AUTHOR=Lappi Otto TITLE=Egocentric Chunking in the Predictive Brain: A Cognitive Basis of Expert Performance in High-Speed Sports JOURNAL=Frontiers in Human Neuroscience VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2022.822887 DOI=10.3389/fnhum.2022.822887 ISSN=1662-5161 ABSTRACT=

What principles and mechanisms allow humans to encode complex 3D information, and how can it be so fast, so accurately and so flexibly transformed into coordinated action? How do these processes work when developed to the limit of human physiological and cognitive capacity—as they are in high-speed sports, such as alpine skiing or motor racing? High-speed sports present not only physical challenges, but present some of the biggest perceptual-cognitive demands for the brain. The skill of these elite athletes is in many ways an attractive model for studying human performance “in the wild”, and its neurocognitive basis. This article presents a framework theory for how these abilities may be realized in high-speed sports. It draws on a careful analysis of the case of the motorsport athlete, as well as theoretical concepts from: (1) cognitive neuroscience of wayfinding, steering, and driving; (2) cognitive psychology of expertise; (3) cognitive modeling and machine learning; (4) human-in-the loop modellling in vehicle system dynamics and human performance engineering; (5) experimental research (in the laboratory and in the field) on human visual guidance. The distinctive contribution is the way these are integrated, and the concept of chunking is used in a novel way to analyze a high-speed sport. The mechanisms invoked are domain-general, and not specific to motorsport or the use of a particular type of vehicle (or any vehicle for that matter); the egocentric chunking hypothesis should therefore apply to any dynamic task that requires similar core skills. It offers a framework for neuroscientists, psychologists, engineers, and computer scientists working in the field of expert sports performance, and may be useful in translating fundamental research into theory-based insight and recommendations for improving real-world elite performance. Specific experimental predictions and applicability of the hypotheses to other sports are discussed.