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Introduction: We have demonstrated that intensive cognitive training can

produce sustained improvements in cognitive performance in adolescents.

Few studies, however, have investigated the neural basis of these training

effects, leaving the underlying mechanism of cognitive plasticity during this

period unexplained.

Methods: In this study, we trained 51 typically developing adolescents on

cognitive control tasks and examined how their intrinsic brain networks

changed by applying graph theoretical analysis. We hypothesized that the

training would accelerate the process of network integration, which is a key

feature of network development throughout adolescence.

Results: We found that the cognitive control training enhanced the

integration of functional networks, particularly the cross-network integration

of the cingulo-opercular network. Moreover, the analysis of additional data

from older adolescents revealed that the cingulo-opercular network was

more integrated with other networks in older adolescents than in young

adolescents.

Discussion: These findings are consistent with the hypothesis that cognitive

control training may speed up network development, such that brain networks

exhibit more mature patterns after training.

KEYWORDS

cognitive control, cognitive training, adolescence, development, resting-state fMRI,
graph theory

Introduction

Cognitive control, the ability to guide behavior in a goal-directed fashion, is a key
requirement for everyday tasks, which improves throughout adolescence (Huizinga
et al., 2006; Luna et al., 2010). Given that cognitive control is a strong predictor of
crucial life outcomes such as academic achievement and mental health (Paus et al.,
2008; Moffitt et al., 2011), numerous studies have aimed at improving cognitive
control through cognitive training interventions in adolescents (for review, see
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Karbach and Unger, 2014). Despite growing interest in
cognitive training and reports of its effectiveness, relatively
little is known about the underlying mechanisms of these
training effects. This is because of the difficulty in combining
longitudinal neuroimaging analysis with controlled behavioral
interventions, especially in subjects such as children and
adolescents (Rueda et al., 2012; Astle et al., 2015). The goal of
the present study was to examine whether and how cognitive
control training alters brain networks during adolescence.

Cognitive control requires the coordination of executive
components such as task-set switching, adaptive gating, working
memory, and response inhibition, and thus, it involves widely
distributed brain circuitries (Lenartowicz et al., 2010; Cole
et al., 2013). Similarly, researchers have found that adolescent
cognitive control is not attributable to the isolated operations
of single brain regions but rather that it is dependent on an
interplay between large-scale brain networks (Dwyer et al., 2014;
Luna et al., 2015). Brain networks associated with cognitive
control include the fronto-parietal network (FPN) and cingulo-
opercular network (CON), which are deemed task-control
networks; the cerebellar network (CBN), which provides error-
related feedback to task-control networks; and the default
mode network (DMN), which is a task-negative network
(Dosenbach et al., 2008; Fair et al., 2009). Cognitive control
is supported by the ability for these specialized functional
networks to collaborate and flexibly integrate information (Cole
and Schneider, 2007). This fact suggests that the training of
higher-order cognitive skills, such as cognitive control, is likely
to have a broader impact on the brain at a systematic network
level, which cannot be fully captured by inspecting single brain
regions or tracts (Taya et al., 2015; Caeyenberghs et al., 2016).

Existing studies have demonstrated changes in brain
functional networks among adults after various types of
cognitive training, such as working memory training (Takeuchi
et al., 2013), reasoning training (Mackey et al., 2013) and
mnemonic training (Dresler et al., 2017). It should be noted,
however, that the same training could have different outcomes
in adolescents depending on the stage of brain development
in which the change takes place. While training in adults
largely modifies the existing neural architecture, training in
adolescents may still influence the ongoing construction of
neural structures (Galván, 2010). Thus, training effects in
adolescents are best understood in the context of the developing
brain because they result from an interaction between learning
and brain maturation (Jolles and Crone, 2012). One possible
mechanism of how training affects the developing brain is
that it may accelerate the maturational process, such that
brain structure and function become more similar to those of
adults after training (Jolles and Crone, 2012). In one study, for
example, young adolescents exhibited a more mature pattern of
fronto-parietal brain activation after intensive working memory
practices (Jolles et al., 2012). A similar effect was observed
in children who showed a more adult-like scalp distribution

of event-related potentials after participating in an executive
attention training (Rueda et al., 2005). Because few studies have
examined the impact of training on the brain in children or
adolescents, more work is needed to explain the process by
which cognitive training rewires the developing brain.

Developmental changes in brain functional networks
have been investigated using a powerful graph theoretical
approach applied to intrinsic connectivity at rest (Vértes
and Bullmore, 2015). The maturation of functional networks
during adolescence is primarily characterized by refinements
of network structures that are already present in infancy
and childhood (Grayson and Fair, 2017). Multiple reports
have found that basic network topologies are evident early in
development, but continue to evolve during adolescence in ways
that support the emergence of more complex cognitive abilities
(Cao et al., 2014; Gu et al., 2015). One core principle of network
maturation, which is particularly critical to the development
of cognitive control, is greater integration among networks
(Luna et al., 2015). Children display specialized networks with
similar organization structure to those of adults (Power et al.,
2012; Fair et al., 2013), but the integration between those
networks continues to strengthen during adolescence (Hwang
et al., 2013). A recent study directly investigating the neural
basis of cognitive control development has also found that the
foundational organization of brain functional networks does not
change from children to adults (Marek et al., 2015). However,
the process of network integration, particularly the integration
of the CON with other brain networks, has been shown to
continue throughout adolescence. Importantly, this increased
cross-network integration of the CON underlies behavioral
improvements in cognitive control (Marek et al., 2015).

Here, we trained typically developing adolescents on a set
of cognitive control tasks, and examined how their resting-
state functional networks changed by applying graph theoretical
analysis. Specifically, we hypothesized that cognitive control
training would accelerate the typical brain network development
of adolescents, and thereby promote the integration of
functional networks. This is consistent with previous studies
showing that cognitive training leads to neurophysiological
changes that seemingly expedite brain maturation (Rueda et al.,
2005; Jolles et al., 2012). Fifty-one young adolescents (age,
13.19 ± 0.65 years) were randomly assigned to the training
or the control condition, and they underwent resting-state
functional magnetic resonance imaging (rs-fMRI) before and
after training. We analyzed the degree of brain functional
networks, which is a commonly used graph theoretical measure,
and examined how the degree of brain functional networks
changed as a result of training. We used the ADHD-200 dataset,
comprising rs-fMRI scans from 58 typically developing older
adolescents (age, 17.17 ± 1.22 years), as a contrast group. The
network degree of these older adolescents was compared to
that of our young adolescents to test the hypothesis. Finally, we
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examined how changes in brain networks after training relate to
gains in behavioral performance measured outside the scanner.

Materials and methods

Participants

Sixty-four healthy participants aged 12–14 years enrolled in
the study. Participants were recruited through online posting
to community schools and private academies located in the
Seoul metropolitan region. A phone screen was used to assess
their medical history at the time of recruitment. Participants
previously diagnosed with a neurological or psychiatric
illness were excluded. All participants were right-handed,
free from prior head injury, and eligible for the magnetic
resonance imaging (MRI) environment. Before participation, all
subjects provided informed written consent approved by the
institutional review board of the Seoul National University.

Participants underwent MRI and cognitive tests before and
after 6 weeks of training. Three participants who dropped out
of training and eight participants who failed to complete 80% of
the required training schedule were excluded from the analysis.
Two additional participants were excluded due to acquisition
problems (i.e., scanner malfunction and poor visual acuity). We
found no subject whose head motion exceeded 3 mm translation
or 3 degrees rotation. Final data are reported for 25 participants
(11 females) in the training group and 26 participants (11
females) in the control group (age, 13.19 ± 0.65 years).

Data regarding older adolescents were provided by the
ADHD-200 Consortium (Brown et al., 2012), who maintain
an open access dataset comprising data from children with
and without ADHD, aggregated from eight different sites. The
current study used data from the University of Pittsburgh and
the New York University (NYU) Child Study Center, the sites
that had the largest number of late adolescents without ADHD.
Detailed descriptions of the participant recruitment procedures
and selection criteria are available online at http://fcon_1000.
projects.nitrc.org/indi/adhd200/.

