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The vital data about the electrical activities of the brain are carried by the
electroencephalography (EEG) signals. The recordings of the electrical activity of brain
neurons in a rhythmic and spontaneous manner from the scalp surface are measured
by EEG. One of the most important aspects in the field of neuroscience and neural
engineering is EEG signal analysis, as it aids significantly in dealing with the commercial
applications as well. To uncover the highly useful information for neural classification
activities, EEG studies incorporated with machine learning provide good results. In this
study, a Fusion Hybrid Model (FHM) with Singular Value Decomposition (SVD) Based
Estimation of Robust Parameters is proposed for efficient feature extraction of the
biosignals and to understand the essential information it has for analyzing the brain
functionality. The essential features in terms of parameter components are extracted
using the developed hybrid model, and a specialized hybrid swarm technique called
Hybrid Differential Particle Artificial Bee (HDPAB) algorithm is proposed for feature
selection. To make the EEG more practical and to be used in a plethora of applications,
the robust classification of these signals is necessary thereby relying less on the trained
professionals. Therefore, the classification is done initially using the proposed Zero
Inflated Poisson Mixture Regression Model (ZIPMRM) and then it is also classified with a
deep learning methodology, and the results are compared with other standard machine
learning techniques. This proposed flow of methodology is validated on a few standard
Biosignal datasets, and finally, a good classification accuracy of 98.79% is obtained for
epileptic dataset and 98.35% is obtained for schizophrenia dataset.

Keywords: EEG, FHM, HDPAB, PMRM, deep learning

INTRODUCTION

A famous technique of assessing and measuring the electrical signals of the brain is done with
the help of electroencephalography (EEG) (Jeong et al., 2020a). For the analysis of data concerned
with both time and frequency domain, EEG is used and implemented as a powerful technique. The
EEG can measure the voltage fluctuations arising due to the ionic current produced by the neurons
of the brain (Jeong et al., 2020b). Over a period of time, the recording of the electrical activities
across many scalp electrodes is done in a spontaneous manner to form an EEG signal. Cognitive
behavior and major psychological activities can be easily traced by an EEG signal (Kwak and Lee,
2020), and various brain disorders can also be diagnosed and treated with the help of EEG signals
such as stroke, epilepsy, sleep disorders, dementia, etc. (Lee et al., 2020a). EEG signals are also used
for gaming purposes, to control objects using EEG monitoring, to manipulate different hardware
utilizing brain waves, etc. (Marshall et al., 2013). The emotional transformation happening in
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the activities of the brain can also be specified by EEG (Lee et al.,
2020b). The mechanisms which underlie the brain activity such
as diagnosis of brain disease, human cognitive analysis, and brain
computer interface (BCI) fields have gained a lot of attention
too (Lee et al., 2020c). A simple operation principle coupled
with a high-resolution time and low maintenance makes EEG
more special than functional magnetic resonance imaging (fMRI)
and computer tomography (CT) (Lee et al., 2019). Therefore,
to study about the cognitive behavior in depth, to analyze the
brain disorders, and to diagnose various mental disorders, the
most famous non-intrusive approach is EEG. Machine learning
and deep learning incorporated with EEG signal analysis is a
very famous combination and has achieved wonders in the field
of pattern recognition and soft computing (Suk et al., 2016).
To improve the execution of a singular assignment, a collection
of mathematical algorithms and models is used by machine
learning. Training datasets are held as an input to be utilized
as an escort for assembling estimates without the need for any
distinct programming. Supervised and Unsupervised are the two
main categories utilized in this space (Suk et al., 2015). With
the help of machine learning methods, EEG signals are utilized
as indicators to trace the specific medical conditions. From the
EEG signal dataset, the noise and other outliers can be eliminated
with the help of pre-processing. The spectrum of the grouping
of data points to its corresponding features is expressed by
feature extraction. Feature selection is utilized to select the most
important features eliminating the redundant ones and finally the
process of classification happens.

With respect to the discussion of previous studies and the
necessity of this study, a few important and relevant studies with
respect to epilepsy classification and schizophrenia classification
from EEG signals are discussed below, as the proposed work
in this study aims to classify them. Thousands of studies are
available online in peer-reviewed journals and discussed in
conferences for epilepsy classification from EEG signals, as this
study has been under continuous development, modification, and
improvement by various researchers at different instants of time.
An overview to epilepsy and the revised classification of seizures
was provided recently by Pack (2019). A comprehensive review
on various pattern detection methodologies utilized for epilepsy
seizure detection from EEG signals was reported by Sharmila
and Geethanjali (2019). The applications of machine learning
techniques for epileptic seizure detection and classification were
analyzed by Siddiqui et al. (2020). Both these survey papers
(Sharmila and Geethanjali, 2019; Siddiqui et al., 2020), published
in 2019 and 2020, give enough information about the previously
used methods, different techniques analyzed, various results,
and its respective interpretations. An exhaustive review on the
application of deep learning techniques for automated detection
of epileptic seizures was beautifully analyzed by Shoeibi et al.
(2020). Recent deep learning techniques, their implementation,
datasets used, comparative analysis of results, and possible ways
of future studies were thoroughly analyzed in the study. As
far as the schizophrenia EEG signal classification is concerned,
very few studies have made a commendable progress, and as
it is an upcoming research field, only few studies are available
in the literature. Some of the studies regarding schizophrenia

