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Background: Previous studies indicated the sedative e�ect of acupoint

stimulation. However, its mechanism remains unclear. This study aimed

to investigate the sedative e�ect of transcutaneous electrical acupoint

stimulation (TEAS) and to explore the brain regions involved in this

e�ect in healthy volunteers using functional magnetic resonance imaging

(fMRI) techniques.

Methods: In this randomized trial, 26 healthy volunteers were randomly

assigned to the TEAS group (receiving 30min of acupoint stimulation at

HT7/PC4) and the control group. fMRI was conducted before and after the

intervention. The primary outcome was the BIS value during the intervention.

Secondary outcomes included the amplitude of low-frequency fluctuation

(ALFF) and region of interest (ROI)-based functional connectivity (FC) showed

by fMRI.

Results: In healthy volunteers, comparedwith the control group, ALFF values in

the TEAS-treated volunteers decreased in the left thalamus, right putamen, and

midbrain, while they increased in the left orbitofrontal cortex. More FC existed

between the thalamus and the insula, middle cingulate cortex, somatosensory

cortex, amygdala, and putamen in subjects after TEAS treatment compared

with subjects that received non-stimulation. In addition, ALFF values of the

thalamus positively correlated with BIS in both groups.

Conclusion: Transcutaneous electrical acupoint stimulation could induce a

sedative e�ect in healthy volunteers, and inhibition of the thalamus was among

its possible mechanisms.

Clinical trial registration: www.ClinicalTrials.gov; identifier: NCT01896063.
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Introduction

Insomnia is a common clinical disease that may seriously

affect the quality of life. Pharmaceutical interventions for

insomnia can induce adverse effects, including tolerance and

addiction. Acupuncture has been used as adjunctive therapy

in many perioperative settings, including additive sedation (Si

et al., 2009; Lu et al., 2015). Acupressure on specific acupoints

like Shenmen (HT7) and Ximen (PC4) can significantly reduce

stress levels and induces significant relaxation and drowsiness

(Ekblom et al., 1991; Dullenkopf et al., 2004). However, whether

acupoint stimulation at these specific acupoints could generate

sedative effects, and the mechanism involved in this effect in

healthy subjects remains unclear.

Previous studies on acupuncture and fMRI mostly focused

on acupuncture analgesia (Huang et al., 2021). Less is known

about the change in brain function and brain activity during

sedation by acupuncture. Moreover, different brain regions were

involved in different acupuncture effects. Brain regions involved

in acupuncture analgesia for low back pain were reported to

be mainly located in the pain matrix and descending pain

modulatory system (Wen et al., 2021). At the same time, patients

with migraine-induced emotional disorders showed a lower

amplitude of low-frequency fluctuations (ALFFs) value in the

left anterior cingulate (Zhang et al., 2021).

In the current study, we aimed to investigate the sedative

effect of transcutaneous electrical acupoint stimulation (TEAS)

on the level of consciousness and the brain regions involved

in healthy volunteers using functional magnetic resonance

imaging (fMRI).

Materials and methods

The study was approved by the Institutional Ethics

Committee (Xijing Hospital, Fourth Military Medical

University, No. KY20110901-8) and registered in

Clinicaltrials.com (NCT01896063).

Participant’s inclusion and randomization

Written informed consent was obtained from each

participant before the experiment. Inclusion criteria for the

volunteer included right-handedness according to the modified

Edinburgh Handedness Questionnaire. Exclusion criteria

included (1) abnormal sleeping habits, (2) a history of analgesics

or hypnotics for longer than 3 months), (3) a history of mental,

psychiatric, or neurological disorders, (4) a history of drug

abuse or current use of antidepressants or hypnotics, and (5)

experience of acupuncture in the last 3 months.

A total of 26 subjects were randomly assigned to the TEAS

group (30min of TEAS stimulation at bilateral HT7/PC4) or

control group (electrodes were connected at the same acupoints

for 30min without stimulation) using a computer-generated

random allocation sequence (n = 13 for each). The group

allocation was sealed in an envelope and was opened by an

investigator who did the intervention before the administration

of the intervention. All subjects were in the supine position and

underwent continuous monitoring of heart rate (HR), blood

pressure (BP), oxygen saturation (finger pulse oximetry), and

bispectral index (BIS). Vital signs and BIS values were recorded

every 5min during the intervention.