The original Pittsburgh and NYU datasets consisted
of resting-state data collected from 361 subjects: 98 from
Pittsburgh and 263 from NYU. We restricted our analysis to
typically developing adolescents whose ages ranged from 15 to
18 years (n = 86). Of those, four subjects who had fewer resting-
state scans than other subjects were excluded. We also excluded
two left-handed subjects and two subjects with excessive head
motion (>3 mm translation or >3◦ rotation). All subjects had
IQ scores within the normal range. According to the protocol
shared online, ADHD-200 participants did not engage in any
type of cognitive intervention throughout the course of their
participation. The final set of subjects consisted of 58 individuals
(31 females; age, 17.17 ± 1.22 years). Subject exclusion criteria
for the ADHD-200 dataset are summarized in Table 1.

TABLE 1 Subject exclusion criteria for ADHD-200 dataset.

Exclusion criteria No. of subjects excluded

Original dataset University of
Pittsburgh (n = 98)

NYU Child Study
Center (n = 263)

Age < 15 or > 18 years 53 222

ADHD diagnosed 3 17

Fewer fMRI scans 1 3

Left-handedness 1 1

Excessive motion 1 1

Subjects included 39 (21 females) 19 (10 females)

Cognitive assessment

A battery of cognitive tests were administered pre- and
post-training. The tests were selected that tap into different
aspects of cognitive control. It included the following: (A) The
Stroop task measures response inhibition and interference
resolution (Shin and Park, 2007). The outcome variables are
the number of items completed in 45 s for each condition
(W, word score; C, color score; CW, color–word score).
The interference was quantified, as Golden (Golden, 1978)
proposed, by first calculating a predicted color–word score
(PCW) on the basis of the word (W) and color (C) scores:
PCW = 45/{[(45 × W) + (45 × C)]/(W × C)} = (W × C)/(W + C).
This score was then subtracted from the actual color–word
score (CW) to calculate the interference score (I = CW –
PCW). Because a higher actual color–word score relative to
the predicted score suggests one’s performance was better than
anticipated, the higher interference control score indicates
better interference control; (B) the Trail Making Test (TMT)
comprised parts A and B. In part A, the subjects used a pencil to
connect a series of 25 encircled numbers in numerical order. In
part B, the subjects connected 25 encircled numbers and letters
in numerical and alphabetical order, alternating between the
numbers and letters. TMT reflects set-switching and executive
control, and the interference score was calculated as follows:
Interference score = (TMT-B score – TMT-A score) / TMT-A
score (Lee et al., 2002). Because TMT-B captures the additional
cost for alternating switches, the higher interference score
indicates poorer interference control (Sánchez-Cubillo et al.,
2009); (C) The Digit Span test was measured for forward-
and reverse-order recall of digit sequences. Digit sequences
were presented beginning with a length of 2 digits, and two
trials were presented at each increasing list length. Testing
ceased when the participant failed to accurately report either
trial at one sequence length or when the maximal list length
was reached. The total number of lists reported correctly was
combined across forward span and backward span to calculate
the test score. The Digit Span test measures verbal working
memory (Hwang et al., 2012); (D) In the Symbol Span test,
subjects were shown an increasing number of simple visual
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designs. After the display was removed, the subjects were asked
to identify the correct designs while also stating their correct
presentation order from left to right. The total number of
designs reported correctly gave the test score. The Symbol Span
test measures visual working memory (Chey et al., 2012); (E)
In the Arithmetic test, subjects were verbally presented with
hypothetical scenarios involving simple arithmetic calculations
and were asked to calculate the correct answers. The number
of questions that subjects correctly answered produced the
test score. The Arithmetic test assesses working memory
and mathematical reasoning (Kwak et al., 2011); (F) In the
Block Design test, the subjects were asked to rearrange the
three-dimensional blocks that have various color patterns on
different sides to match a pattern that they were presented
with. The items in the Block Design test were scored both by
accuracy in matching the pattern and by speed in completing
each item (Kwak et al., 2011); (G) In the Matrix Reasoning test,
the subjects were shown colored matrices of visual patterns
with something missing and were asked to select the missing
piece from a range of options. The total number of questions
answered correctly gave the test score. The Block Design test
and the Matrix Reasoning test evaluate perceptual organization
and perceptual reasoning, both considered adequate measures
of fluid intelligence (Kwak et al., 2011).

Three subjects did not complete the TMT because they did
not know the order of the Korean alphabet. Also, STROOP
score for one subject was missing because the subject had a
mild color weakness. Missing values were imputed with the
aregImpute function in the Hmisc package for R. Missing values
were predicted by other cognitive test scores using bootstrap
and predictive mean matching (For the details of the imputation
method, see Harrell and Harrell, 2018).

Additionally, we collected the Perceived Stress Scale (Cohen
et al., 1983) scores during the pre- and the post-training visits,
since stress has been associated with changes in FP connectivity
(Liston et al., 2009). Further, because juvenile impulsivity has
also been reported to alter the resting functional connectivity
(FC) (Shannon et al., 2011), we collected the UPPS-P Impulsive
Behavior Scale (Whiteside and Lynam, 2001) scores at both time
points.

Cognitive control training

We modified a multicomponent cognitive control training
program (Kim et al., 2017) for the adolescents. The training
program consisted of seven computerized tasks that could
be performed via the internet. Given that cognitive control
comprises a set of cognitive components including task-set
switching, updating, working memory, and response inhibition
(Miyake et al., 2000), each task was designed to tap into one
or more of these components. The procedure of each task
and cognitive components they are designed to target are
summarized in Table 2.

TABLE 2 A description of the tasks for training cognitive control.

Task Description Related
components

Location-
Number
Stroop

Participants were presented with
number matrices (4 × 4 and
5 × 5). They were asked to
report the horizontal location of
the number not the number
itself. Every trial in this task was
incongruent (e.g., ‘4’ in second
location).

Inhibition

Rock-Paper-
Scissor

Participants were presented with
one of the three hand shapes
constituting Rock-Paper-Scissor,
and they were instructed to win
or lose the game depending on
the color of the hand. There
were four conditions;
participants must win to the
pink hand, lose to the blue hand,
apply the rule same as that of the
previous trial to the yellow hand,
apply the rule opposite to that of
the previous trial to the green
hand.

Inhibition, shifting,
memory updating

Counting
clovers

On the right and left sides of the
screen two groups of clovers
(green group and orange group)
were presented simultaneously.
The color of the clover group on
each side was randomly changed
(i.e., sometimes green on the left
side and orange on the right side
sometimes vice versa). The task
was to respond which group has
a greater number than the other
(right button for green group
and left button for orange group
irrespective of their location). At
the same time participants had
to press the space bar whenever
the total sum of the numbers
was 3, 5, 7, 9, and 11.

Inhibition,
dual-tasking

Updating There were three versions of the
updating task (i.e., ‘color,’
‘location,’ and ‘letter’). In the
color updating task, colored
circles were presented serially
and randomly with varied
length. The task was to recall the
last several colors as quickly as
possible. Locations and Korean
letters instead of colored circles
were used in the other two
versions.

Inhibition, memory
updating

Star and Moon There were four types of stimuli
comprising the combinations of
two colors (yellow and blue) and
two shapes (star and moon).
Participants were instructed to
respond to stimuli only based on
colors or shapes at the beginning
of each set of trials.