EEG classification are mentioned as follows. A comprehensive
information about the detection of schizophrenia using EEG
signals was analyzed by Mahato et al. (2021). The classification
of EEG signals between healthy and schizophrenia adolescents
was done using fractal theory with approximate entropy analysis
in Namazi et al. (2019) and Largest Lyapunov Exponents
(LLE) was utilized with the help of Rosenstein algorithm
for the EEG analysis of schizophrenia patients in Kutepov
et al. (2020). The time and frequency domain features were
combined with Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) model reporting classification
accuracies of 94.08 and 98.56% for healthy and schizophrenia
patients, respectively (Singh et al., 2021). A deep convolutional
network was designed where a classification accuracy of 98.07%
was obtained for non-subject based testing and 81.26% for
schizophrenia subject-based testing in Oh et al. (2019). A hybrid
deep neural network which combines the usage of LSTM with
CNN to classify the healthy vs. schizophrenia patients with
fuzzy entropy features was reported with an accuracy of 99.22%
(Sun et al., 2021). Deep learning methods with Random Forest
based voting classifiers were efficiently used for the classification
of schizophrenia EEG signals reporting an average accuracy
of 96.7% (Chu et al., 2018). Nature-inspired algorithms with
varied versions of Adaboost algorithm were performed for
classification of schizophrenia EEG signals where they achieved
a high classification accuracy of 98.77% (Prabhakar et al., 2020a).
Similarly, several statistical feature analyses were made use
with many swarm intelligence and optimization techniques,
where Black Hole optimization technique with Support Vector
Machine-Radial Basis Function (SVM-RBF) technique produced
a classification accuracy of 92.17% in Prabhakar et al. (2020b). All
the non-linear signal processing methods were comprehensively
utilized for automated detection of schizophrenia reporting
a classification accuracy of 92.91% with SVM (Jahmunah
et al., 2019). An automated detection of schizophrenia using
Empirical Mode Decomposition (EMD) and Intrinsic Mode
Functions (IMFs) with several well-known classification methods
produced a classification accuracy of 93.21% (Siuly et al.,
2020), a multivariate iterative filtering technique was used for
schizophrenia detection using SVM-cubic classifier reporting an
accuracy of 98.9% (Das and Pachori, 2021), and finally, the
concept of alpha band power during hyperventilation and post
hyperventilation for the identification of schizophrenia was done
reporting an accuracy of 83.33% (Bose et al., 2016). All the
previous studies had equal merits and demerits depending on the
algorithms and techniques employed to classify the signals. The
main contributions of this study are mentioned as follows:

i) To the best of our knowledge, no one has ever proposed
a fusion model with Singular Value Decomposition (SVD)
and of robust parameters for the purpose of feature
extraction of biomedical signals, and we have attempted
and succeeded in it.

ii) The concept of a novel hybrid swarm algorithm was
developed for the purpose of efficient feature selection, and
it has performed well.
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iii) A ZIPMRM is utilized for the biomedical signal
classification, especially epilepsy classification and
schizophrenia classification, and it is the first of its kind
to do so and no past studies have reported it or made it
available online.

iv) A deep learning methodology was also constructed for an
efficient classification of the biomedical signals and the
results are compared with the standard machine learning
techniques.

The most important point to be observed in this research is
the beautiful and novel convergence of the techniques such as
the development and usage of the FHM for feature extraction,
usage of a new hybrid swarm algorithm for feature selection,
and utilization of ZIPMRM along with efficient deep learning
methods for classification. The methods used in this study and
the convergence of these techniques have not been reported in the
literature so far and it is the first of its kind to implement it here.
The simplified and structural flow of the study is expressed in
Figure 1. The organization or the flow of the study is discussed as
follows. The “Proposed fusion hybrid models (FHM) for feature
extraction” section explains the concept of the proposed FHM for
feature extraction and the “Proposed feature selection technique
using HDPAB” section explains the concept of the proposed
HDPAB algorithm for feature selection. The “Development of
classification models” section gives the explanation about the
usage of the proposed ZIPMRM along with suitable deep learning
models for classification and it is followed by the results and
discussion and finally conclusion.

PROPOSED FUSION HYBRID MODELS
FOR FEATURE EXTRACTION

Ensemble models prove to be a great asset in the fields of
statistics and machine learning models. A theoretical analysis
and working of hybrid ensemble models were expressed by
Hsu (2017). In different domains, ensemble learning has played

a vital role such as visual tracking (Avidan, 2007), cancer
classification (Cho and Won, 2007), email filtering (Katakis et al.,
2010), intrusion detection (Govindarajan, 2014), fingerprint
classification (Cappelli et al., 2002), protein food pattern
recognition (Shen and Chou, 2006), and steganalysis (Kodovský
et al., 2012). A review of ensemble techniques for bioinformatics
was done by Pengyi et al. (2010). Other applications of
fusion learning and modeling with machine learning include
development of a hybrid data minimum model with feature
selection algorithms (Koutanaei et al., 2015), development of
a data-driven ensemble classifier (Hsieh and HungA, 2010),
detection of iron ore sintering characters (Wang et al., 2019),
and detecting the temperature of molten steel in ladle furnace
(Tian and Mao, 2010). The recent facilitation in machine learning
representation assessing hybrid and ensemble methods was
reported by Ardabili et al. (2020). However, in the literature,
such fusion models are not available for the purpose of feature
extraction from biomedical signals and so this motivated the
researchers to undertake this study.

For various types of data, the specific proposal of different
mixture model techniques has been developed. The merits of
various techniques have been integrated into one package. The
specific model which fits the data in the best possible manner
is done by this fusion approach and it is highly dependent
on the data that have to be analyzed. For the fusion model
developed here, the initial mixture model considered is the
gamma-normal-gamma (GNG) model (Dean and Raftery, 2005;
Bhunya et al., 2007). Multiple normal components are utilized in
order to capture the data, and therefore, a unique case of gamma
distribution is utilized. GNG was alter integrated with uniform-
normal mixture model (NUDGE), which utilizes a single normal
component and a single uniform component (Dean and Raftery,
2005). The NUDGE was later extended and termed as eNUDGE
and it was called as an ensemble model as depicted in Taslim and
Lin (2014) and was fused together by means of incorporating
a SVD method for the estimation of robust parameters in this
technique, thereby providing the term FHM for the proposed
model. A versatile weighting scheme was also added to this fusion

FIGURE 1 | A very simplified workflow of the representation for an easy understanding.
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model. To enhance the flexibility of this fusion model based on
the location and scale values, the differentiated observations are
captured and classification of some of the normal components is
allowed. Among the various classes, the overall model is selected,
and the inference is provided, as it depends on the underlying
distribution of the data.

