AUTHOR=Plucknett William , Sanchez Giraldo Luis G. , Bae Jihye TITLE=Metric Learning in Freewill EEG Pre-Movement and Movement Intention Classification for Brain Machine Interfaces JOURNAL=Frontiers in Human Neuroscience VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2022.902183 DOI=10.3389/fnhum.2022.902183 ISSN=1662-5161 ABSTRACT=
Decoding movement related intentions is a key step to implement BMIs. Decoding EEG has been challenging due to its low spatial resolution and signal to noise ratio. Metric learning allows finding a representation of data in a way that captures a desired notion of similarity between data points. In this study, we investigate how metric learning can help finding a representation of the data to efficiently classify EEG movement and pre-movement intentions. We evaluate the effectiveness of the obtained representation by comparing classification the performance of a Support Vector Machine (SVM) as a classifier when trained on the original representation, called Euclidean, and representations obtained with three different metric learning algorithms, including Conditional Entropy Metric Learning (CEML), Neighborhood Component Analysis (NCA), and the Entropy Gap Metric Learning (EGML) algorithms. We examine different types of features, such as time and frequency components, which input to the metric learning algorithm, and both linear and non-linear SVM are applied to compare the classification accuracies on a publicly available EEG data set for two subjects (Subject B and C). Although metric learning algorithms do not increase the classification accuracies, their interpretability using an