Intervention: TEAS

The chosen acupoints were bilateral Shenmen (HT7)/Ximen

(PC4, see Supplemental Digital Content 1) acupoints.

Electrodes were attached to the skin and connected to the

Hwato Electrical Acupoint Stimulator (model no. SDZ-V;

Suzhou Medical Appliances Co., Ltd., Suzhou, China) (see

Supplemental Digital Content 1, which shows the attachment

of the electrodes and the stimulator). The device produced

“disperse-dense” waves of alternating frequencies between

2 and 10Hz. The threshold intensity was defined as the

maximally tolerated intensity of the participant to the “Teh Chi”

sensations of heaviness, numbness, and swelling at the point

of stimulation. The parameters of stimulation are described in

Supplementary Digital Content 2.

None of the subjects in the study had previously received

transcutaneous electrical stimulation and were informed that

theymay ormay not feel the electrical stimulation. Interventions

were performed by a designated investigator who was not

involved in the follow-up. The stimulator was placed in an

opaque box.

Functional magnetic resonance imaging

Before and after the intervention, the subjects underwent

17min of fMRI scanning at the MR Research Center

(Xijing Hospital, Airforce Military Medical University,

Xi’an, Shaanxi, China). Details of fMRI are shown in

Supplementary Digital Content 3.

Images were pre-processed using Statistical Parametric

Mapping software (SPM8, Neurology, London, UK, http://

www.fil.ion.ucl.ac.uk). The first five time points of each

functional time series were discarded to allow for magnetization

equilibrium. The remaining images were corrected for time

delays between different slices and realigned to the first volume.

Head motion parameters were computed by estimating the

translation in each direction and the angular rotation on each

axis for each volume. If the head motion parameters exceeded

1.5mm or 1.5◦, the subject was excluded from further analysis.

Structural images of each subject were then co-registered

Frontiers inHumanNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2022.843186
http://Clinicaltrials.com
http://www.fil.ion.ucl.ac.uk
http://www.fil.ion.ucl.ac.uk
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Lu et al. 10.3389/fnhum.2022.843186

with the functional images. The co-registered T1 images were

segmented into gray matter, white matter, and cerebrospinal

fluid. The nonlinear transformations from native space to

standard space were obtained from the co-registration of the

T1 images with the normalized Montreal Neurological Institute

(MNI) template. The functional images were transformed into

standard space using the same normalization parameters of

T1 images and re-sampled to 3 × 3 × 3mm voxels. The

normalized functional images were spatially smoothed with a

6-mm full-width at half-maximum (FWHM). Gaussian Kernel

and linear trends were removed. Temporal bandpass (0.01–

0.08Hz) filtering was performed to remove low-frequency drifts

and high-frequency physiological noise (Cordes et al., 2001).

The amplitude of low-frequency fluctuation evaluation

demonstrates low-frequency blood oxygen level-dependent

(BOLD) signal fluctuation and the intensity of regional

spontaneous brain activity, which is important for the detection

of functional connectivity in central processing. ALFF was

acquired using REST software (www.restfmri.net; Yan and

Zang, 2010). For each voxel, time series were transformed to

the frequency domain using fast Fourier transformation. The

square root of the power spectrum was computed and then

averaged across a predefined frequency interval at each voxel

in the frequency range. The averaged square root of the power

spectrum was considered ALFF, which is the strength of the

low-frequency oscillators (Zang et al., 2007).

The mask of the region of interest (ROI) was created

by a 6-mm sphere, and the central coordinates were located

in the peak of the significant activation/deactivation based

on differences between the groups. The mean BOLD time

course was then extracted from the ROI as a regressor in

functional correlation analysis. Correlation maps were created

by computing the correlation coefficients between the BOLD

time course from the ROI and the BOLD time course from

all other brain voxels. Finally, correlation coefficients were

converted to an approximately normal distribution using

Fisher’s z-transformation.

Outcome measures

The primary outcome was BIS value during the intervention.

As shown by fMRI, secondary outcomes included ALFF and

ROI-based functional connectivity (FC).