Fusion Model of Finite Mixtures
The multiple underlying observations are considered, and a
fusion approach is developed, as it integrates the merits from
various models. The various classes of mixture models are
collectively utilized. To fit the normalized data, the design of each
class of model is utilized and projected as differences between
various experimental situations. For the normalized data point z,
f (z) is assumed as the unknown density function and is expressed
as follows:

f (z;9) = (1− π) f0(z;90)+ π f1(z;91) (1)

For the mixture, the underlying model parameters are
expressed as 9 , 90, and 91, respectively. To capture the
overdispersion elements, the designation of f1 is done, and to
identify the more centrally situated ones, f0 is utilized. To trace
the differential observations also, f0 is utilized effectively. The
modeling of f1 and f0 is expressed as follows (Taslim and Lin,
2014):

f1 (z;91) =


V(i,j)(z), for eNUDGE
ρE1

(
−z × Ind {z < −ξ1} ; β1

)
+ (1− ρ)

×E2
(
z × Ind {z > ξ2} ; β2

)
, for GNG

(2)

f0 (z;90) =

{
N(z;µ, σ 2)

∑Q
q=1 γq × N

(
z;µq, σ

2
q

)
, for NUDGE∑Q

q=1 γq = 1, for eNUDGE+ GNG
(3)

With the help of a uniform distribution or with the help
of a mixture of two exponential distributions, the capturing
of overdispersion in the data is done (Taslim and Lin, 2014).
As a section of the model parameters, i and j are considered
as parameters of the uniform distributions [i.e.,

(
i, j ∈ 91

)
].

The model parameters also include the blending measure of
the exponential distributions and the scale specifications, i.e.,
ρ, β1, β2 ∈ 9 1.

Let ξ1,ξ2 which are greater than zero be considered and known
as the location parameters. The estimator of ξ1 and ξ2 is utilized
by ξ̂1 = |max (z < 0)| and ξ̂2 = |min(z > 0)|. With the help of
normal distributions (single or mixture), the representation of
more centrally situated data is done. As a section of model
parameters, the location and scale parameters are involved here
(i.e., µ, σ2,µq, σ

2
q ∈ 90 ). As a section of model parameters,

the number of components in the mixture Q and the mixing
proportions γq are also involved, i.e., γq,Q ∈ 90. Therefore,
9 = {π} ∪90 ∪91. If the condition in {} is proved, then the
Indicator function Ind {.} is equal to one or else it is zero. In the
normal mixture, some terms along with it will be identified as
“differential,” as any distribution can be identified by a specific
combination of normal distributions.

Singular Value Decomposition-Based
Estimation of Robust Parameters
For the model parameters, to obtain a good estimation in the
fusion model, a weighted likelihood function is utilized as follows:

ml (9) =
m∑

k=1

weik log f (zk;9) (4)

where forzk, k = 1, 2, ...,m are the normalized data and the
prespecified weights mentioned as 0 ≤ weik ≤ 1.

The SVD (Martinsson, 2012) is then implemented to obtain
the Eigen value observations. From the Eigen value observations,
the contributions are downgraded by means of using small
intensities, and so, the weighted likelihood is utilized. With the
similar log-ratio, the data points are distinguished, but at the
same time, various magnitudes are present for their respective
intensities. The average low intensities be considered as v, and
therefore, the lower half Herbert’s neglect function is expressed
as follows:

wei(v) =

{
1, if v > −g
g
|v| , if v ≤ −g

(5)

where g = 1.5 and is utilized to down weight those factors
with less intensities. Under this fusion approach, the fitting
of each model class is utilized by the standard Expectation
Maximization (EM) algorithm. When a maximum number of
iterations Tare reached or when

∣∣∣∣9(t+1) −9(t)
∣∣∣∣ < ε, then the

stop criterion of EM algorithm is achieved. The values used in
this experiment are chosen after several trial-and-error measures
based on performance, and finally, ε = 10−8 and T = 1, 000is
used in our fusion approach.

Model Selection and Model-Based
Identification of Features
In the proposed model, the total number of normal components
Q must be determined. The models are examined with
Q = 1, 2, ... and then Q is chosen so that Bayesian Information
Criteria (BIC) is maximized (Lin et al., 2015). Within each class,
the best model is identified, and then, the overall best model is
selected by Akaike Information Criteria (AIC) (Tharmaratnam
and Claeskens, 2013). By using this kind of a balanced model
selection, too complex models or too simple models can be
avoided easily. A two-step technique is utilized by the selection of
best model to identify every observation as a differential category
or not. A normal component Norm

(
µq, σ

2
q

)
is identified as a

differential one in the initial step if the capturing of observations
is done as outliers in the overall distribution as follows:∣∣µq

∣∣+ 2× σq > 1.5 × IDR (6)

where IDR represents the interquartile range
for the dataset.

The non-differential category is the one in which the labeling
of the normal component is not done as a differential one. For
every observation, once the labeling of every normal component
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is done, then the false discovery rate (FDR) is computed as
follows:

FDR (zk) =
fnorm

(
zk,

_
90

)
f
(

zk;
_
9
) ,∀k ∈ m, (7)

where fnorm comprises of normal components that are termed
as non-differential. For any threshold point y0, the observation
zk is identified with weight weik to be a distinctive element
if FDR(zk)

/
weik ≤ y0. Thus, the redundant components are

completely eliminated and only the essential fusion hybrid
modeled features are retained in the model.

Table 1 exhibits the analysis of statistical parameters for FHM
models in various datasets. The statistical parameters are vital
to extract the non-linear nature of the underlying physiological
events. Here, six parameters, namely, mean, variance, skewness,
kurtosis, sample entropy, and permutation entropy are calculated
for the epilepsy dataset (Andrzejak et al., 2001) and schizophrenia
datasets, namely (Olejarczyk and Jernajczyk, 2017), under FHM
models. When utilizing the FHM model, the mean parameters
are found with common ground values. In the variance and
permutation entropy as well, there is not much variation
among the models across the datasets. The skewness and
kurtosis indicate the presence of non-linearity and non-Gaussian
conditions among the datasets. Sample entropy is distinguished
itself as a parameter of wide variation among the datasets and
models. This finely indicates the presence of a non-peaked
Gaussian density due to the feature extraction models and
therefore feature selection is absolutely necessary.

