention by way of reaction times
(e.g., around 1,000 ms) stimuli whereas the original version of
the paradigm of Posner places stimuli of alert by arrow (called
endogenous signals) prior to the presentation of goal signals.

Regarding the technical part, some AR trials have used a
combination of AR Tool Kit, Visual Studio C++, 3D Max, and
Adobe Illustrator tools (Chen et al., 2015). In this work the
previous use of Unity 3D and Vuforia made by Torres-Tejada
et al. (2020) was extended from 2D and 3D stimuli to AR
stimuli. Therefore, part of the technical challenge is to achieve
a reasonable resolution time in data acquisition that allows
measurement of the reaction times in UNITY 3D.

Taraghi and colleagues studied the dependence of the
immediately preceding answer in a sequence of questions with
Markov chains. The response data was acquired through an
application called “1× 1 trainer,” a tool designed for elementary
school children to learn multiplication. After analysis of
response times, a Markov chain of order five confirmed the
probability of response on 442,910 questions answered by

3,381 children over 11,711 sessions. Some children did not take
the questions seriously and other children left before the test
was over (Taraghi et al., 2014). Consequently, the present work
considered adult participants and therefore, the Markov chains
were expected to be of an order less than five across the different
presentations of 2D, 3D, and AR.

The formula (1) was used to calculate the different types of
responses, where P is the probability and X the random variables
were defined according to the expression (1) given as:

P (Xn + 1 = xn+1 |X1 = x1, X2 = x2, Xn = xn)

= P (Xn + 1 = xn + 1 |Xn = xn ) (1)

We assume that the probabilities do not change as a function of
time, hence the Markov chain transitions are time-homogeneous
(Busemeyer and Townsend, 1992). Therefore, a Markov chain of
order k is described formally as (2) used by Taraghi et al. (2014).

P (Xn+1 = xn+1 |X1 = x1, X2 = x2, Xn = xn ) =

P
(
Xn+1 = xn+ 1

∣∣Xn = xn, Xn− 1 = xn− 1, ..., Xn− k + 1 =

xn− k + 1, Xn = xn
)

(2)

Behavioural models of goal stimuli have been used as Markov
decision models (Savalia et al., 2016) or even response models
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for linguistic or musical events (Forth et al., 2016). Limitations in
both models were that they did not consider cases of similar tasks
in different modalities, moreover not citing or giving examples of
cognitive responses in those models. In the present experiment
and interpretation, we seek to indicate to what extent the Markov
chain fits the response to events in 2D, 3D, and AR.

Conversely, the data analysis of RTs is commonly used in
the Analysis of Variance (ANOVA) of the data (e.g., Potter
et al., 2001; Mugruza-Vassallo, 2016a). Furthermore, other
recording methods, for visual cues with letters along with
results in functional Magnetic Resonance Imaging (fMRI) by
Koechlin et al. (2003), Electroencephalography (EEG; Mugruza-
Vassallo and Potter, 2019) and auditory fMRI results (Mugruza-
Vassallo et al., 2021) have suggested that the context of the
immediately preceding stimulus is significant and modulate
the measurements of cognitive outcomes by recruiting a larger
brain area when motor response changes between action and
no-action, depending of previous novel response as a kind of
Bayes analysis. Results from preceding stimuli were observed
in the lower part of Figure 1, where the EEG dependence was
found in the correlation of the properties of the current and
the immediately prior stimuli. Moreover, prior research has
found no evidence of any deficiency in N100 type potentials
(Mugruza-Vassallo, 2016b; Mugruza-Vassallo and Potter, 2019)
in agreement with Rosburg (2018). Likewise, the research of
Samrani et al. (2018) also involved the context of working
memory relating to stimuli. The previous research considered
the dependence of the previous answer taken here as a possible
Markov process, the present research considers a subset of
characteristics to simplify the videogame compared with the case
of Torres-Tejada et al. (2020), where five types of stimuli were
used (see upper part of Figure 1). The present work aims to
study the dependence of previous stimulus using Markov chains
using only few types of stimuli in graphic format. Therefore,
here it was postulated that the selective attention can be studied
with responses based on an experiment which add and simplifies
works of: (a) top Experiment 1: (Engbert and Kliegl, 2003),
which timed three different screens (a fixing cross, an alert
signal with a right arrow and a target to which the participants
responded); (b) middle: 2D and 3D experiments showing RTs
results altered due to stimulus properties (viewpoint and relative
size); and (c) bottom: Auditory sequence with several types of
stimulus has shown a strong dependence of sound properties
and sequence.