Statistical analysis

The trial was explorative, and a small sample of 26

participants was used. Statistical analysis was performed with

SPSS software (version 19.0, SPSS Inc
R©
, Chicago, IL, USA).

A p-value of < 0.05 was considered statistically significant.

Demographic data were analyzed using ANOVA and the

TABLE 1 Demographic parameters and baseline vital signs of the

participants.

TEAS
(n = 13)

Control
(n = 13)

P-value

Gender (M/F) 7/6 5/8 0.82

BMI (kg·m−2) 22.4± 2.2 23.0± 2.6 0.67

Heart rate (bpm) 62 (14) 65 (12) 0.78

Mean blood

pressure (mmHg)

70.1± 11.7 68.2± 18.3 0.60

SpO2 (%) 100 (1.0) 100 (1.2) 0.93

Values are mean ± SD, median (interquartile range), or the number of participants.

TEAS, transcutaneous electrical acupoint stimulation; BMI, body mass index; SD,

standard deviation.

chi-square test. For BIS values, ANOVA and Dunnett’s tests

were used. The data were presented as mean ±SD, median

(interquartile range), or percentages. For imaging analysis,

paired t-test was applied to assess ALFF-related differences at

the second-level analysis. One-sample t-test was then used to

measure the group-level connectivity related to the ROI. The

thresholds of the contrasts were set as P<0.05 [false-discovery

rate corrected (FDR corrected)], and the cluster size was set as

>5 voxels. Age and sex were considered covariates of no interest.

Results

A total of 26 healthy volunteers, including 12 men and 14

women, were enrolled. All subjects completed the study (n =

13 per group, Figure 1). There were no significant differences

among the groups with respect to demographic parameters

(Table 1). Subjects tolerated the treatment well, and no adverse

event was reported. Heart rate, mean blood pressure, and SpO2

at different time points exhibited no difference between the two

groups (Figures 2A–C).

BIS values after TEAS treatment

The baseline BIS values were not different between the two

groups. BIS values in each group significantly changed with time.

At time points after TEAS began, the BIS value was significantly

lower in the TEAS group than in the control group (Figure 2D).

Amplitude of low-frequency fluctuation

The amplitude of low-frequency fluctuation was used to

evaluate regional spontaneous neuronal activity on fMRI. The

ALFF changes in the TEAS group compared with the control

group are shown in Figure 3. The left thalamus in the TEAS

group showed a significantly lower ALFF value than the control
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FIGURE 1

Flowchart of participant’s enrollment.

group; in addition, several other neural regions, such as the

right putamen and midbrain, exhibited lower ALFF values than

the control group, whereas the left orbitofrontal cortex (OFC)

showed increased ALFF values compared with the control group

(Figure 3). Correlation analysis indicated a significant positive

correlation between the average ALFF values of the thalamus

and BIS (r2 = 0.0899, P = 0.03, Bonferroni corrected; Figure 4).

Functional connectivity

The results of functional connectivity showed significant

positive connectivity between the thalamus and bilateral insula,

bilateral putamen, left primary somatosensory cortex (SI),

right middle cingulate cortex (MCC), and right amygdala

in the TEAS group. Meanwhile, significant connectivity was

detected between the thalamus and the bilateral precuneus, right

hippocampus, and bilateral cerebellum in the control group

(Figure 5).

Discussion

The results of the present study indicated that (1) TEAS

significantly decreased the BIS values in healthy volunteers and

(2) TEAS decreased regional brain activity primarily in the left

thalamus, right putamen, and midbrain, whereas it induced

activation in the left OFC. Our findings suggested that TEAS-

induced sedation may be related to altered neuronal activity,

such as the inhibition of ARAS.
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FIGURE 2

Vital signs and BIS values at di�erent time points in healthy volunteers of the TEAS group and the control group. (A) Heart rate; (B) mean blood

pressure; (C) pulse oxygen saturation; (D) BIS. The mean BIS values were significantly decreased in the TEAS group at 5, 10, 15, 20, 25, and 30min

after TEAS treatment compared with the control group. *P < 0.05. TEAS, transcutaneous electrical acupoint stimulation; BIS, bispectral index.