PROPOSED FEATURE SELECTION
TECHNIQUE USING HYBRID
DIFFERENTIAL PARTICLE ARTIFICIAL
BEE

Once the features are extracted using the FHM model,
then, the features have to be selected before feeding inside
classification. For solving real-world optimization issues, the
hybrid algorithms are of great use, as a better or high-quality
solution can be obtained. A flourishing concept in the field
of artificial intelligence (AI) is swarm intelligence, and it is
the collective behavior of natural or artificial self-organized
systems (Prabhakar et al., 2019). Some of the commonly used
swarm intelligence techniques with its applications to various
domains are reviewed in Yang (2014). In this study, the concept

of a hybrid swarm intelligence technique is proposed as an
efficient feature selection technique. To solve various issues
in different fields, many metaheuristic algorithms are utilized
such as Central Force Optimization, Lightning Attachment
Procedure Optimization, Genetic Bee Colony Optimization, etc.
(Prabhakar and Lee, 2020a). To trace the global optimum
point by means of achieving both exploration and exploitation
qualities, these algorithms are used. Selecting the control
parameters and adjusting or fine tuning it is a very important
stage in these procedures (Prabhakar and Lee, 2020b). To get
a solution with high quality, sometimes exploitation should
be more than exploration or vice versa depending on the
problem characteristics. Various properties are utilized by
every optimization algorithm so that the appropriate goals
are achieved. For some specific problems, some optimization
algorithms perform better and some specific problems as well as
some optimization algorithms perform worse. Therefore, many
techniques are combined to address these difficulties in literature
and are known as hybrid models. To have a steady balance
between the exploitation and exploration qualities, control
parameters utilized by the optimization algorithms should be
perfect. To solve the optimization problems, solution quality
is also very important. Sometimes, the algorithm may be very
versatile and robust, but it can have a very low solution quality,
and sometimes, the algorithm may be less versatile and robust,
but it can have a better solution quality. Therefore, to achieve
both the control parameters and high-quality solution, hybrid
algorithms are proposed. The proposed algorithm is called
HDPAB algorithm, and it utilizes the hybridization of differential
evolution (DE) (Mohamed, 2015), particle swarm optimization
(PSO) (Altamirano and Riff, 2012), and Artificial Bee Colony
Optimization (ABC) (Karaboga and Basturk, 2008) to select
the most important features, and the pictorial representation is
expressed in Figure 2.

Proposed Hybrid Differential Particle
Artificial Bee Algorithm
A powerful algorithm called HDPAB is generated in the
context of both robustness and high-quality solution. To select
the control parameters of algorithms, random choosing of
parameters from the required ranges is done. Without altering
the characteristics, the primary operators of the designated
algorithms are utilized by HDPAB. To select the candidate
solutions, the implementation of operators of the merged
techniques in a repeated mode is performed. Therefore, to select a
particular algorithm, the suitable operators are implemented, and

TABLE 1 | Analysis of statistical parameters for Fusion Hybrid Model (FHM) in various biosignal datasets.

Parameters A-E B-E C-E D-E AB-E CD-E Schizophrenia

Mean 0.38376 0.81425 0.196404 0.689723 1.262721 0.082903 0.49361

Variance 0.107887 0.000832 0.038601 0.01086 0.003261 0.002902 0.009318

Skewness 2.641229 0.015824 0.936748 −0.08714 −2.08109 7.461258 0.160928

Kurtosis 13.30222 −0.07862 −0.75852 0.159329 4.590378 75.3816 −0.92298

Sample entropy 11.9076 6.2048 1.9800 6.9953 7.4203 9.8152 6.4148

Permutation entropy 1.5993 1.522 1.7095 1.7344 1.7407 1.4749 1.0926
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FIGURE 2 | Pictorial representation of Hybrid Differential Particle Artificial Bee (HDPAB).

a number of solutions are found, and to the next algorithm, a new
population is incorporated.

Step 1: The candidate populations of solutions Ai is
initialized, where i = {1, 2, 3, ...,NP}. The size of the population
is denoted by NP.

Step 2: With the following mathematical expressions, the
crossover, mutation, and selection operators of DE algorithms are
implemented as follows:

Yi = Ax + G (Az − Aw) (8)

Vij =

{
Yij, if nj ≤ CR
Aij, if otherwise

(9)

Ai =

{
Vi, if f (Vi) < f (Ai)

Ai, otherwise
(10)

For every member in the candidate population, using
Equation (8), the calculation of the mutant vector Yi is done.
In this population, the distinct members are considered as Ax,
Az , and Aw. By using Equation (9), to generate Vij, the crossover
operator Yij is crossed with Aij, where the jth elements of the
ith solution vector Ai are denoted by Yij and Aij respectively.
For every jth element of Yi, a uniformly distributed number is
represented as nj. For the DE, the main control parameters are

G and CR; for the sake of mutation and crossover operation, they
are used. The determination of the novel candidates for Ai is done
in the selection process depending on the fitness value of Vi and
Ai by using Equation (10), where it is assessed either using the
vector Vi or its preceding solution.

Step 3: Utilizing the following expression, the PSO algorithm
operators are applied as follows:

Veloi = qVeloi + w1
(
Pbest,i − Ai

)
+ w2

(
globalbest − Ai

)
(11)

Ai = Ai + Veloi (12)

By utilizing Equation (11) to the Veloi, the main control
parameters are implemented as q, w1, and w2. Using Equation
(12), the positions are updated using these particles. The best-
known position is extended, and that point is known as globalbest
and the best position extended by the ith particle in the swarm is
expressed as Pbest,i

Step 4: The operator of ABC algorithm is performed by
means of implementing control parameters in order to update
the respective candidate positions in search space. In a situation
in which the further movement of the position cannot be
guaranteed, then Equation (13) is utilized so that a new food
source utilized by the scouts is used to replace the food source,
which had been abandoned in the nectar by bees. Within a
specific range of cycles, to assess the abandonment of food

Frontiers in Human Neuroscience | www.frontiersin.org 6 June 2022 | Volume 16 | Article 895761

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-895761 May 30, 2022 Time: 18:38 # 7

Prabhakar et al. A Fusion Based Technique

sources, the control parameter utilized is called “limit” in ABC
algorithm.

aj
i = aj

min + rand(0, 1)
(

aj
max − aj

min

)
(13)

Step 5: Unless a chosen stopping criterion is satisfied, the
steps (9), (10), and (11) are repeated. Unless the termination
criterion is satisfied, the performance of the algorithm in a
loop is done. At the end of every iteration, the best solution
is preserved, and therefore, elitism is incorporated in HDPAB,
thereby selection of the most important features suitable for
classification is obtained.