Bearing in mind all the literature, the research question
aimed to answer whether the Markov chains could explain
occurrence states for 2D, 3D, and AR environments. Moreover,
the hypothesis states that the Markov chain method in the
experiment can predict the variance in those environments
(2D, 3D, and AR) using the RT data. Therefore, the aim
was to identify which of the 2D, 3D, and AR environments
showed better attention outcomes to a simplified visual
decision task by measuring accuracy and RTs, and then using

Markovian reasoning to decipher the results. The question
was addressed by adopting a Go-Go-type experiment which
displayed an arrow that pointed either left or right to simplify
the videogame stimuli.

Material and methods

Participants

The experiment was carried out using 22 participants
(six women) in the morning, aged from 18 to 24 years old
(mean = 21.3 standard deviation = 1.1 years). Participants
signed an informed consent according to the University ethical
rules. Three selection criteria were used to choose participants:
motivation to take the test, a general experience of playing
videogames and declared that they had no impairments, being
under pressure or stress that might affect their ability to pay due
attention to the videogame.

Experiment

The software used to develop the videogame and
acquire RT data was Unity 3d software (2004), a high
level graphics engine that allowed us to develop three
videogames for different platforms through an editor
and a scripting language. To make the AR video, Vuforia
complement was used (Vuforia, 2012), a useful tool to
build applications based on augmented reality (e.g., Imbert
et al., 2013). This is a widely used complement of software,
used for computer games and mobile. The development of
the present experiment’s application for 2D, 3D, and AR
environments respectively, is shown in Figures 2A–C, where
the same moving caricature is presented at three different
environments.

In the experiment 120 stimuli were presented per block
(360 in total). Each event at each block game started by
displaying the arrow pointing either left or right for an average
of 1 s, as shown in Figure 3. A random and variable time
of between 0.7 s and 1.3 s was used to display the next
stimulus. The participant had to identify which way the arrow
was pointing and press the button to his right or left, as
appropriate. Each participant was sitting down in front of a
desk and maintaining head position at a viewing distance of
approximately 60 cm.

Data acquisition

RT in milliseconds (ms) were recorded, RT data were
extracted whenever the user physically pressed the keyboard
buttons (2D, 3D) or the virtual button (AR with the support
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FIGURE 2

Simplified videogame using arrows on (A) 2D, (B) 3D, and (C) AR. The arrow was either to the left or to the right.

FIGURE 3

Markov chain to analyse reaction time (RT) for three consecutive
stimuli.

of Logitech 922c videocamera and screen), according to the
video game. RTs were measured from the moment when
the arrow appeared until the virtual/physical button was
pressed. Recorded data were based on the keys pressed, the
participant’s RT and whether or not the correct key had

been pressed, which was recorded as “true” (V) or “false”
(F) state.

Data analysis

All RTs less than 200 ms were filtered out because according
to Welford (1988) this is the amount of time taken for a person
to receive and process a signal. Therefore, the stimuli detection
processing time is less than 200 ms, being around 170 ms the
case of the human face (e.g., Rousselet et al., 2008). Therefore,
the probabilities of the various RTs of response types were
analysed throughout the experiment using the Markov statistical
method. Finally, RTs obtained when going from one state n to
another state n + 1 according to the Markov chain were analysed
in detail.

Following Equation (2), the first order Markov chain (k = 1)
and second order (k = 2) were described.

