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Introduction: Automatically and accurately delineating the primary

nasopharyngeal carcinoma (NPC) tumors in head magnetic resonance

imaging (MRI) images is crucial for patient staging and radiotherapy. Inspired

by the bilateral symmetry of head and complementary information of different

modalities, a multi-modal neural network named BSMM-Net is proposed for

NPC segmentation.

Methods: First, a bilaterally symmetrical patch block (BSP) is used to crop the

image and the bilaterally flipped image into patches. BSP can improve the

precision of locating NPC lesions and is a simulation of radiologist locating

the tumors with the bilateral difference of head in clinical practice. Second,

modality-specific and multi-modal fusion features (MSMFFs) are extracted by

the proposed MSMFF encoder to fully utilize the complementary information

of T1- and T2-weighted MRI. The MSMFFs are then fed into the base decoder

to aggregate representative features and precisely delineate the NPC. MSMFF

is the output of MSMFF encoder blocks, which consist of six modality-specific

networks and one multi-modal fusion network. Except T1 and T2, the other

four modalities are generated from T1 and T2 by the BSP and DT modal

generate block. Third, the MSMFF decoder with similar structure to the MSMFF

encoder is deployed to supervise the encoder during training and assure the

validity of the MSMFF from the encoder. Finally, experiments are conducted

on the dataset of 7633 samples collected from 745 patients.

Results and discussion: The global DICE, precision, recall and IoU of the

testing set are 0.82, 0.82, 0.86, and 0.72, respectively. The results show

that the proposed model is better than the other state-of-the-art methods

for NPC segmentation. In clinical diagnosis, the BSMM-Net can give precise

delineation of NPC, which can be used to schedule the radiotherapy.

KEYWORDS

segmentation, MRI, neural network, multi-modal, nasopharyngeal carcinoma

Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.1068713
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.1068713&domain=pdf&date_stamp=2023-01-10
https://doi.org/10.3389/fnhum.2022.1068713
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2022.1068713/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1068713 January 10, 2023 Time: 7:32 # 2

Zhou et al. 10.3389/fnhum.2022.1068713

1. Introduction

Nasopharyngeal carcinoma (NPC) is a common malignant
tumor with geographical distribution, mainly in Southeast
Asia, North Africa, and the Mideast (Tatanun et al., 2010).
According to the American Joint Committee on Cancer staging
system, clinicians and radiologists can stage patients according
to the laterality, quantity, size, and location of the primary
NPC tumors. Head magnetic resonance imaging (MRI) is the
first choice for diagnosing NPC and delineating primary NPC
tumors because T1-weighted MRI (T1) can reflect the skull base
involvements and T2-weighted MRI (T2) can provide better
structural information on soft tissues than T1. However, exactly
outlining the primary NPC tumors from T1 and T2 head MRI
images for staging is tiring and time-consuming. Therefore,
developing an accurate and efficient NPC segmentation method
is crucial to assist radiologists.

According to the types of features, the methods for accurate
primary NPC tumor segmentation can be roughly grouped
into two major classes, namely, traditionally handcrafted
feature-based and deep feature-based. Traditionally handcrafted
feature-based works utilize manual features, such as intensity,
texture, and shape, to generate the NPC boundary (Zhou et al.,
2006; Tatanun et al., 2010; Chanapai et al., 2012; Huang et al.,
2013, 2015). However, accurately contouring the NPC boundary
on the basis of these simply handcrafted features is difficult
because of the fuzzy boundary and variable location of NPC
lesions.

Previous studies have achieved excellent improvement using
deep features extracted by deep neural networks and linked
with the segmenting task in training. Some deep feature-based
works improve accuracy by utilizing multi-level and multi-scale
information of deep features (Li et al., 2018; Ke et al., 2020).
However, these works ignore the spatial relationships of the
head and complementary information of different modalities.
Although some researchers utilized the spatial relationships
through variant transformers, the large NPC dataset needed
to train the fully connected layers of transformers is difficult
to collect (Khan et al., 2021; Dhamija et al., 2022). Although
these models can be properly trained, the possibility of learning
the bilateral symmetry of the head is unclear and the spatial
relationship of the multi-head attention mechanism is not
explainable. T-staging information has been transferred into
a channel, stacked with other modalities, and fed into an
attention Unet to segment the NPC tumors (Cai et al., 2021).
However, achieving the T-staging information is difficult and
time-consuming. Semi-supervised models are hot spots for less
number of NPC datasets, but the performance of these models
still cannot be compared to the models trained by all labeled
datasets (Luo et al., 2021; Hu et al., 2022). Some studies focused
on variable locations and irregular boundaries of NPC tumors
but paid less attention to the bilateral symmetry of the head

and complementary information of multiple modality-specific
features (Li et al., 2022).