DEVELOPMENT OF CLASSIFICATION
MODELS

The selected features have to be fed inside the classification
models for the sake of classification of the healthy vs. the
diseased ones. In this section, initially, the ZIPMRM for
biosignal processing is developed, then suitable deep learning
models are also developed, and finally, the results are analyzed
with the standard machine learning techniques as well.
A mixture model is a simple probabilistic model, which indicates
the occupancy of sub-populations within a comprehensive
population (Mclachlan, 2005). For the distribution of the
mixture components, the familiar prospects are generally
binomial distribution, multinomial distribution, log-normal
distribution, multivariate t-distribution, negative binomial
distribution, Poisson distribution, exponential distribution, etc.
(Ueda et al., 2000). Various models are available in literature
such as Gaussian Mixture Models (GMM) (Constantinopoulos
and Likas, 2007), Hidden Markov Model (HMM) (Krogh
et al., 1994), Categorical Mixture Model (CMM) (Kanzawa,
2017), Finite Mixture Model (FMM) (McLachlan and Peel,
2000), Multivariate Gaussian Mixture Model (MGMM), etc.
(Scrucca et al., 2017), and they have been generally used for
biomedical signal processing applications unlike the PMRM.
The application of mixture models has been utilized in
analyzing financial models, handwriting recognition, predictive
maintenance, fuzzy image segmentation, house price evaluation,
point set registration, etc. (Elguebaly and Bouguila, 2011).
For the estimation of parameters in the mixture models,
the commonly used techniques are EM algorithm, Markov
Chain Monte Carlo, Graphical Methods, moment matching,
and spectral methods (Meignen and Meignen, 2006). PMRM
has been widely used in the literature for various purposes
such as analysis of count data (Wang et al., 2007), biometrics
(Wang et al., 1996), detection of maternity duration of
hospital stays (Wang et al., 2002), financial data modeling and
classification (Faria and Goncalves, 2013), defaulters behavior
approach analysis (Karlis and Rahmouni, 2007), insurance
ratemaking (Bermudez and Karlis, 2012), and heart disease
prediction (Mufudza and Erol, 2016), but no literature has
been available with respect to utilizing it for the classification
of biomedical signals and so an attempt was made in this
study successfully.

Proposed Zero Inflated Poisson Mixture
Regression Models
In this section, a general introduction to the mixture regression
model, followed by the mixture of regression classes, and
implementation of PMRM followed by the assessment of the
proposed ZIPMRM for classification of the features are explained.

Mixture Regression Model
In the data acquisition procedure, there might be omission
of certain vital covariates, and therefore, the occurrence of
unobserved heterogeneity is high in regression. In such cases,
the main features are not taken into consideration and thereby
it leads to the estimation of biased parameter values. The
homogeneous observations are grouped into certain categories
or clusters so that the various heterogeneity issues can be
solved by the mixture regression models (Wang et al., 1996).
The uniform observations can be standard, fixed, or having
saturated variables. The calculation of posterior probabilities has
a profound influence on the mixture regression models for the
specific variables. Depending on the discriminant analysis rule,
the grouping of the standard variable models is done followed
by the classification. For the mixture distribution, the joint
distribution is mentioned and the response to the conditional
distribution is analyzed. By utilizing mixture regression models
for the distributions of parameter, the normality is relaxed, as it
utilizes a generalized linear model (Wang et al., 2002). A mixture
of q components is assumed in a finite mixture regression
composition, where a specific parametric distribution is traced by
every component in the model. For every observation, a weight
probability is assured by all the components so that the weighted
summation value over the q components is expressed by the
mixture distribution. The classification can be improved in most
segmented cases with the help of this mixture model. To the
clustering model, a very high heterogeneous composition can
be implemented if the regression parameters are assumed to be
relaxed for the generalized linear model.

Mixture Regression Classes
When analyzing the mixture regression models, two classes,
namely, (a) standard variable mixture regression models and (b)
concomitant values mixture regression models can be considered.
A generalized linear model with similar error and link function is
used to describe the component here, and it is done with various
linear operators. For a generalized linear model, a standard
mixture regression is expressed as follows:

f (u| v,8) =
∑

q
πqfq

(
u| v; β0q, βq

)
(14)

where u describes the response variable with an exponential
distribution, which is dependent on component q. For the
response variable, the conditional expectation is expressed as
follows:

E (u| v) = h−1
(
β0q + v

′

βq

)
(15)

where h(.) expresses the link function. Here,
8 = {β0, β, π} , β0 =

(
β0q
)
, β =

(
βq
)
. The commonly used
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probability distributions are Poisson, geometric, normal,
binomial, and negative binomial (Faria and Goncalves, 2013).
In the analysis of data, the nature of the counts should be
analyzed, and so, the Poisson distribution is considered here. For
every component involved, the assumption is that for the same
parametric family, component-specific densities are considered,
that is, fq = f for simple notation representation. For all the
components, the link function is similar and expressed as hq = h.
There is no prior knowledge about the distribution of family
differences in this cluster-wise regression model.

For the prior class probabilities, the concomitant variable
model forms as a popular extension, so that based on the set
of explanatory variables, the weight πq can be fully dependent
on it. The random effects do not have any influence on the data
distributions and on the parameter estimates, and therefore, the
substantial changes are not required. Depending on a regression
model based on Equation (14), a concomitant variable mixture
regression model is framed, which utilizes posterior probability
parameterization so that it is fit into two distinct sets v = (v1, v2)
and the range of concomitant variables can be conquered easily.

The initial set influences u along with the latter set influences
the latent group specifier w variable as follows:

f (w| v;π) = πqπ q|v (16)

For the response variable, the marginal distribution is
expressed as follows:

f (u| v1, v2;8) =
∑

q
π q|v2 fq

(
u| v1; β0q,βq

)
(17)

Here,8 = {β0, β, γ0, γ} , β0 =
(
β0q
)
, β =

(
βq
)
, γ0 =

(
γ0q
)
and

γ =
(
γ q

)
.

The component indicator functions are used to derive γq,
which are expressed as follows:

π q|v =
exp

(
γ0q + v

′

γq

)
6g exp

(
γ0g + v′γg

) (18)

Its identification is usually considered as zero. With the help
of model intercept, the aliasing of the intercept parameters β0 is
done, which results in avoidance of the huge standard errors.