A Markov chain of order k = 1 is described formally as
follows:

P (Xn + 1 = xn + 1 |X1 = x1, X2 = x2, Xn = xn ) =

P (Xn + 1 = xn + 1 |Xn = xn, Xn− 1 = xn− 1, ..., Xn = xn )

(3)

A Markov chain of order k = 2 is described formally as follows:

P (Xn + 1 = xn + 1 |X1 = x1, X2 = x2, Xn = xn ) =

P (Xn + 1 = xn+ 1 |Xn = xn, Xn− 1 = xn− 1 ) (4)

The states, through which the participants were: right answer
at state V (correct) and wrong answer at state F (wrong). The
Markov chain used for three consecutive stimuli is seen in
Figure 3.
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Markov chain for reaction times

To obtain an order 3 Markov chain from the recovered data,
a State Matrix was assembled. The recovered data was then
coded: “1” representing correct answers and “0” representing
incorrect answers. As a result, we have a matrix of states, as
represented in Table 1. This allows a quantification of the
occurrences for each Markov chain and to completely build the
Markov chain.

In the Chain of States corresponding values were set at 0’s
and 1’s for stimulus correctly or incorrectly answered. Each row
is equivalent to three consecutive stimuli in respect to the 120 used
per each participant. For example, the first chain of stimulus 1–3,
second chain, 2–4, and so on.

Finally, we converted the 0’s and 1’s to base 10 and added
each chain of states formed. In analysing the three consecutive
states from the 120 stimuli collected, we obtained 118 chains
of states per game block made. These data represented the
information needed for the final state and from this we begin
to back up, in order to obtain the probabilities.

The same process was carried out for each block and
for each participant and a matrix of all the videogames was
assembled and afterwards a Markov chain was made per each
video game.

TABLE 1 Matrix of states.

0 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 0
1 0 1
0 1 1
. . . . . . . . .

ANOVA of prior state RTs

The normality of the RTs was evaluated using the
Shapiro-Wilk test of normality. It was found that the assumption
of normality was valid. Also each RTs distribution was plotted
in a histogram, no bimodal distribution was found. In order to
determine whether the previous state had an influence on the
current state, an ANOVA analysis was carried out on bases of
the RTs of the previous states (Markov chain) and the visual
environments (i.e., 2D, 3D, and AR).

Variables that might have had an effect RT, namely the
influence of coffee consumption, mood and gender were also
analysed with ANOVA.

Results

Markov chain results

In order to consolidate the data, a Markov chain was created
for each video game containing the data of all the participants, as
they are presented in Figures 4A–C, reflecting their true (V) and
false (F) answers.

Figure 4A represents the Markov chains formed for the 2D.
If the initial state is “FF” then probabilities have increased for
the current state “F” (relatively with respect to the expected
12.5%). This means that if the person fails twice consecutively,
the next state has a 25% chance (double the expected) of getting
it wrongly and 75% of performing it correctly. If the initial state
is “FV,” the probability has changed to 96.2% for participants
performing the experiment correctly at the current state. If the
case is “VF” or “VV,” probability of failure is very low and a large
part of the probability that the answer is in the “true” state.

FIGURE 4

States in the AR game for all participants (A) in the 2D game f. (B) In the 3D game. (C) In the AR game.
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With respect to the Markov chain representing the 3D game
(illustrated in Figure 4B), when a previous state of “FF” or
“FV” was presented, there is zero probability of performing the
following stimulus erroneously and instead, 100% probability of
performing it correctly. In the case of “VF” and “VV,” very low
probabilities were perceived, similar to what was seen in the 2D
video game chain.

Finally, in Figure 4C, we recorded a large variation in
probabilities. Evidently, the probability of error is greater
than that in the 2D and 3D Markov chains; however, if
the previous state was “VV,” the evidence suggests that
there is a large probability of correctly performing the
next stimulus. Additionally, if the previous state is “F”
in the AR, the probability of performing the subsequent
stimulus well is 76.9%, which is, however, less than the
probability shown in Figure 4B (2D at 96.3%) and Figure 4C
(3D at 98.7%).