FIGURE 3

(A,B) ALFF di�erences in healthy volunteers between the TEAS group and the control group. The warm color shows increased ALFF values in the

OFC in the TEAS group, while the cold color shows decreased ALFF values in the left thalamus, right putamen, and midbrain in the TEAS group.

F, The amplitude of low-frequency fluctuation; OFC, orbitofrontal cortex; TEAS: transcutaneous electrical acupoint stimulation.

Advances in imaging techniques have facilitated many

clinical reports regarding the involvement of brain networks in

the effects of electrical acupoint stimulation. The cholinergic

system has been reported to mediate electroacupuncture (EA)

effects (Lin et al., 2011; Guo et al., 2012). The ascending

reticular activating system (ARAS) is a network of nerve fibers
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FIGURE 4

Correlation between BIS and ALFF values of the thalamus in

healthy volunteers of both groups before and after the

intervention. The correlation between BIS values at the

beginning and by the end of the intervention in each volunteer

was evaluated with their averaged ALFF values from the fMRI

scan before and after the intervention. There was a significantly

positive correlation between the average ALFF values of the

thalamus and BIS values. BIS, bispectral index; ALFF, amplitude

of low-frequency fluctuation.

ascending from the brain stem cholinergic neurons, which

activates the forebrain during the state of wakefulness and

rapid eye movement (REM) sleep (Brown et al., 2012). Brain

stem cholinergic neurons promote cortical activation via their

projections to the thalamus, comprising a major component of

the dorsal ARAS pathway (Steriade et al., 1988), which plays a

critical role in maintaining wakefulness (Boly et al., 2007). In the

current study, we conducted fMRI in healthy volunteers before

and after TEAS at bilateral HT7/PC4 or sham stimulation. ALFF

of the left thalamus was found to be reduced significantly in the

TEAS group. Previous fMRI study has indicated a widespread

decrease in brain activity during NREM sleep, particularly in the

thalamus, somatosensory, and basal ganglia (Kaufmann et al.,

2006). The reduced activity in the thalamus may indicate that

TEAS at bilateral HT7/PC4 generates a pro-sedative function in

the brain by inhibiting the thalamus activity. ROI related to the

thalamus was evaluated to identify further brain regions that are

involved in the effects of TEAS at these acupoints.

Transcutaneous electrical acupoint stimulation also resulted

in stronger activation of the left OFC area compared with the

control group. The OFC is a structure in which multiple sensory

information and reward information converge. It modulates

rewards and punishment. Activation of the OFC in humans

can be produced by pleasant touch to the hand or by pain

(Rolls, 2004). Since no complaints of pain were reported

by the volunteers undergoing TEAS, the increased ALFF of

OFC in TEAS groups might be induced by pleasant feelings

generated by the mild stimulation at HT7/PC4 acupoints. Other

regions that showed reduced ALFF was the right putamen

and the midbrain. The putamen is traditionally identified as a

region that facilitates limb movements. It is the primary site

for the principal neuropathology associated with Parkinson’s

disease (Aminoff, 2001), which contains mainly dopaminergic

neurons. Interestingly, the dopaminergic system has been

recently indicated in the mechanism of general anesthesia

and sleep (Taylor et al., 2016; Meloni et al., 2020), especially

a specific reduction in activity was noted in the putamen

after propofol anesthesia (Mhuircheartaigh et al., 2010). The

ALFF reduction after TEAS observed in the volunteers may

also be a sedative-like fMRI manifestation. Other studies

observed ipsilateral putamen activation after GB34 acupuncture

stimulation in healthy participants (Yeo et al., 2016) and

patients with PD (Yeo et al., 2014), indicating acupoint-specific

effects on the central nervous system. Acupoint selection is

very important in generating desirable effects. On this note,

a recent trial that evaluated whether electroacupuncture could

reduce sedation requirements during colonoscopy selected

ST36, PC6, and LI4 as target acupoints (Yeo et al., 2014). The

negative results generated from that trial when compared to the

effectiveness of our study rely at least partly on the difference in

acupoint selection.