To address these issues, this research proposes a deep
feature-based network that can detect NPC tumors on the basis
of the bilateral symmetry of the head and can fully utilize the
complementary information of T1 and T2 modalities. First,
the difference value between T2 and T1 (DT) is treated as
an individual modality for utilizing the information of high-
water-content tissues, such as the cerebellum and spinal cord.
Bilaterally symmetrical patch block (BSP) directly crops the
image and its horizontally flipped image at the same location
with the same size to precisely locate NPC tumors using
the information on the bilateral symmetry of the head. The
modality-specific and multi-modal fusion feature (MSMFF)
encoder is designed to extract deep features containing the
complementary information of T1 and T2 from the patches
preprocessed by BSP and DT. In addition, the MSMFF encoder
blocks are composed of six modality-specific networks and
one multi-modal fusion network in parallel. A spatial attention
mechanism is then introduced into the base decoder to enhance
the features of lesions and obtain accurate segmentation.
Finally, the MSMFF decoder with a similar structure to the
MSMFF encoder is deployed to deeply supervise the encoder
during training and ensure its validity of the MSMFF encoder.
The proposed model can precisely locate and delineate NPC
tumors on the basis of the bilateral symmetry of the head
and the complementary information of T1 and T2 modalities.
The main contributions of this study are summarized as
follows:

(a) This study is a novel attempt to validate the feasibility
of locating NPC lesions on the basis of the bilateral
symmetry of the head. In addition, it is a simulation that
the radiologist could detect NPC tumors by comparing the
difference between the left and right sides of the head.

(b) In order to fully utilize the complementary information
and bilateral symmetry of modalities, the MSMFF encoder
is proposed to extract the MSMFFs from the patches of
T1, T2, DT, and their bilaterally flipped ones. Among
these modalities, the DT modality which is computed by
subtracting T1 from T2 can enhance the structural and
positional information of high-water-content materials
such as the cerebellum and spinal cord. The proposed
MSMFF encoder is composed of six modality-specific
networks and a multi-modal fusion network in parallel.
To assure the validity of the MSMFF encoder features,
an MSMFF decoder is applied as an auxiliary decoder to
deeply supervise the MSMFF encoder during training.

(c) Experiments on the MRI of 745 patients demonstrate
that the proposed method obtains improved results
by combining the bilateral symmetry of the head and
complementary information of T1 and T2 modalities
compared with state-of-the-art techniques.
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2. Related studies

Deep learning networks have excellent feature learning
ability and have been widely deployed to combine multi-
modality images (such as CT, T1 MRI, and T2 MRI) for organ
segmentation or lesion segmentation. Some studies utilized
deep learning networks to automatically delineate NPC tumors.
Men et al. (2017) extracted the deep features of CT images
through a VGG-16-like encoder and utilized a decoder to
recover the original resolution. SI-Net, a variant of Unet, showed
an improved performance by utilizing the information of the
adjacent image and the high-risk primary tumor contour of the
adjacent image (Xue et al., 2020). To automatically delineate
NPC lesions in MRI images, Wong et al. (2021) used the texture
and position information to weigh the channels of skipping
features in an Unet-like network. Bai et al. (2021) achieved
the rough segmentation of NPC lesions in CT images using
ResNeXt-50 Unet, which is constructed by replacing the encoder
of Unet with ResNeXt-50. A series of patches sampled based
on the rough delineation were then fed into another ResNeXt-
50 Unet model to predict the NPC tumor region. Finally, these
predictions were merged into the final segmentation. Guo et al.
(2020) utilized low-level features and multi-scale information
to improve delineation by applying long-range skip connection
and multi-scale feature pyramid. For multi-scale and multi-level
information, DDNet introduces dense connections and feature
pyramids to the networks and achieves excellent performance
in NPC MRI (Li et al., 2021). DA-DSUnet exhibits an improved
performance by utilizing multi-level features based on channel
attention and position attention mechanisms (Tang et al., 2021).