Prior state influenced RTs

Table 2 shows the ANOVA results for the participant
response states (V: true, F: false) at different environments (2D,
3D, and AR). Three cases were analysed: a Markov model that
considers only the current state, a Markov model that considers
the current and previous state, and a Markov model which
considers the current state and two previous states. In any of
these models, the current state is level 0, the previous state is level
1, and so on.

In Table 2, the 0–1 levels show an influence on RTs in the
two-state model. This was also seen in the three-state model,

with levels of 0–2. Previous states had a significant influence
(p< 0.05) in the RT of the current state.

Coffee, mood, and gender in RTs

The analysis also considered the effect of other cofactors
that might have affected the true or false responses
of the participants. These were the effects of coffee
consumption, mood, and gender on RTs were analysed
using ANOVA.

No evidence was found that coffee consumption or mood
were correlated with RT (see Table 3). However, coffee
consumption is a possible study limitation that was not
controlled. Previous experiments had considered excluding
participants who drink more than 10 cups of coffee or
had consumed coffee 3 h prior to the experiment (e.g., de
Bruin et al., 2004), although other studies deprived coffee
consumption (Chen et al., 2021). Furthermore the present study
did not consider consecutive days of coffee administration
as other studies on different coffee administrations suggested
(Judelson et al., 2005) and we also did not make a
comparison based on healthy and vulnerable populations
with cardiovascular or sleep impairment (Temple et al.,
2017).

Conversely, the 3D game introduced a different range of
significant characteristics in RT between men and women
(p = 0.003 @ F = 10.475). This result agreed time was interpreted
shorter by women at different visual spatial angles (of 25◦) in a
modified Posner cueing paradigm (Cooney et al., 2017). More
interesting, errors in True or False answers were found to be

TABLE 2 ANOVA effect of the current and the previous state in the reaction time.

States Level 2D game 3D game AR game

F p F p F p

1 0 6.2 0.0169 1.7 0.1940 2.8 0.1034
2 0 46.3 0.0 49.8 0.0 19.4 0.0

1 36.3 0.0 36.1 0.0 3.3 0.0716
3 0 57.0 0.0 103.5 0.0 13.1 0.0004

1 72.0 0.0 88.6 0.0 6.6 0.0110
2 71.7 0.0 117.7 0.0 59.8 0.0

Results of the ANOVA analysis of the effect of the current state (level 0 for any state) and the previous ones (levels 1 and 2 for any state) in the reaction time. Significant
ANOVA results in bold.

TABLE 3 ANOVA considering answer, coffee, mood, and gender.

Videogame 2D Videogame 3D Videogame AR

F p F p F p

Answer (V/F) 5.8553 0.02 2.1057 0.155 2.693 0.109
Coffee 0.1688 0.684 0.7073 0.406 0.057 0.812
Mood 0.0433 0.836 0.0188 0.892 0.006 0.938
Gender 0.5396 0.467 10.475 0.003 1.798 0.188

Significant ANOVA results in bold.

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2022.955534
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org


Mugruza-Vassallo et al. 10.3389/fnhum.2022.955534

significant in 2D (p = 0.02 @ F = 5.8553). Supporting these
results, it is believed motor control compensated for gender on
the AR experiment.

Finally, bearing in mind gaming as a meaningful and
purposeful activity for gamers, and as an extension of the
present work, it may be useful to consider including depth mood
evaluation questions, as in Shi et al. (2019) who recently found
there to be caused by participants understanding phrases, in
different meaning tasks (trait implying vs. control phrases).

Improving Markovian brain modelling

Considering overall results and cognitive science
application, the different 2D, 3D, AR environments (p3)
have resulted in changes to motor control (p2) depending on the
current motor response (m(k)) and the immediately prior motor
response (m(k− 1)), see neurocomputational model in Figure 5,
extending analysis if Kirchhoff et al. (2018), results of Khalvati
et al. (2019), Mugruza-Vassallo et al. (2021), and according
to auditory results of Mugruza-Vassallo and Potter (2019).
RT distribution was almost uniform across participants.
Therefore those “no changes within the blocks” should
be related to the environment and not necessarily to the
“brain” selector inside p1 (e.g., repetitive or non-repetitive),
leaving e (k − 1) outside p1 (black box). A future experiment
would be to change 2D, 3D, and AR in the same block
to test how “brain” selector could change environment
control.