Inhibition, shifting
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Both groups performed the training at home. The training
lasted 6 weeks, with the training group performing five sessions
a week (30 sessions in total) and the control group two sessions
a week (10 sessions in total). For the training group, each
session comprised three different tasks with a total duration
of approximately 30 min. The tasks were selected for each
session in a way all seven tasks were evenly distributed across
sessions. The task difficulty was adjusted on a trial-by-trial
basis according to the individual’s improvement as the sessions
proceeded. We used the active control group to control for
placebo effect (Klingberg, 2010). For the control group, each
session comprised two tasks, but took less than 10 min to
complete because the tasks were designed not to progress to
more difficult levels despite improvement. In other words, the
control group performed the same set of tasks as the training
group, but the task difficulty was fixed at the lowest level.
Each individual’s training record was monitored online by
the researchers. If an individual showed signs of the lack of
engagement with the tasks (e.g., too long response time for each
trial, too many incorrect responses in a row), the researchers
contacted the trainee and ensured that they grasp rules of the
tasks correctly and pay close attention while performing the
tasks. Eight participants who failed to complete 80% of the
required training schedule were excluded from the analysis.

The duration and intensity of the present training was
determined on the basis of the existing cognitive training

literature. Studies show variations in the duration and intensity
of training regimes, which understandably impact the success of
training interventions (Jaeggi et al., 2008; Alloway et al., 2013).
Most published training regimes comprise approximately 20
training sessions each lasting approximately 30 min; therefore,
our training duration should be sufficient to induce behavioral
changes (von Bastian and Oberauer, 2013; Noack et al., 2014).
With respect to the intensity of training, task difficulty was
designed to significantly tax the cognitive resources of young
adolescents. By utilizing adaptive training algorithms, we kept
the task challenging throughout the training phase, and thereby
maximized the engagement of cognitive control in trained
subjects.

Image acquisition and pre-processing

Anatomical and functional MRI scanning was performed
on a 3T Siemens Tim Trio at the Brain Imaging Center
at the Seoul National University. Subjects’ heads were fixed
using foam padding and a 32-channel head coil. T1-weighted
structural images were collected using a magnetization-prepared
rapid gradient echo (MPRAGE) sequence (TR = 2300 ms,
TE = 2.36 ms, 1.0 × 1.0 × 1.0 mm voxels, FOV = 256 mm).
During the 6-min resting-state scan, the participants were asked
to remain relaxed with their eyes open while gradient echo EPI

FIGURE 1

Anatomical location of ROI. Regions are colored by network membership (yellow, FPN; black, CON; red, DMN; blue, CBN) and overlaid on a
cortical surface.
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images were acquired (TR = 2200 ms, TE = 30 ms, 33 axial slices,
3.0 × 3.0 × 3.5 mm voxels, flip angle = 79◦, FOV = 240 mm,
GRAPPA factor 2). Prior to the resting-state scan, the subjects
underwent two sessions of a cognitive control task fMRI. Data
from the task fMRI sessions will be reported elsewhere.

Image pre-processing was performed using the Statistical
Parametric Mapping toolbox (SPM121) running under Matlab
R2017a (Mathworks). Each subject’s EPI images were unwarped
using field maps and were realigned using a six-parameter
(rigid body) spatial transformation with the first image as a
reference. The images were then corrected for differences in slice
timing acquisition. Spatial normalization was achieved via the
Diffeomorphic Anatomical Registration through Exponentiated
Lie Algebra procedure (Ashburner, 2007). EPI images were co-
registered to T1 images and a sample-specific template was
created using all subjects’ T1 images. Then, the deformation of
the T1 images to a sample-specific template was calculated and
applied to normalize the EPI to standard space. The images were
finally smoothed with an 8-mm full-width at half-maximum
Gaussian kernel.

The Pittsburgh and NYU data were acquired using an
imaging protocol similar to that used for the collection of
the Seoul National University data. For the Pittsburgh data,
MRI scanning was performed on a 3T Siemens Tim Trio
at the University of Pittsburgh Medical Center Magnetic
Resonance Research Center. T1-weighted images were collected
using a MPRAGE sequence (TR = 2100 ms, TE = 3.43 ms,
1.0 × 1.0 × 1.0 mm voxels). During the 5-min resting-
state scan, gradient-echo EPI images were acquired with the
following parameters: TR = 1500 ms, TE = 29 ms, 29 axial
slices, 3.1 × 3.1 × 4.0 mm voxels, GRAPPA factor 2. For the
NYU data, imaging was performed on a 3T Siemens Allegra
at the NYU Center for Brain Imaging. T1-weighted images
were acquired using a MPRAGE sequence (TR = 2530 ms,
TE = 3.25 ms, 1.3 × 1.0 × 1.3 mm voxels). A 12-min resting-state
scan comprising two sessions was acquired using a multi-echo
EPI sequence (TR = 2000 ms, TE = 15 ms, 33 axial slices,
3.0 × 3.0 × 4.0 mm voxels). More detailed descriptions of the
ADHD-200 imaging protocol can be found in the literature
(Bellec et al., 2017).

We applied standard pre-processing procedures to the
ADHD-200 fMRI data using SPM12 as follows: the images
were slice-time and motion corrected, registered to MNI space
using non-linear transformation, and smoothed with an 8-mm
Gaussian kernel.

Network definition

We used 34 previously defined regions of interest (ROI)
comprising four functional networks (i.e., FPN, CON, DMN,

1 www.fil.ion.ucl.ac.uk/spm/software/spm12/

CBN) whose coordinates were derived from FC mapping and
meta-analytic techniques (Dosenbach et al., 2008; Fair et al.,
2009; Figure 1). These networks were chosen for their central
involvement in exerting cognitive control. ROI were generated
as 7.5-mm radius spheres around a center coordinate. Each ROI
represented a node of the network. The MNI coordinates and
the corresponding regions for all sets of ROI are listed inTable 3.

Functional connectivity analysis was performed using the
CONN toolbox v17 (Whitfield-Gabrieli and Nieto-Castanon,
2012), implemented with SPM12. For both training and ADHD-
200 datasets, an exact noise reduction method called CompCor
was used to extract the principal components from white matter
and cerebrospinal fluid signals (Behzadi et al., 2007), which
were entered as confound regressors in a subject-level GLM.
This approach corrects for physiological and other spurious
noise without relying on global signal regression, which has
been shown to introduce artifactual anticorrelations (Murphy
et al., 2009; Chai et al., 2012). Given the importance of reducing
motion artifacts, we used the Artifact Rejection Toolbox (ART2)
to detect outlier image frames based on brain activation and
head movement (motion scrubbing; Power et al., 2014). In
order to detect outlier frames in brain activation data, the
global signal was calculated across time and Z-normalized.
Outliers were defined as frames in which the global signal
fell outside 5 SD. Similarly, motion outliers were defined as
points in which the frame-wise measures of motion exceeded
0.9 mm. In addition to the six realignment parameters (three
translation and three rotation parameters) and their first order
derivatives, outlier frames identified using ART were included
as confound regressors. The data underwent linear detrending
and a temporal filter of 0.009 and 0.08 Hz was applied to
focus on low frequency fluctuations (Fox et al., 2005). For each
participant, a time series was calculated by averaging the BOLD
signal across all voxels within each ROI. Pearson correlation
coefficients were computed for each pair of ROIs, and were
Fisher-transformed to produce normally distributed values. The
resulting 34 × 34 symmetric correlation matrices represent the
networks of nodes and edges of each participant’s intrinsic FC
profile. Graph theoretical-based analyses were performed on
these networks. All statistical analyses were uncorrected for
multiple comparisons.

Graph theoretical analysis

Utilizing graph theoretical analysis, we tested the hypothesis
that cognitive control training would facilitate the integration of
functional networks in normal adolescents. To define network
integration, we used a basic and important graph measure,
degree. The degree of an individual node is equal to the
number of links connected to that node. The neurobiological

2 http://www.nitrc.org/projects/artifact_detect/
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TABLE 3 Regions of interest, their MNI coordinates, and functional properties.