Poisson Mixture Regression Model Implementation
In this model, the poison density function of a model, which has a
distribution with response U and covariate vector v, is expressed
as

f (u,λ) =
e−λλu

u!
IndB(u) (19)

In Equation (19), E (u) = λ, the link function
h (λ) = log (λ) = βTv,B = {0, 1, 2, ...}, represents the non-
negative integer set and IndB(u) represents the indicator
function. If ′u′belongs to the set B, the value becomes one,
otherwise its value is zero. The variance var(U) = E(U) = λ,
and dispersion issues are prevalent if var (U) > E (U) for
overdispersion and Var (U) < E (U) for underdispersion.
Underdispersion is less common than overdispersion

(Karlis and Rahmouni, 2007). When analyzing the Poisson
distribution, if the count data are relatively overdispersed, then it
leads to misleading results. Therefore, extradispersion problems
have to be dealt more carefully. In a population in which there
is too much unobserved heterogeneity, the appropriate finite
mixture model is utilized, which has two more sub collective
groups and are highly mixed in different proportions.

When covariate information is present, the fitting of the
extradispersed data can be done in PMRM provided the
objectives are assumed to be obtained from a finite mixture.
Sometimes, the distribution can vary in different intercepts and
the explanatory variable is presumed to have a heterogeneous
nature. The clustering of the count outcomes is considered and
then the regression model is incorporated with random effects
so that in between the observations, an inherent correlation can
be observed. Some of the common Poisson Mixture Models
(PMM) are Zero Inflated Poisson (ZIP), negative binomial, and
Zero Inflated Negative binomial (ZINB) models, respectively
(Mufudza and Erol, 2016). To manage heterogeneity and the
additional zeros in the data, the ZIP model is usually utilized.
Depending on Poisson distribution, a finite mixture model can
be expressed as follows:

fk (ui, θik) =
e−λik (λik)

ui

ui!
IndB(ui) (20)

In Equation (20), log λik = βT
k vi, i = 1 : m, k = 1 : l and for the l

component mixture,

E (ui) =

l∑
i=1

πkλik (21)

Var (Ui) = E (var (Ui|Wi))+ var (Ui|Wi) = E (Ui)+ yik
(22)

where λik = exp
(
βT

k vi
)

represents the mean of the ith responsive
situation to its respective membership in the kth constituent
of the mixture, yik = 6πkλ

2
ik −

(
6πkλik

)2 and Wk represents
the component specifier of zeros and ones. Here, Wik = (Wk) i
belongs to one if it comes from component i and zero
otherwise. yik = 0, if λ1i = λ2i = ...λli, specifying that more than
a homogeneous model, the mixture model performs much better.
For PMRM, the heterogeneity is varied across individuals is such
a manner that it has a discrete mixture distribution.

Assessment of a Zero Inflated Poisson Mixture
Regression Model
Depending on the total number of counts being generated in
the model, the data with many zeros can be served with the
help of ZIPMRM. To manage both the zeros and heterogeneity,
ZIPMRM acts as a very special mixture regression case. It
comprises of a normal count distribution, which can be either
a negative binomial or Poisson along with binary distribution,
which can be degenerated at zero. In the analysis, the zeros may
or may not be included with the non-zeros. This mechanism is
considered as a dual data-generating mechanism, where zeros are
generated from one side and a full range of counts is generated
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from the other side. Here, the consideration of ZIP model is done
as there were structured zeros inside the data, which is indicated
as true zeros in terms of the counting process. The assumption in
the ZIP model is as follows:

ui =

{
0, if featurei = 0

Poisson (λi, β, γ) , if featurei = 1
(23)

where featurei indicates whether the constituent i has the disease
or not (i.e., epileptic or not, schizophrenic or not).

Deep Learning Model Using Bi-Long
Short-Term Memory
By means of considering the selected features, the classification
is also done by means of utilizing a deep learning model with
the help of BiLSTM where a bidirectional recurrent network is
constructed by means of utilizing LSTM units. The past and
future information can be captured easily so that the features
can be classified by means of utilizing non-linear functions
(Chen et al., 2017). BiLSTM comprises of both forward LSTM
and backward LSTM. The information, which is not useful
for classification, is omitted completely by LSTM and only the
valuable information is passed to the future time point. Every
LSTM unit comprises of an input gate, an output gate, and a
forget gate as projected in Figure 3.

In the LSTM unit, the transmission of information is
dependent on the forget gate. To assess whether the information
is useful or not for detection or classification of the disease,
it receives the previous hidden state ht−1 and the current
information xt continuously. To obtain the current cell state C,
the effective utilization of the previous cell state Ct−1, previous
hidden state ht−1 along with the current information xt is done
by the input gate. The output gate is utilized to provide the
probability of two cases (epileptic or not, schizophrenia or not) by
means of utilizing current information or previous information.
The calculation of each gate at time t for every LSTM unit is
expressed as follows:

it = δg
(
Wi.

[
ht−1, xt

]
+ bi

)
(24)

ot = δg
(
Wo.

[
ht−1, xt

]
+ bo

)
(25)

ft = δg
(
Wf .

[
ht−1, xt

]
+ bf

)
(26)

Ct = ftCt−1 + itδc
[
Wc.

[
ht−1, xt

]
+ bc

]
(27)

ht = otδc (Ct) (28)

where the sigmoid function is represented as δg , the cell states
are expressed by C, hyperbolic tangent function is expressed by
δc, and the hidden states is denoted by h. The formulation of the
forget gate, output gate, and input gate is done in terms of f , o, and
i, respectively. The weight of each gate is represented as Wand the
bias value is specified by b. By utilizing the current signal value xt
along with the previous hidden state ht−1, the computation of the
input of each function is done.

The EEG-based epileptic/schizophrenia classification by
means of utilizing Bi-LSTM is illustrated in Figure 4, in which
the input is nothing but the selected features. xt specifies the value
at t. The hidden state of the forward LSTM is specified by hf

t and
the hidden state of the backward LSTM is specified by hb

t . The
features are processed by the forward LSTM from left to right
and the hidden layers are utilized to pass the information. Based
on the current input xt and the previous hidden state hf

t−1, the

computation of the current hidden state hf
t is done. The future

information is passed to the history unit by the backward LSTM,
and based on the input xt along with the current hidden state
hb

t , the calculation of the previous hidden state hb
t−1 is done. The

weights of Bi-LSTM are formulated as W =
{

Wf ,Wi,Wo,Wc
}

.
The cross entropy is utilized to establish the loss function of the
Bi-LSTM. For minimizing the loss function L, the training of
the model is done to compute the weights W and bias b. To
update the parameters Wand b, the utilization of gradient descent
algorithm is done where it is formulated as follows:

W =W − η
∂L
∂W

(29)