Modelling limitations

The study did not use brain imaging techniques, leaving
the rest of the control as a black box (p1), namely some
combination of eye-tracking, EEG, and fMRI to best explain
the modulation of the present findings. For example, recently
it has been found that the number of prefrontal areas used
during an auditory decision task was modulated by motor and
inhibition response (Mugruza-Vassallo et al., 2021). Therefore,
the task were mainly conducted on attention and decision-
making without taking into account multitasking, leaving p3

without evidence of multimodal or multitasking distribution.
Although this limitation, the selector in selective attention has
shown effects due to the environment with different Markov
chains, but without a clear Bayesian approach as Kirchhoff
et al. (2018) analysed and also can be interpreted from
Mugruza-Vassallo and Potter (2019).

Discussion

Markov chains explain part of the
variance in 2D, 3D, and AR

The differences observed with 2D using a Level 0 in Markov
response, 3D using Level 1 and AR using Level 2 draws attention
to the complexity of human reaction behaviour, i.e., RTs on
accuracy classification in a visual paradigm, which is related to

FIGURE 5

Hands motor system control driven by the environment in a Markov chain description.
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motor findings on auditory processing found in fMRI (Mugruza-
Vassallo et al., 2021). To the knowledge of the present authors,
the paradigm of Posner is the first and most common paradigm
used when attempting to relate to RT in the orienting of attention
paradigms. The differences observed in 2D, 3D, and AR in this
study could be seen as an extension of recent neuroimaging
studies, which have discussed auditory stimulus properties
along with the orienting of attention, whilst considering the
immediately prior stimulus (using EEG in Mugruza-Vassallo and
Potter, 2019; using fMRI in Mugruza-Vassallo et al., 2021), using
different regressors than visual modality (Mugruza-Vassallo,
2016b) and how visual properties can guide 2D and 3D RTs
attention environments (Torres-Tejada et al., 2020). Moreover,
the present authors are unaware of any articles that have sought
to apply the direct choice paradigm to AR and use Markov to
study cognitive human computation.

Additionally, the implications of these results may help to
improve the understanding of memory in AR attentional tasks.
Bearing in mind Schneider’s work (2020), it would help to
develop chip devices to boost memory while working between
3D and AR. For example in Alzheimer brain processing, bearing
in mind that ageing attenuates value sensitivity and integration
during decision-making and requires more environmental
compensation than younger adults (Chen et al., 2021) as
well as extending studies of habits in executive function
(Obeso et al., 2021).

Prior state influenced RTs

The response of selective attention by means of contextual
memory of a previous measure used Markov chains. The
Markov chain response patterns were observed to improve when
people made errors in their response to the stimuli, which
resulted in RT improvement (without feedback) and dependent
on the previous state. These results and the different RTs
Gaussian distributions, see Table 3 for statistical means and
standard deviation are consistent with different visual cognition
systems as of Batallones’ findings (Batallones et al., 2015).
Indeed Gaussian RTs distributions were found similar in 2D,
3D, and AR but with clearly different average RTs for AR.
Batallones’ results considered the RT, however, the results of
this study extend the idea to the immediately prior context of
the experience affecting attentional states. Attention was studied
with P300 according to the analyses in auditory cases seen
with EEG (Mugruza-Vassallo and Potter, 2019) and visual in
the posterior part to the pre-motor cortex seen with fMRI
(Koechlin et al., 2003). Even more, the results presented here
of prior state influencing RTs would be an extension to the
visual environments of the anticipatory model seen in linguistics
and music (Forth et al., 2016). Moreover, an extension of the
analysis could be used to test for cognitive bias, for example,
to avoid repetitions or random human recognition with Markov

Chains (Baena-Mirabete et al., 2020). Also, our results follow and
specify previous results (Soon et al., 2013), suggesting that this
unconscious preparation of selective choices is not restricted to
current left or right motor answer preparation. Instead, decisions
in different environments (2D, 3D or AR) evolve from the
dynamics of preceding cognitive activity, as shown by different
Markov chains.