Regions of interest (ROI) Abbreviations Coordinates Functional
network

Network
color

x y Z

Dorsolateral prefrontal cortex dlPFC –45.04 28.22 31.49 Fronto-Parietal Yellow

Dorsolateral prefrontal cortex dlPFC 47.88 28.55 29.87 Fronto-Parietal Yellow

Frontal frontal –42.77 8.23 35.67 Fronto-Parietal Yellow

Frontal frontal 45.82 8.54 34.13 Fronto-Parietal Yellow

Mid cingulate cortex mCC 1.57 –26.27 31.60 Fronto-Parietal Yellow

Inferior parietal lobule IPL –53.35 –49.24 41.54 Fronto-Parietal Yellow

Inferior parietal lobule IPL 56.91 –43.97 45.86 Fronto-Parietal Yellow

Intraparietal sulcus IPS –31.63 –57.05 48.66 Fronto-Parietal Yellow

Intraparietal sulcus IPS 34.24 –59.26 44.40 Fronto-Parietal Yellow

Precuneus precun –7.88 –71.31 44.07 Fronto-Parietal Yellow

Precuneus precun 12.67 –67.84 45.61 Fronto-Parietal Yellow

Anterior prefrontal cortex aPFC –29.21 57.15 7.07 Cingulo-Opercular Black

Anterior prefrontal cortex aPFC 30.32 57.13 15.02 Cingulo-Opercular Black

Anterior insula/frontal operculum aI/fO –36.76 16.73 –0.01 Cingulo-Opercular Black

Anterior insula/frontal operculum aI/fO 39.92 19.03 –2.67 Cingulo-Opercular Black

Dorsal anterior cingulate dACC 0.56 16.87 45.28 Cingulo-Opercular Black

Anterior thalamus ant thal –11.77 –13.81 4.83 Cingulo-Opercular Black

Anterior thalamus ant thal 12.01 –13.63 5.52 Cingulo-Opercular Black

Anteriormedial prefrontal cortex amPFC 2.19 61.08 12.87 Default Red

Ventromedial prefrontal cortex vmPFC –2.39 42.72 –11.01 Default Red

Superior frontal cortex sup frontal –13.52 47.22 49.24 Default Red

Superior frontal cortex sup frontal 19.98 46.28 48.76 Default Red

Inferior temporal inf temp –64.94 –35.43 –16.78 Default Red

Inferior temporal inf temp 71.12 –17.93 –20.83 Default Red

Parahippocampal parahippo –22.84 –27.94 –19.36 Default Red

Parahippocampal parahippo 27.96 –27.55 –18.02 Default Red

Posterior consulate cortex pCC –0.46 –33.00 40.15 Default Red

Lateral parietal latP –48.96 –66.24 43.14 Default Red

Lateral parietal latP 59.07 –65.86 41.27 Default Red

Retro splenial retro splen 4.60 –51.94 9.44 Default Red

Lateral cerebellum lat cereb –33.67 –71.87 –29.40 Cerebellar Blue

Lateral cerebellum lat cereb 34.38 –66.31 –31.11 Cerebellar Blue

Inferior cerebellum inf cereb –19.63 –85.00 –32.82 Cerebellar Blue

Inferior cerebellum inf cereb 20.35 –86.99 –33.30 Cerebellar Blue

interpretation of degree is straightforward; brain regions of
high degree are interacting, structurally or functionally, with
many other regions (Rubinov and Sporns, 2010). Brain regions
in networks may either contain links to regions within the
same network (within-network links) or contain links to
regions belonging to other networks (between-network links).
A network whose nodes have many links to other networks—
that is, one containing nodes with a high between-network
degree—facilitates interactions among different networks. Thus,
in the context of network integration, a network with a
high between-network degree is interpreted as being highly
integrated.

To investigate changes in network integration after training,

we calculated the mean degree for the FP, CO, CB, and DM

networks for each subject. We took the absolute value of all

negative weights and thresholded each subject’s connectivity

matrices by network density, ranging from the strongest 15–60%

of pairwise connections. Connections above the threshold were

binarized and the average number of links connected to nodes

in each network was calculated. Group × Time ANOVA was

then conducted to examine whether the increases in the mean

degree of networks were greater in the training group than in

the control group.
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To calculate the degree for each of the four networks
as described above, the nodes were grouped by the network
to which they were assigned in the predefined ROI partition
(Table 3). However, it is possible that the network organization
of our subjects does not follow the predefined ROI partition
scheme. To ensure that our subjects’ networks are organized
in the same way as the ROI sets (partitioned into four
networks), we performed a modularity analysis. A modularity
analysis decomposes the whole-brain network into several
distinct modules. Modules are characterized by nodes that
work more closely together than with nodes belonging to other
modules (Newman and Girvan, 2004). When applied to brain
FC matrices, modules correspond to collections of strongly
interconnected brain regions sub-serving common functions
and, therefore, are regarded as functional brain networks
(Meunier et al., 2009; Stevens et al., 2012). To perform a
modularity analysis, we first averaged all 51 subjects’ 34 × 34
connectivity matrices. We then partitioned average connectivity
matrices into modules using a popular greedy modularity-
maximization algorithm known as the Louvain algorithm
(Blondel et al., 2008) across network densities. The Louvain
algorithm has been verified to be one of the most accurate
module detection algorithms (Lancichinetti and Fortunato,
2009). The resulting modular structure represents the functional
network organization of our subjects. The similarity between the
network organization of our subjects and the predefined ROI
partition was then evaluated.

To interpret the meaning of the changes in network degree
following training, we calculated the mean degree of each
network in older adolescents from the ADHD-200 dataset. We
conducted independent t-tests to examine whether there was
any difference in network degree between older and our younger
adolescents before training.

Finally, to examine brain–behavior correlations, we tested
whether the increases in the mean degree of networks were
correlated with improvements in cognitive test performance.
We performed Pearson correlation analysis to investigate
whether the improvements in cognitive test performance were
associated with significant increases in the mean degree of
networks in the abovementioned Group × Time ANOVAs.

As a Supplementary Analysis, in addition to network
degree, we explored another graph theoretical construct,
participation coefficient (PC), to examine the effects of training
on network integration. PC is a graph theoretical construct
that quantifies the level to which a node establishes between-
network links compared with within-network links; nodes with
many distributed between-network links would have higher
PC whereas nodes whose links are mostly restricted to their
own networks would have lower PC (Guimerà and Nunes
Amaral, 2005; For a more detailed and technical description,
see Supplementary Analysis). A network containing nodes with
high PC values is likely to promote the integration of networks.
We calculated the mean PC for each of the four networks

and conducted Group × Time ANOVA to examine whether
the increases in the mean PC of networks were greater in the
training group than in the control group.

Results

Demographics and behavioral
measures

The training group and the control group were well matched
for age, sex, scores on cognitive tests before training, and
number of days between tests. The subjects were within a tight
age range, which reduced the effects of maturation on cognitive
control and resting-state connectivity patterns. Both groups
were also matched on stress and impulsivity levels, and neither
group displayed a change in either of these variables before
and after training (Table 4). Given that head motion confounds
analyses of resting-state connectivity (Power et al., 2012; van
Dijk et al., 2012), we confirmed that neither mean relative head
displacement nor number of frames with a displacement of
>0.5 mm changed between pre-and post-training for either
group (control, p > 0.4; training, p > 0.3) or differed between
groups at either time point (pre-training, p > 0.3; post-training,
p > 0.3; Mackey et al., 2013).

To ensure the quality of the training protocol employed
in the current study, we also investigated whether there were
improvements in performance on training tasks. The training
performance was measured by the level and accuracy of the
administered tasks and these data were fitted to a linear mixed
effects model. The accuracy and maximum levels obtained by
each participant in the training group during each training
session were expected to show improvements if the training
procedure was properly applied. After the completion of the
training, the level of Location–Number Stroop and Counting
Clovers upgraded significantly [t(24) = 2.72, p = 0.013, r = 0.48;
t(24) = 3.89, p = 0.004, r = 0.62], and the level of Updating
(location) showed tendency to increase [t(24) = 1.88, p = 0.089,
r = 0.36]. In addition, the accuracy of Updating (letter)
and Counting Clovers significantly improved [t(24) = 4.40,
p < 0.001, r = 0.67; t(24) = 3.35, p = 0.004, r = 0.56],
and the accuracy of Location-Number Stroop and Updating
(color) demonstrated tendencies of improvement [t(24) = 2.05,
p = 0.057, r = 0.39; t(24) = 1.82, p = 0.095, r = 0.35]. Training
performance of other training tasks did not demonstrate
significant increments.