FIGURE 3 | Simple representation of an Long Short-Term Memory (LSTM) unit.
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FIGURE 4 | Utilization of Bi-Long Short-Term Memory (LSTM) for classification.

b = b− η
∂L
∂b

(30)

where the learning rate is indicated by η. The utilization of the
backward propagation algorithm is done so that the parameters
Wand b at every layer are updated. The final output of the Bi-
LSTM is followed by means of using a Fully Connected (FC)
Layer, wherein the activation function utilized is softmax and this
is done so that the mapping of the inputs is done successfully
into the probability values. The softmax function is expressed as
follows:

y(i)j =
ez(i)j∑C
j=1 ez(i)j

(31)

RESULTS AND DISCUSSION

The FHM is utilized for the sake of extracting the features
in terms of parameter components from the EEG signals. The
features are selected with the help of a hybrid swarm algorithm
and later classified with the developed classification models. The
proposed model has been validated on EEG datasets and the
following results have been obtained in terms of classification
accuracy. The EEG datasets considered were Bonn Epileptic
dataset, which has five subsets such as set A, set B, set C, set
D, and set E, respectively (Andrzejak et al., 2001) along with a
Schizophrenia dataset (Olejarczyk and Jernajczyk, 2017). All the
in-depth details of the datasets are provided in the respective
reference links. As far as the epileptic dataset is considered,
Set A and B are obtained from five healthy volunteers; Set
C, D, and E are obtained from five epileptic patients. The
recorded period of Set A and B belongs to normal category and
the recorded period of Set C and D represents the inter-ictal

state (seizure free intervals) and Set E represents the ictal state
(seizure activity). Six classification problems were studied for
the epileptic dataset such as A-E, B-E, C-E, D-E, AB-E, CD-E,
and for schizophrenia dataset, the classification study is between
healthy vs. schizophrenia patients. The signal datasets were
initially preprocessed using independent component analysis
(ICA) before implementing the proposed methodology. A total
of [4,097 × 100] data are present in the epileptic dataset, and
initially when the features are extracted by FHM model, it is
reduced to [2,500 × 50], and when the essential features are
selected by HDPAB, it is reduced to [1,500 × 25] and it is
fed to classification. Similarly, in schizophrenia dataset, 225,000
samples are present, which is split into collections of 5,000 sample
segment, wherein each channel represents the data with a matrix
of [5,000 × 45] per patient and for all the 19 channels, it is

TABLE 2 | Performance analysis of Fusion Hybrid Model (FHM) and Hybrid
Differential Particle Artificial Bee (HDPAB) for different datasets in
terms of accuracy.

Classifier A-E B-E C-E D-E AB-E CD-E Schizophrenia

KNN 80.11 76.67 77.34 80.49 76.20 80.88 83.98

NBC 77.21 79.82 77.92 84.33 77.35 84.22 85.54

Adaboost 87.42 87.82 87.58 87.10 89. 37 85.36 88.47

LDA 81.67 77.53 80.01 86.71 83.78 77.39 77.14

SVM 96.88 93.89 95.97 92.93 91.08 94.6 95.67

QDA 81.47 85.81 83.34 84.05 82.02 84.85 88.59

HMM 92.31 91. 92 88.11 89.18 89.37 85.11 86.11

GMM 82.31 79.12 81.29 82.38 81.83 78.59 79.71

ZIPMRM 95.31 92.58 91.82 92.47 93.59 93.48 94.83

LSTM 98.61 96.31 96.61 94.92 95.71 96.82 97.49

Bi-LSTM 98.79 97.71 98.66 98.75 97.14 96.49 98.35
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represented as [5,000× 45× 19]. When the features are extracted
by FHM model for a single channel, it is reduced to [2,500× 35],
and when the essential features are selected by HDPAB, it is
reduced to [1,500 × 25] and it is fed into classification. The
classification of dataset is in such a way that 80% is training data,
10% is validation data, and 10% is test data. A 10-fold cross-
validation technique is utilized for the ZIPMRM, deep learning,

and machine learning models. Randomly, the dataset which is to
be classified is split into 10 different parts. As usual, nine parts
of the data were utilized for training and validation purposes and
the rest one part was utilized for testing purposes. This process
was repeated for about 10 times so that under every circumstance,
different parts of training, testing, and validation data can be used
effectively. Other hyperparameter settings for the deep learning

TABLE 3 | Comparison study with the works reported on the similar datasets used for both epilepsy classification and schizophrenia classification.

Classification issue dealt References Technique utilized Classification accuracy (%)

A vs. E Samiee et al., 2015 Discrete Short Time Fourier transform with Multilayer Perceptron 99.80

Bhardwaj et al., 2016 EMD combined with genetic programming 98.64

Diykh et al., 2017 Establishing a weighted complex network with SVM classification 100

Sharma et al., 2018 Orthogonal wavelet implementation with SVM 100

Proposed method FHM + HDPAB+ ZIPMRM 95.31

FHM + HDPAB+ LSTM 98.61

FHM + HDPAB +BiLSTM 98.79

B vs. E Diykh et al., 2017 Establishing a weighted complex network with SVM classification 99.76

Sharma et al., 2017 Analytic Time Frequency Flexible Wavelet Transform with SVM 82.88

Nicolaou and Georgiou, 2012 Permutation entropy with SVM 93.55

Proposed method FHM + HDPAB+ ZIPMRM 92.58

FHM + HDPAB+ LSTM 96.31

FHM + HDPAB +BiLSTM 97.71

C vs. E Samiee et al., 2015 Discrete Short Time Fourier transform with Multilayer Perceptron 98.50

Diykh et al., 2017 Establishing a weighted complex network with SVM classification 96.00

Sharma et al., 2017 Analytic Time Frequency Flexible Wavelet Transform with SVM 99.00

Nicolaou and Georgiou, 2012 Permutation Entropy with SVM 88.00

Proposed method FHM + HDPAB+ ZIPMRM 91.82

FHM + HDPAB+ LSTM 96.61

FHM + HDPAB +BiLSTM 98.66

D vs. E Samiee et al., 2015 Discrete Short Time Fourier transform with Multilayer Perceptron 94.90

Diykh et al., 2017 Establishing a weighted complex network with SVM classification 93.70

Nicolaou and Georgiou, 2012 Permutation Entropy with SVM 79.94

Riaz et al., 2016 EMD and SVM 93.00

Proposed method FHM + HDPAB+ ZIPMRM 92.47

FHM + HDPAB+ LSTM 94.92

FHM + HDPAB +BiLSTM 98.75

AB-E Diykh et al., 2017 Establishing a weighted complex network with SVM classification 96.40