Alternatively, in the video game AR, the increased success
when the time passes within the blocks was in line with the
learning curves of the tasks (e.g., experimentally shown by
Mugruza-Vassallo and Potter, 2019). This consistency is clearly
related to learning the game, as the videogame is a new task
the participants had to adapt to. This interpretation is may be
related to a systematisation of the data, and could lead to a more
precise prediction of the participants’ responses or to factors
that could modulate said precision (Mugruza-Vassallo, 2016a).
Improvement of prediction could allow the Go-Go attention
model to be extended based on Markov decision processes that
use feedback (Savalia et al., 2016). This could be achieved in
three ways:

(a) Adding a learning constant to the modified Bellman
equation, thus adding an additional term of learning (µ),

V* (sn) = max T (sn, a, sn+1)
[

R (sn, a, sn+1)

+
√

V (sn+1)+ µV (sn+1)
]

(5)

(b) Considering a reward for the previous action R (n − 1), in
which case µ = γ2. That is similar to the truncated n-step
method proposed by Watkins, 1989, page 92). This method
has recently been reconsidered in Mnih et al. (2016) and
Barth-Maron et al. (2018).

(c) Reinforce Learning assumptions for the Markov decision
process. Maybe the change would be the definition of the
rule, which is more related to Equation 2 in a way the
classic version is π (an |sn ), the new version would be
π (an |sn, sn-1 ). Then, re-estimate the Bellman equation.

Markovian brain modelling on
multitasking and therapy

Under the assumption of multitask reinforcement, a learning
process built by two states in a Markovian tree, Tomov and
colleagues provided an example of a participant going to a
fast-food shop or coffee shop is a good way to gain his reward
when hungry or weak or a diner shop if the participant is both
hungry and weak. Moreover, the participant might find that the
coffee shop has a better atmosphere or environment (Tomov
et al., 2021), as here tested in a different way in 2D, 3D, and
AR environments.
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Figure 5 also considers some Bayesian analysis, where
information on the choice of priors that best fit Markov chains,
having a common path with Tomov et al. (2021). However, the
present experiment was built by two states in a Markovian tree
depending on the environment (i.e., 2D, 3D, and AR) with a
single decision left or right. A more applied example may be
when the participant has to choose the effective way to preserve
his life as a reward in an earthquake, where the 2D, 3D or
AR environments have equivalent but different warning signals.
Therefore, warning signals on different environments might be
better studied for this case to choose the route for evacuation,
being the viable option about safety and the “brain” selector
interaction with the environment should be further studied in
the earthquake warning signals case.

An additional highlight was to corroborate how the previous
response (correct or incorrect) influenced the RT to simplify
the stimulus made on the experiment conducted here which:
(a) complement the auditory task of Mugruza-Vassallo and
Potter (2019) and 2D task of Koechlin et al. (2003); and (b)
there is no bias with the type of 3D stimulus as found by
Torres-Tejada et al. (2020), only for the responses presented
to the prior stimulus. In this way, given that Torres-Tejada’s
paradigm was simplified, it has allowed the analysis of three
different scenarios, in a parallel way to auditory signals (e.g.,
Mugruza-Vassallo, 2016a; Mugruza-Vassallo and Potter, 2019).
Moreover, when information gathered from electrodes are
added to the analysis, motor hand responses produced when
grasping objects and avoiding obstacles (Sun et al., 2018)
would reveal different neural pathways (Mugruza-Vassallo et al.,
2021). Furthermore, memory control mechanisms and their
underlying brain networks could be studied together with
these neuroimaging techniques to answer questions relating to
resilience (such as in earthquakes) following event or object
detection given by warning signals. For example, recent studies
have focused on improving understanding of clinical responses
and variation in response following trauma (Mary et al., 2020).

In addition, the results of the order of execution of the
different environments in previous blocks (3D and AR) in the
video games affected significantly for the 2D game. That is to
say, the changes in stimuli were significant to the RT sequences
of the 2D events which together with Bellman equation open
the possibility for more experiments with other measures (eye-
tracking, EEG, fMRI) and gaining a better understanding of
neuronal path understanding.