Next, the Group × Time ANOVA analyses revealed the
significant Group × Time interaction effect in the Block Design
sub-test [F(1,49) = 6.69, p = 0.013, ηp

2 = 0.12]. Subsequent
paired t-tests showed that, although both the training and
control groups showed significant improvement in the Block
Design test, the training group displayed a greater improvement
[training, t(24) = 6.84, p < 0.001, r = 0.81; control, t(25) = 2.2,
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TABLE 4 Participant information.

Training group
(n = 25)

Control group
(n = 26)

t/χ2 p

Mean (SD) Mean (SD)

Age 13.22 (0.74) 13.15 (0.58) –0.33 0.741

Sex (Female) 11 11 <0.01 1.000

Test–retest interval
(Days)

64.5 (9.81) 65.92 (10.03) –0.51 0.612

Perceived stress

Time 1 20.23 (6.87) 19 (5.34) 0.72 0.478

Time 2 19.5 (7.66) 18.28 (5.83) C‡ 0.6
T‡ 0.71

0.556
0.484

Impulsivity

Time 1 136.42 (16.26) 132.24 (18.13) 0.87 0.391

Time 2 138.04 (18.66) 127.72 (21.76) C‡ –0.63
T‡ 1.72

0.533
0.100

‡Paired t-test was used to assess the changes between Time 1 and Time 2 in control and training groups.

p = 0.013, r = 0.40]. Paired t-tests also demonstrated that the
training group had a significantly improved Stroop interference
score [t(24) = 2.97, p = 0.007, r = 0.52] and Symbol Span
[t(24) = 2.426, p = 0.023, r = 0.44]. By contrast, there was
no such change in the control group. Please note that all
the p-values reported for the improvements in cognitive tests
were uncorrected for multiple comparisons, and the significant
interaction effect found in the Block Design didn’t survive FDR
correction (p = 0.091). Results for all neuropsychological tests
are presented in Table 5.

Graph theoretical analysis

Modularity analysis of the brain network
organization

We tested whether cognitive control training promotes the
integration of functional networks by calculating the mean
degree for each network and examining whether the increases
in network degree were greater in the training group than
in the control group. Before assigning nodes to each network
according to predefined ROI partition schemes (Table 3 and
Figure 2A), we first conducted a modularity analysis of all
51 subjects’ averaged connectivity matrices to ensure that
the networks of our subjects were organized similarly to
the predefined network partitions. The modularity analysis
yielded four network partitions across varying network densities
(Figure 2B; density ranging 15–60%), which share a structure
analogous to that of the predefined network membership
(Figure 2A and Table 3). A few nodes were not grouped
into one of the four networks at low densities (light blue
and green), which may result from low stability and reliability
of network measures found at low network densities (Braun

et al., 2012; Welton et al., 2015). The overall similarity between
the network organization observed in our sample and the
predefined network membership allowed us to group nodes
according to the predefined network affiliation in subsequent
analyses.

Change in network functional connectivity
after training

First, we performed basic FC analyses to examine the effects
of training on network FC. We grouped ROI according to
the predefined network membership and tested every pair of
networks (4 × 4 pairs) for significant changes in FC after
training. Group × Time ANOVAs identified a significant
interaction in FC change between DMN and CBN, but this
interaction occurred due to significant baseline differences in
DMN–CBN FC between the two groups (p = 0.049). The
remaining pair of networks by paired t-tests of the training
group showed no significant changes in FC between these two
networks (p = 0.138) or in all other pairs of networks. Although
the visual inspection of matrix plots for change in network
FC in the training group suggested that the training group
generally showed a tendency toward increased FC of the CON
and decreased FC of other three networks compared to the
control group (Figure 3), a training effect was not observed in
FC analyses of individual pairs of networks.

Change in network degree after training
We further investigated the degree measure to find networks

that increased their number of links across all networks after
training. Group × Time ANOVA revealed that among four
networks, the degree of the CON significantly increased in the
training group compared with the control group (Figure 4,
right). However, as shown in Figure 4, the statistical significance
of this training effect fluctuated according to varying network
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thresholds. To overcome the arbitrary bias in thresholding
and acquire representative statistics, we averaged the degree
of each network across the range of network densities and
used these mean values in subsequent analyses. Even with
this method, the degree of all nodes averaged across densities
was positively correlated with the degree of all nodes at each
network density, suggesting that our results were robust to any
biases in thresholding (Marek et al., 2015). Group × Time
ANOVA was performed again with the density-averaged degree
of each network, which confirmed the significant Group × Time
interaction effect [F(1,49) = 4.09, p = 0.049, ηp

2 = 0.08;
Figure 4, left]. Follow-up paired t-tests showed that the CON
degree significantly increased in the training group [t(24) = –
2.01, p = 0.028, r = 0.38, one-tailed], whereas no change was
observed in the control group. Density-averaged degree in other
networks showed no significant Group × Time interaction in
Group × Time ANOVA (FPN, p = 0.206; DMN, p = 0.817; CBN,
p = 0.539).

Since we found that the CON degree significantly increased
after training, we further investigated whether it was due to
the increase in the number of links within CON, or links
between CON and other networks. To this end, Group × Time
ANOVA was conducted separately for the change in within-
CON degree (the number of links within nodes of CON)
and the change in between-CON degree (the number of
links between nodes of CON and those of the other three
networks). We found a trend toward an increase in between-
CON degree in the training group compared with the control
group, whereas there was no difference between the two groups
in the within-CON degree (Figure 5, right). Again, to remove
the bias in network thresholding, we performed Group × Time
ANOVA with the density-averaged degree. We found the
tendency toward Group × Time interaction, but the result
was not statistically significant [F(1,49) = 3.23, p = 0.078,
ηp

2 = 0.06; Figure 5, left]. However, follow-up paired t-tests
showed that the between-CON degree significantly increased
in the training group [t(24) = –2.01, p = 0.027, r = 0.38,
one-tailed], whereas no change was observed in the control
group. Regarding within-CON degree, neither the training
group (pre = 3.33 ± 0.61, post = 3.38 ± 0.84, p = 0.79) nor
the control group (pre = 3.64 ± 0.76, post = 3.48 ± 0.68,
p = 0.37) showed significant change in density-averaged values.
Therefore, the increased degree of CON in the training group
seems to be driven more by an increase in between-network
links than within-network links.

We then investigated which networks had increased links to
the CON after training. We calculated the average number of
links between the CON and other three networks, and examined
whether there was any particular network showing increased
number of links with the CON after the training. We found that
no individual network had a significantly increased number of
links with the CON in the training group paired t-test (FPN,
p = 0.447; DMN, p = 0.222; CBN, p = 0.824). Therefore, the
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FIGURE 2

(A) Predefined ROI network membership (Table 3; FPN, fronto-parietal network; CON, cingulo-opercular network; DMN, default mode network;
CBN, cerebellar network). Nodes are colored by network membership. (B) Network organization of all subjects aggregated (both the training
and the control groups averaged) as identified by the modularity analysis. X-axis indicates network densities. At each density, nodes that were
grouped together are coded by the same color. A few nodes were not grouped into one of the four predefined networks at low densities (light
blue and green). Overall, subjects showed a similar network organization to the predefined ROI network membership across network densities.

increase in between-CON degree in the training group was not
attributed to increased links with any particular network but to
an increase in its overall connectivity with other networks.

FIGURE 3

Magnitude of change for all pairwise network FCs in the training
group. Magnitude of change is colored by SDs from the mean
calculated across all pairs and both groups. Overall, the training
group showed a tendency toward increased FC of CON and
decreased FC of other three networks compared with the
control group (FPN, fronto-parietal network; CON,
cingulo-opercular network; DMN, default mode network; CBN,
cerebellar network).