Raghu et al., 2019 Analysis of Matrix Determinants with Multilayer Perceptron 97.10

Proposed method FHM + HDPAB+ ZIPMRM 93.59

FHM + HDPAB+ LSTM 95.71

FHM + HDPAB +BiLSTM 97.14

CD-E Diykh et al., 2017 Establishing a weighted complex network with SVM classification 94.50

Raghu et al., 2019 Analysis of Matrix Determinants with Multilayer Perceptron 96.85

Proposed method FHM + HDPAB+ ZIPMRM 93.48

FHM + HDPAB+ LSTM 96.82

FHM + HDPAB +BiLSTM 96.49

Schizophrenia dataset Oh et al., 2019 11 layered CNN 98.07 and 81.26

Prabhakar et al., 2020a Nature inspired learning with machine learning 98.77

Prabhakar et al., 2020b Swarm intelligence with machine learning 92.17

Proposed method FHM + HDPAB+ ZIPMRM 94.83

FHM + HDPAB+ LSTM 97.49

FHM + HDPAB +BiLSTM 98.35

Frontiers in Human Neuroscience | www.frontiersin.org 11 June 2022 | Volume 16 | Article 895761

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-895761 May 30, 2022 Time: 18:38 # 12

Prabhakar et al. A Fusion Based Technique

are as follows: The optimizer used is Adam, learning rate is set at
0.01, the batch size is set at 40, and the number of hidden units
is set as 80. The L2 regularization rate is set as 10−4. The other
classifiers utilized for comparison along with the deep learning
models are K-Nearest Neighbor (KNN), Naïve Bayesian Classifier
(NBC), Adaboost, Linear Discriminant Analysis (LDA), SVM-
RBF, Quadratic Discriminant Analysis (QDA), HMM, and GMM.

Table 2 expresses the performance analysis of FHM and
HDPAB for different datasets in terms of accuracy. When the
KNN classifier is considered, for the all datasets, a minimum
classification accuracy of 76.20% was obtained for AB-E dataset
and a high classification accuracy of 83.98% was obtained for
schizophrenia dataset. Similarly, when NBC is considered, a low
classification accuracy of 77.21% was obtained for A-E dataset
and a high classification accuracy of 85.54% was obtained for
schizophrenia dataset. The other techniques such as Adaboost,
LDA, and QDA are performed in an average manner producing
accuracies in the range of seventies and eighties. SVM classifier
performed well by producing a high classification accuracy
of 95.67% for schizophrenia dataset and a low classification
accuracy of 91.08% for AB-E dataset. Similarly, HMM and
GMM also performed in an above average manner, as the
classification accuracies are found in the range of eighties. The
ZIPMRM too performed well by producing a high classification
accuracy of 95.31% in the A-E dataset and a low classification
accuracy of 91.82% in the C-E dataset. Finally, when classified
with LSTM and Bi-LSTM, the performance is exemplary, as a
very high classification accuracy is obtained easily, with LSTM
reporting a higher accuracy of 98.61% for the A-E dataset
and a lower accuracy of 94.92% in the D-E dataset. Similarly,
Bi-LSTM reports the highest classification accuracy of 98.79%
in the case of A-E dataset and a comparatively low accuracy
of 97.14% in the case of AB-E dataset, thus concluding that
it performs supremely well when compared with the other
conventional classifiers.

Comparison of Our Results With the
Previous Studies
The results with the proposed flow of methodology are compared
with the existing studies and are shown in Table 3 for the
Bonn epileptic dataset and schizophrenia dataset. Few studies are
available in the literature regarding schizophrenia classification
because the research is still under progress, while as far as the
epilepsy classification is concerned, the field is more established
and so some of the prominent studies in recent years are
compared with our results.

It is quite evident from Table 3 that the proposed methods
produced a very good result in comparison with the previous
results. Although at some places, the obtained classification
accuracy may be slightly less by a range of 1–2%, but it should not
deter the researchers and readers into concluding that the method
is not versatile and innovative or even considering the necessity
of the proposed method. In the field of machine learning and
deep learning, every technique is pretty useful and has its
own merits and demerits, and every proposed methodology
has to be acknowledged unless it performs very worse. On

considering this aspect, the proposed methodology performed
very well by producing an overall high classification accuracy of
98.79% for epileptic dataset and 98.35% for the schizophrenia
dataset. Moreover, previous methods have only concentrated on
experimental analysis without any strong mathematical model
to support it; however in our study, a good mathematical
justification is also given, and it can be implemented to other
biosignal processing datasets to obtain a good accuracy.

CONCLUSION AND FUTURE STUDIES

In various fields of biomedical engineering, neural engineering,
and neuroscience, the most widely used technique is EEG.
Due to its low financial cost, very high temporal resolution
accompanied by other exemplary attributes, it is widely used
in different fields such as seizure detection, dementia analysis,
alcoholism detection, analysis of sleep disorders, etc. To rely less
on trained professionals, the efficient EEG signal classification
is quite important. To the EEG data, a variety of conventional
and advanced pattern recognition, soft computing, and machine
learning algorithms were implemented. As the standardized
EEG classification model of EEG includes preprocessing for
removal of artifacts, feature extraction, feature selection, and
classification, in our study, a fusion hybrid model called
FHM was developed initially for feature extraction. A hybrid
swarm algorithm called HDPAB was developed was feature
selection and was followed by classification with ZIPMRM,
deep learning, and eight other conventional classifiers. The
best results are obtained for the A-E dataset wherein highest
classification accuracy of 98.79% is obtained with Bi-LSTM,
and for schizophrenia dataset, the highest classification accuracy
of 98.35% is obtained. The second best results were obtained
utilizing Bi-LSTM for D-E dataset reporting a classification
accuracy of 98.75%, and for schizophrenia dataset, a higher
classification accuracy of 97.49% is obtained when utilized
with LSTM. The third best results were obtained when Bi-
LSTM is utilized for C-E dataset reporting a classification
accuracy of 98.66%, and for schizophrenia dataset, a classification
accuracy of 95.67% is obtained with SVM. Future studies
aim to develop efficient hybrid models and clubbing it with
a variety of other deep learning techniques for the efficient
classification of biosignals.
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