3D and AR on gender and videogame
applications

Regarding the variables of coffee, mood, and gender, gender
of the participants affected the RT when the stimulus was in
3D (p = 0.003 @ F = 10.475). The foregoing is consistent
with the Posner paradigm study showing how women perform

endogenous visual processing tasks faster than men before
turning the head 25◦ when the eye worked in the visual 2D
environment (Cooney et al., 2017). In this way, when the
stimulus presented to the right or left was evaluated and which
showed significant differences between 2D, 3D, and AR, showing
as a simplified response of said effects in comparison to audio-
visual experiments (Córdova Berríos et al., 2018) or audio-visual
including agents (Hmamouche et al., 2020).

Moreover, in AR, gender differences were not observed,
meaning that exogenous AR buttons were not affected by gender.
Therefore, this result is also an extension of Mitsuda et al.
(2019), where exogenous processing was found different to
endogenous processing using Posner’s task. Bearing in mind
that during the last decade in the AR-game environment and
in a therapy, the Microsoft HoloLens emulators and Unity 3D
implemented a playtest environment and designed a special test
environment for recent systems (Alqithami et al., 2019; Ibrahim
et al., 2021). Specifically, a recent proposal for ADHD patients
improved design with the measurement of the performance
index (considering factors: response, impulsivity, inattention,
engagement and errors throughout time slots; Alqithami, 2021).
These studies would be improved with the present results
bearing in mind the two previous trials on Markov chain and
gender (3D vs. AR view) would improve enhancement analysis
of patients’ behaviours including exogenous and endogenous
interaction.

This can be interpreted as a clear difference to the bottom-up
and top-down 2D mechanism interaction with the 3D and AR
modalities, which would be expected in cross-modal tasks (e.g.,
Parmentier et al., 2010; Mayas et al., 2014; Vasilev et al., 2019;
Mühlberg and Müller, 2020).

The present work should be extended, for example, to
the Mario Bros video games or even comparisons between
2D and 3D (e.g., Torres-Tejada et al., 2020) extending to AR:
when a third person (as stimulus) in the visual task is reached
for re-identification when a participant surveys with different
camera angle views (e.g., Zheng et al., 2012). An extension of the
re-identification study is to understand computation of human
body parts, e.g., body local representations corresponding to
local similarities (Wu et al., 2018), a proposal of coattention
based comparison to find best image parts correlated (Wu
et al., 2021), and the difficulties in producing good feature
representations (Kodirov et al., 2016) using eye-tracker could
focus not only on improvements in 2D but also in 3D
and AR. Therefore, interpretations could be made from
cognitive human computation that other stimulus simplified was
done in representation learning having the participant similar
identification with all three scenarios (2D, 3D, and AR).

As an extension of videogame controlling could be explored
as referred to by DeMarle (2017) and finally, the videogame
reasoning here could be applied to neurogame controlling in:
(a) multimodal analysis that could be extended to Cz channel
laplacian (Leeb et al., 2013); or (b) machine learning processing
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and analysis because Petri nets use around 5 Hz steady state
visual evoked potential (SSVEP) paradigm based on EEG (Sun
et al., 2018).

Conclusion

The Markov chain has confirmed the hypothesis that RTs
can be predicted as a result (outputs of the states) of visual
stimuli in 2D with current stimulus, 3D with current and
previous stimuli, and AR with current and two previous stimuli,
by means contextual memory of a previous measure for the
response of selective attention in a very simplified computer
game experiment designed for doing some neurophysiological
recording as well.

The present study did not show significant differences in
hand, mood, and coffee on a simplified videogame. On the other
hand, the present study found the 3D efficacy of women was
different to communicate the direction of the arrow’s attention.
This extends the ongoing debate about the idea that exogenous
cues affect endogenous responses in a simplified directional
task. Therefore, the present results provided an insight on
how exogenous AR buttons generate a different type of cueing
different from 3D seen on Posner’s paradigm.
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