In addition, in order to examine the contribution of a
particular region to network integration, which is ignored
when averaging at the network level, we tested all 34 ROI for
significant changes in between-network links after training. We
investigated which brain regions had increased or decreased
numbers of links to regions belonging to networks other than
their own. Among the 34 ROI, only one ROI (the right
inferior cerebellum) was found to have significant changes in
both the Group × Time ANOVA [i.e., significant interaction;
F(1,49) = 5.14, p = 0.028, ηp

2 = 0.10] and the follow-up
training group paired t-test [t(24) = 2.26, p = 0.033, r = 0.41];
this cerebellar region showed greater decreases in its between-
network links with other networks in the training group
compared with the control group. Two groups did not show
any difference in changes in the number of within-network links
of this region (p = 0.59). Notably, no ROI belonging to CON
showed training-related changes in between-network links. This
result again indicates that the increase in between-CON degree
was not driven by increased links of a particular CON region but
by an increase in the overall CON connectivity.

Difference in network degree between young
and older adolescents

Since we observed training-related increases in between-
CON degree, we sought to evaluate the meaning of this
observation in light of the developmental changes occurring in
adolescent brain networks. To this end, we examined whether
there was any difference in network degree between older
adolescents from the ADHD-200 dataset and our younger
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FIGURE 4

(Left) Density-averaged CON degree in both groups, before and after training. Density-averaged CON degree significantly increased in the
training group compared with the control group (*p < 0.05). Paired t-tests showed that the CON degree significantly increased in the training
group. There was no significant difference between the two groups in initial CON degree (p = 0.054). Error bars indicate the SEM. (Right)
P-value distribution for Group × Time ANOVA of the CON degree across network densities. The red line indicates a p-value of 0.05, and red
dots indicate the densities at which the difference in the degree change between two groups is significant.

FIGURE 5

(Left) Density-averaged between-CON degree in both groups, before and after training. Between-CON degree significantly increased in the
training group (*p < 0.05), although the increase was not significantly greater compared with the control group († p < 0.10). There was no
significant difference between the two groups in initial between-CON degree (p = 0.201). The blue dashed line represents between-CON
degree of older adolescents from ADHD-200 dataset. Error bars indicate the SEM. (Right) P-value distribution for Group × Time ANOVA of the
CON within and between degree across network densities. The red line indicates a p-value of 0.05, and red dots indicate the densities at which
the difference in the degree change between two groups is significant.

adolescents before training. We performed independent t-tests
to compare the total, within, and between degree of each
network between young and older adolescents. Compared
with our young adolescents, older adolescents showed smaller
within-CON degree [t(107) = 3.90, p ≤ 0.001, r = 0.35]
and greater between-CON degree [t(107) = –2.59, p = 0.011,
r = 0.24; Figure 5, right, blue dashed line]. There was no
difference in the degree of the other networks between young
and older adolescents, except for a trend of smaller total-CBN

and between-CBN degree in the older adolescents compared to
the young adolescents (Table 6).

Having observed the difference between younger and
older adolescents in between-CON degree where the training
effect was also revealed, we further examined whether the
training group caught up to older adolescents in between-CON
degree after training. Independent t-tests found the significant
difference in between-CON degree between the training group
and the older adolescents at pre-training [t(81) = 3.12, p = 0.002,
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TABLE 6 Difference in network degree between young and older adolescents.

Total degree Within degree Between degree

YA OA p YA OA p YA OA p

FPN 13.52
(1.23)

13.63
(1.13)

0.629 5.60
(0.93)

5.53
(0.93)

0.715 7.92
(0.71)

8.10
(0.70)

0.198

CON 12.08
(1.44)

12.13
(1.15)

0.841 3.49
(0.7)

2.99
(0.64)

<0.001 8.59
(1.27)

9.14
(0.95)

0.011

DMN 11.83
(1.23)

11.94
(1.25)

0.622 4.53
(0.95)

4.66
(1.05)

0.487 7.30
(0.66)

7.28
(0.69)

0.899

CBN 11.38
(1.83)

10.64
(2.24)

0.063 1.97
(0.65)

1.91
(0.72)

0.652 9.42
(1.76)

8.74
(1.87)

0.053

YA, young adolescents; OA, older adolescents; FPN, fronto-parietal network; CON, cingulo-opercular network; DMN, default mode network; CBN, cerebellar network. Statistical
significances are indicated in bold (p < 0.05).

r = 0.33], but the difference disappeared at post-training
[t(81) = 1.37, p = 0.174, r = 0.15; depicted in the Figure 5 on
the left side as reduced gaps between pre- and post-training bars
of the training group and the blue dashed line].

Correlations between changes in network
degree and changes in performance on
cognitive tests

Finally, we tested whether the observed changes in the total-
CON degree and the between-CON degree were associated with
improvements in cognitive test performance. We found that
the change in between-CON degree was positively correlated
with the improvement in the Block Design test in both groups
combined [r = 0.36, t(49) = 2.67, p = 0.01; Figure 6, right,
black line] as well as in the training group alone [r = 0.43,
t(23) = 2.29, p = 0.03; Figure 6, right, blue line], but not

in the control group [r = 0.21, p = 0.31; Figure 6, right,
orange line]. No slope difference was found between the
two groups (z = 0.84, p = 0.40). The change in total-CON
degree also showed a trend of positive correlation with the
improvement in Block Design test in both groups combined
[r = 0.25, t(49) = 1.80, p = 0.078; Figure 6, left, black line]
as well as in the training group alone [r = 0.38, t(23) = 1.98,
p = 0.06; Figure 6, left, blue line], but not in the control
group (r = 0.04, p = 0.86; Figure 6, left, orange line). There
was no slope difference between the two groups (z = 1.22,
p = 0.22).

We also tested whether the total-CON degree and between-
CON degree were associated with performance in the Block
Design test before training. We found that both the total-CON
degree [r = 0.332, t(49) = 2.463, p = 0.017; Figure 7, left]

FIGURE 6

(Left) Changes in total-CON degree for individual subjects across both groups plotted against changes in Block Design test performance after
training. (Right) Changes in between-CON degree plotted against changes in Block Design test performance after training. The black line
indicates the regression line for both groups, whereas the blue and orange lines indicate the regression lines for the training and control groups,
respectively. The results of significance tests are indicated beside the corresponding regression lines (*p < 0.05; †p < 0.10).
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FIGURE 7

(Left) Total-CON degree for individual subjects across both groups plotted against Block Design test performance before training. (Right)
Between-CON degree plotted against Block Design test performance before training. The results of significance tests are indicated beside the
corresponding regression lines (*p < 0.05).

and between-CON degree [r = 0.42, t(49) = 3.25, p = 0.002;
Figure 7, right] were positively correlated with Block Design
test scores before training. Other cognitive tests showed no such
correlations with total-CON degree and between-CON degree
(data not shown).

The right inferior cerebellum, the individual ROI that was
found to have significant changes in the training group revealed
the correlation between its decreased between-network links
and the improvements in Block Design scores [r = –0.29,
t(49) = –2.10, p = 0.04].

Change in network participation coefficient
after training

As we identified training-related increases in between-
CON degree, we investigated whether a comparable result was
observed with a related graph measure of network integration,
participation coefficient (PC). We calculated the mean PC
for each of the four networks and examined whether the
two groups showed any difference in the network PC change
after training. In contrast to the increases in between-network
degree, the increases in network PC were not significantly
greater in the training group compared with the control group
(Supplementary Analysis and Supplementary Figure 1).

Discussion

In this study, we found that the integration of functional
networks was enhanced as a result of multicomponent
cognitive control training as captured by increased total-
and between- cingulate-opercular network (CON) degree. The
increase in between-CON degree was not attributable to

increased connectivity of a particular network or a particular
CON region. The analysis of the network degree of older
adolescents revealed that older adolescents had a smaller
within-CON degree and a greater between-CON degree than
young adolescents. Regarding the brain–behavior relationship,
increases in between-CON degree after training were associated
with improvements in the Block Design test performance.