The fMRI result in our study demonstrated a reduced

spontaneous activity around the location of the red nucleus

of volunteers after TEAS. The red nucleus plays an important

role in motor control and locomotion. Reduced activity

in this nucleus may be due to a reduced requirement of

activity for motor control, which indicated that volunteers

in this group might be in a more sedative state than

subjects in the control group. Chen et al.’s study using

PET imaging demonstrated increased metabolism at the red

nucleus after stimulating TE5 (Chen et al., 2012; Yang

et al., 2013), which is considered responsible for moving

energy between the upper body and the lower body. Another

study using fMRI also demonstrated increased activity in

the red nucleus after ST36 stimulation compared with

sham stimulation (Napadow et al., 2009). These differences,

again, may be attributed to the fact that different acupoints

were selected.

In the TEAS group, decreased ALFF values were found in

the thalamus, while increased functional connectivity was found

between the thalamus and bilateral insula, bilateral putamen,

left SI, right MCC, and right amygdala. These brain areas

are involved in sleep disorders, memory, mood/motivation

regulation, and depression (Phelps and LeDoux, 2005; Ramel

et al., 2007). Decreased functional connectivity between the

thalamus and amygdala was reported in patients with insomnia

(Huang et al., 2012). In our study, increased functional

connectivity between these two nuclei may be a sign of a sedative

effect. Increased functional activity between the thalamus and

these brain regions may indicate more subcortical modulation

of brain activities in these regions by the thalamus, generating

sleepiness, comfort, and calm feelings that are all associated

with pro-sedative effects. In contrast, control subjects revealed

increased thalamic connectivity to brain regions, including

the bilateral precuneus, right hippocampus, and bilateral
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FIGURE 5

(A–C) Functional correlation map associated with the ROI in the two groups after TEAS stimulation or control intervention. The warm color

shows the positive functional connectivity between the ROI (thalamus) and other regions. The cold color shows negative functional connectivity

between the ROI and other regions. Significant positive connectivity was found between the thalamus and bilateral insula, bilateral putamen, left

primary SI, right MCC, and right amygdala in the TEAS group. Meanwhile, significant connectivity was detected between the thalamus and the

bilateral precuneus, right hippocampus, and bilateral cerebellum in the control group, indicated by orange circles. ROI, region of interest; TEAS,

transcutaneous electrical acupoint stimulation; SI, somatosensory cortex; MCC, middle cingulate cortex.

cerebellum. These brain regions are mainly involved in emotion

and activity during wakefulness. Precuneus connectivity was

found to be significantly stronger in conscious patients than

those in unconscious patients (Vanhaudenhuyse et al., 2010).

These results also indicate that TEAS at HT7/PC4 affects brain

activity in a pro-sedative way.

A significant positive correlation was found between the

average ALFF values in the thalamus on fMRI and BIS values.

The bispectral index (BIS) was developed to quantify the

depth of general anesthesia (Punjasawadwong et al., 2014) and

sedation (Herzog et al., 2021). It has been reported to be used

as a simplified tool to evaluate the depth of natural sleep

(Benissa et al., 2016). It has been suggested that a positive

correlation between the scalp EEG and deep brain nuclei

reflected a mechanism of cortical activity modulation exerted

by the thalamus (Fukunaga et al., 2006). Reduced thalamus

activity observed after TEAS in volunteers is associated with

their lower BIS value, which further corroborates that TEASmay

reduce the level of consciousness through the inhibition of the

thalamus activity.

Our study has several limitations. First, the number of

subjects was relatively small, which may lower the statistical

power. Second, we observed the sedative effect using the BIS

value instead of sedation scores, such as the Richmond agitation-

sedation scale. Third, it was difficult to blind the subjects,

as the intervention started when the subjects were awake.

To minimize possible bias, we selected participants with no

experience with electrical stimulation and informed them that

they may or may not feel the stimulation. The electrodes were

placed similarly for all groups, and the intensity threshold was

testified for all participants. The stimulator was placed in an

opaque box.

Conclusion

Transcutaneous electrical acupoint stimulation at HT7/PC4

reduced the level of consciousness in healthy volunteers, as

indicated by BIS. This sedative effect may be related to

modulating the function of deep brain areas, including the
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thalamus, putamen, midbrain, and OFC. It also generates

more connectivity between the thalamus and deep brain areas

involved in sleep, mood, and memory.
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