Increased cingulo-opercular network
degree after training and with age

Adolescence is a unique period, during which the brain
undergoes dynamic changes at many different levels to support
the transition to adult-level cognition. At the systems level,
brain networks become more involved in the integration of
information from widely distributed regions, yielding more
complex cognitive abilities such as cognitive control (Stevens,
2016; Grayson and Fair, 2017). Although these changes are
thought to be driven by the interplay between developmental
programs and environmental inputs (Greenough et al., 1987),
the way in which these two factors interact with one another is
poorly understood.

In this study, we tested the hypothesis that cognitive control
training would accelerate typical network development during
adolescence and lead to more integrated networks. To this
end, we applied graph theoretical analysis to resting-state FC
data obtained from young adolescents who undertook 6 weeks
of cognitive control training, and to an independent dataset
from typically developing older adolescents. The results were
consistent with previous characterizations of major changes
in functional networks occurring throughout development.
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Studies have shown that fundamental properties of functional
networks, such as network organization, are established early
in development, whereas the capacity for networks to integrate
develops into adulthood (Shaw et al., 2008; Menon, 2013). It
is noteworthy that the smaller within- and greater between-
links of CON observed in older adolescents are consistent
with the findings of a previous report demonstrating that
there is a continuous integration of CON with other networks
during adolescence (Marek et al., 2015). This increased
integration of CON has been shown to play a critical role in
age-related improvements in cognitive control. Functionally,
CON is involved in set-maintenance, sustained alertness, and
adjustments for feedback during task performance (Dosenbach
et al., 2008; Coste and Kleinschmidt, 2016). Given that cognitive
control is underlain by the interaction among separable
cognitive components, the integration of CON with other
networks may facilitate stable communication among these
components, boosting behavioral performance in cognitive
control tasks (Velanova et al., 2008). Our results suggest that
this process of integration could be further advanced by extra
training. Also, the observation that cognitive training only
had an impact on CON, but not on other networks, suggests
that the enhanced integration could be driven by interactions
between developmental processes and relevant learning. It is
well known that greater neuronal plasticity in children and
adolescents allows their neuronal networks to reorganize more
readily in response to environmental stimulation and to better
adopt new skills and information (Johnston, 2009). The effects
of training appear to benefit from this greater neuronal plasticity
(Qin et al., 2004), supposedly making CON more susceptible to
learning-related changes during adolescence.

Challenging the traditional view of development and
learning as separate domains, researchers increasingly believe
that those are interactive and complementary processes
(Karmiloff-Smith, 1994; Stiles, 2008). For instance, it
has been suggested that development and learning are
not separable constructs, but are two ends of the same
continuum, both process shaped by experience-expectant
and experience-dependent mechanisms (Galván, 2010). In
this view, development is not a passive process dictated by
a genetic instruction, but is considered as self-organizing
and activity-dependent processes involving an interplay
with the environment (Johnson, 2011). Indeed, learning and
experience shape, mold, and sculpt developmental changes
through activity-dependent creation and refinement of synapses
(Stellwagen and Shatz, 2002). In this regard, it is possible that
certain cognitive processes can be developmentally sped up with
training or delayed with adverse experience (Needham et al.,
2002; James, 2010). Then how does intrinsic FC reveal neural
mechanisms that support these accelerated developmental
experiences? When we engage in certain behaviors, evoked
neural activity causes perturbations to intrinsic connectivity by
coupling different neural components, perturbations that persist

across multiple timescales (Han et al., 2008; Harmelech et al.,
2013). Thus, an individual’s intrinsic network configuration
at one time point reflects a history of past behavior and
environmental inputs (Tambini et al., 2010; Sadaghiani and
Kleinschmidt, 2013). From this perspective, developmental
changes in brain networks can be understood as emerging
from a child’s experience that involves active sampling of the
external world over the course of development (Berkes et al.,
2011; Byrge et al., 2014). Then cognitive training, by providing
environmental inputs that are extra and additional to those
generally available for children, provides trained children with
age-linked experiences more precociously and intensively.
This line of reasoning could explain why training-induced and
growth-associated changes in intrinsic networks might possibly
converge to a large degree, generating an additive effect.

The differential impact of training on
between- versus within-
cingulo-opercular network degree

Questions remain, however, as to why the training
influenced one aspect of the developmental change, namely
the increase in between-CON degree, but did not have an
impact on the decrease in within-CON degree in this study.
A plausible explanation may come from the nature of cognitive
control, the particular cognitive domain upon which the
current training was designed to focus. As described above,
cognitive control relies on the coordination of several cognitive
components, which is supported by the cooperation between
diverse brain networks. Thus, the ability for the brain to
transfer and integrate information across networks may be more
pivotal than local communication within networks (Cocchi
et al., 2013). Indeed, it has been shown that within-network
communication is important for simple cognitive tasks such
as motor execution, whereas between-network communication
is critical for more complex cognitive skills such as working
memory, which requires the engagement of multiple functions
(Cohen and D’Esposito, 2016). Researchers have proposed that
CON serves as a mediator for competitive interactions between
FPN and DMN, playing a crucial role in facilitating crosstalk
between networks (Sridharan et al., 2008; Bressler and Menon,
2010). Taken together, repeated exposures to cognitive control
tasks through training tended to recruit the between-network
interactions involving CON rather than interactions within
CON, which appeared to remain relatively separated from the
demands of the training. In line with these observations, many
training studies have found that the most relevant changes in
resting-state FC occur between, rather than within, networks
after training (Lewis et al., 2009; Astle et al., 2015; Dresler
et al., 2017). Our results suggest that these training-induced
interactions between CON and other networks may coincide
with the developmental change, leaving a stronger trace in the
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increasing between-CON links than in the decreasing within-
CON links.

Change in network participation
coefficient after training

The weak effects observed in changes in PC with training
in this study may be explained by the differential impact of
training on between-CON versus within-CON links. Note that
PC is a function of the number of within-network links as
well as the number of between-network links (Supplementary
Analysis). In general, the increase in PC of nodes occurs when
links that were highly concentrated in a single network are
redistributed to other less-connected networks, yielding a more
even distribution of links across networks. A robust increase
in PC is most often observed when the increase in nodes’
between-network links are accompanied by a corresponding
decrease in their within-network links. This does not seem
to be the case for the training effects found in this study,
given that we observed an increase in between-CON degree
following training, but the within-CON degree was unaffected.
This stable within-CON degree suggests that the training led
to increases in PC in the training group compared with the
control group that were insufficient to reach significance level
in the group and time interaction, even though a slight trend
toward increased PC was observed in the training group.
The differential effects of training on between-CON versus
within-CON degree are possibly due to the cognitive demands
imposed by the cognitive control tasks, and thus could reflect a
characteristic of our training.

Correlation between
cingulo-opercular network degree and
Block Design score

Importantly, we found an association between brain changes
and behavioral changes following the training. This suggests that
the observed change in between-CON degree was induced by
training, not by some unknown factors, with hints of individual
differences in neural changes that reflect individual differences
in behavioral gains. Surprisingly, CON degree was associated
with performance in Block Design tests before training, but
not with other behavioral tests. This result may account for
the weaker training effects observed with the other behavioral
tests. It has long been known that the improvement of certain
cognitive skills could be constrained by the level of brain
maturation (Jolles and Crone, 2012). For example, the speed
of information processing is modulated by the maturation of
white matter (Nagy et al., 2004; Fields, 2008), which could in
turn, for instance, constrain practice-related gains on higher
level cognition such as working memory (Fry and Hale, 1996).

In a similar vein, subjects in our study are at a developmental
point when CON becomes more integrated with other networks.
Thus, our findings that this developmental process could
be modified by training may set limits on which cognitive
performance is prone to be affected by training. In other
words, the interaction between brain development and training
may alter the more developmentally responsive networks, in
this case CON, and the change in CON could in turn affect
associated cognitive performance, in this case Block Design
test performance. The fact that training-related behavioral gains
could be limited by the level of brain maturation may shed
some light on the debate of the effectiveness of cognitive training
(Melby-Lervåg and Hulme, 2013).

Decreased between-network links of
the right inferior cerebellum after
training

Notably, the right inferior cerebellum had a decreased
number of links with other networks after training. We
found that the decrease in between-network links in this
region mirrored the improvements in Block Design scores in
both groups combined. This finding is consistent with the
hypothesis that a critical role of the cerebellum is adaptive
control and experience-driven plasticity (Caligiore et al.,
2017). Previous studies have demonstrated that the cerebellum
contributes to experience-driven learning by modulating
cortical activities through synaptic connections within a
cerebro-cerebellar loop (Albert et al., 2009; Vahdat et al., 2011;
Sami et al., 2014). Although few studies have examined learning-
dependent changes in cerebro-cerebellar communication in
a cognitive control domain, one human imaging study has
reported decreased cerebro-cerebellar interaction after response
inhibition learning, as revealed by psycho-physical interaction
analysis (Hirose et al., 2014). Our finding of a decreased number
of links between a cerebellar region and other cortical networks
similarly demonstrates the function of modified cerebellar-
cortical connections in guiding the experience-driven learning
of control functions. In addition, researchers have found that
the cerebellum exhibits resting-state networks mapped onto
those found in the cortex (O’Reilly et al., 2010; Buckner et al.,
2011). These functional maps of the cerebellum are dominated
by association networks involved in adaptive control, and show
both common and variable organization across individuals,
thought to reflect their roles in individual-specific plasticity in
cognitive control (Marek et al., 2018). We found that the right
inferior cerebellum used in this study (x, y, z = 20, –87, –33)
belongs to the DMN of cerebellar networks (Buckner et al.,
2011). Although it is unclear how cerebellar DMN coordinates
with cortical networks to support adaptive control, the altered
connectivity between the cortical DMN and other cortical
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control networks has been well documented during control-
related learning, usually in the form of increased dissociations
(Takeuchi et al., 2013, 2014). It is an interesting question
whether our finding of the decreased links between cerebellar
DMN and other cortical networks can be interpreted in light
of this previously reported relationship between the cortical
DMN and other networks. It is also noteworthy that in our
study older adolescents showed a trend of smaller between-CBN
degree compared with young adolescents (Table 5). This result
is consistent with our main findings of the potential synergistic
interaction between development and training. Nevertheless,
in order to clarify these issues, future studies are needed to
elucidate the role of specific cerebellar networks in cognitive
processes and how they contribute to cognitive maturation in
an experience-dependent manner.

Implications and limitations

Adolescence is characterized by certain psychological traits
such as increases in sensation and novelty seeking that are
linked to specific brain maturational changes (Steinberg, 2004;
Casey et al., 2008). Also, cognitive control is impaired in many
psychiatric disorders, which is also apparent in the adolescent
period albeit in attenuated form (Paus et al., 2008). Thus, this
line of research may help target interventions to ameliorate
adolescent maladaptive behaviors and prevent or remediate the
emergence of psychopathology.

Several caveats, however, are worth mentioning. Although it
may be difficult to find strong effects from short-term behavioral
intervention that was implemented for a relatively short period
of time, especially on highly plastic adolescent brains going
through substantial maturational and developmental changes,
the observed changes were modest and in some cases did not
reach statistical significance. Some of the results reported in the
current study as indications of training effects fell short of the
statistical significance level of p = 0.05; the change in between-
CON degree showed a trend toward interaction (p = 0.078) and
the correlation between changes in CON degree and changes in
Block Design score didn’t reach the significance (p = 0.078 in
both groups combined and p = 0.06 in the training group alone).
Also, the statistical significance of the improvement in the Block
Design test after training suffers when subject to the correction
for multiple comparisons (FDR-corrected p = 0.091). The overall
effects found in the current study are only moderate (Karbach
and Verhaeghen, 2014), which requires the evidence presented
in the current study and its interpretations to be accepted with
caution.

Second, using non-binary, weighted measures of brain
connectivity failed to demonstrate the significant training effects
in the study, as described in the analyses of FC (see section
“Change in network functional connectivity after training”)
and participation coefficient (see section “Change in network

participation coefficient after training”). Although the results
from these analyses yielded patterns matched by what was
found with the binary, unweighted measure of connectivity (i.e.,
degree), it needs to be stressed that the analysis of degree comes
with the loss of weight information to a certain degree, which
may contribute to the discrepancy in findings from FC and
participation coefficient analysis.

Third, the resting-state scans were preceded by the task
fMRI scans in the study. Indeed, some studies have shown
that a task before an rs-fMRI scan can alter the resting-state
FC over the short term (Waites et al., 2005; Stevens et al.,
2010). However, since the order of scans was the same for
both groups, it is unlikely that the task influenced the resting-
state FC of the training group disproportionately. Fourth, it
has been pointed out that degree is not an accurate measure of
network integration, since degree-based measures of integration
are confounded by the size of networks. That is, degree-
based approaches are biased toward identifying the nodes
of larger networks as hubs for network integration (Power
et al., 2013). However, this weakness does not affect our study,
since degree-based measures of integration are problematic
only when a researcher aims to determine the importance of
individual nodes (networks) relative to other nodes (networks)
in facilitating network integration. Our study, however, has a
repeated measures design; our goal was to track changes in
network degree before and after training, no matter which
network plays the central role in network integration at any time
point. Post-training, the CON was found to be more integrated
with other networks than pre-training as demonstrated by
increased numbers of links to other networks. The previously
reported limitations of degree-based measures, although worth
considering, therefore do not apply to our analyses of training
effects.

Finally, Korean children already experience much practice
with cognitive control in school and everyday lives, and this
might have masked the training effect. This explanation relates
to the time displacement hypothesis, which states that training
should be evaluated in relation to the activities it displaces
(Bavelier et al., 2010). However, there is no reason to assume
that the training group received greater environmental inputs
tapping into cognitive control except for the required training.
Also, the task difficulty of training was adapted to tax a great
deal of cognitive resources in adolescents, creating significant
differences in cognitive demands between the two groups.

One interesting future direction is to unravel the structural
basis of the documented changes in functional networks. The
changing dynamics of functional networks during adolescence
is accompanied by a series of structural alterations including
gray matter thinning (Gogtay et al., 2004), synaptic pruning
(Petanjek et al., 2011), and an increase in white matter integrity
(Lebel et al., 2008). In particular, the increased white matter
tract integrity allows faster neuronal transmission, which is
thought to underlie the integration of functional networks
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(Simmonds et al., 2014). Thus, the increased CON links
observed in the current study are expected to be paralleled
by concomitant changes in white matter networks. Recent
studies have demonstrated alterations in structural networks
as a result of cognitive training (Caeyenberghs et al., 2016;
Román et al., 2017) which are consistent with the function-
structure correspondence. In the future, we will explore
this possibility by integrating the functional investigation
with analyses of structural data, and examine how changes
in intrinsic connectivity relate to changes in white matter
networks.

Conclusion

This study, to our knowledge, is the first to explore
the effects of cognitive training regarding intrinsic brain
connectivity in typically developing adolescents, which found
that cognitive control training enhanced the integration of
functional networks and facilitated network development. Most
training studies with developing children or adolescents to date
have not evaluated the training effects in light of the participants’
developmental trajectory. This is crucial given that childhood
and adolescence are characterized by great and systematic
brain malleability. Network perspective plays a critical role
in elucidating such plasticity, because developmental and
learning-induced changes emerge in a dialog between brain
regions (Bressler and Menon, 2010; Johnson, 2011). Our
finding that the training-related integration of brain network
is not captured by changes in a single region stresses the
importance of analyzing information conveyed at the network
level.
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