Although the abovementioned methods utilize multi-scale,
multi-level, adjacent, positional, or texture information in
various ways to enhance the performance, the complementary
information of different modalities and the bilateral
symmetry of the head, which are a concern of radiologists in
contouring NPC tumors, are missed. To improve segmentation
performance, Lin et al. (2019) concatenated four modalities and
fed the concatenation into a network with residual mechanism
and long-range skip connection. Zhao et al. (2019) fed dual-
modality PET-CT images into an Unet-like network with
auxiliary paths to introduce deep supervision and allow the
hidden layers of the decoder to learn additional representative
features. For precisely contouring NPC tumors and lymph
nodes, NPCNet utilizes ResNet-101 to extract features and then
enhances these features by channel attention, spatial attention,
and object contextual representation block (Li et al., 2022).

However, the aforementioned multi-modal networks simply
fused modalities at the first layer by directly feeding the
stacking modalities. Additionally, the means of these networks
that are designed for achieving better performance can
also be utilized in single-modality tasks. Modality-specific
networks that can aggregate complementary information from
different modalities are valuable for multi-modal networks

(Zhu et al., 2016; Lan et al., 2022). MMFNet uses three specific
encoders to separately extract modality-specific features from
corresponding modality images. The modality-specific features
are fused by a 3D spatial attention module before being fed into
the decoders (Chen et al., 2020). Zhu et al. (2022) extracted
the modality-specific features of NPC multi-modal images such
as MMFNet and fused them with a channel attention module
(CAM) to achieve complementary information.

Although some of the abovementioned works utilized
modality-specific features to extract additional representative
features, the discarded low-level multi-modal fusion features are
also crucial in aggregating the complementary information of
modalities (Lan et al., 2022). To solve this problem, a multi-
modal fusion network is deployed in MSMFF encoder (or
decoder) blocks to fuse the modality-specific features and multi-
modal fusion features of the former layers. Moreover, locating
NPC lesions according to the difference between the left and
right sides of the diseased nasopharynx is a valuable way to
improve the detection performance of networks. In theory, some
networks with transformers can learn the relationship between
all patches, including bilaterally symmetrical relationships
(Chen et al., 2021; Hatamizadeh et al., 2021; Khan et al.,
2021). However, the training of these models requires a large
dataset, which is difficult to achieve. In addition, the relationship
matrices representing the spatial relation of paired patches are
sophisticated and not explainable (Khan et al., 2021). To avoid
these issues, the BSP that directly crops T1, T2, DT, and their
bilaterally flipped modalities into patches at the same positions
is proposed.

3. Methods

As illustrated in Figure 1, the proposed network, BSMM-
Net, which is an end-to-end Unet-like convolutional model,
contains the MSMFF encoder and takes patches from T1, T2,
DT, and their horizontally flipped modalities as inputs. DT
modality, which is the difference between T1 and T2, can
intensify the influence of high-water-content tissues, such as the
cerebellum and spinal cord, on the network by strengthening
their signals. BSP treats the bilaterally flipped images of T1, T2,
and DT as independent modalities and crops the flipped and
raw images into bilaterally symmetrical patches, which contain
the bilaterally symmetrical information of the head that can
be utilized to improve the accuracy of tumor detection by the
networks. The MSMFF encoder can extract MSMFFs containing
the fully complementary information of NPC lesions from
modalities. The complementary information in the MSMFF can
be aggregated to accurately delineate NPC lesions using the base
decoder, which then introduces a convolutional block attention
module (CBAM) into its networks to enhance the deep features
of NPC lesions. To ensure the validity of MSMFF, the MSMFF
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FIGURE 1

Architecture of BSMM-Net. The BSMM-Net is composed of DT-generated block, bilaterally symmetrical patch block, MSMFF encoder, and base
decoder. The MSMFF encoder represents the combination of MSMFF encoder blocks. The MSMFF decoder is used as a deep supervisor in the
training step. The inputs of the MSMFF encoder are preprocessed by the bilaterally symmetrical patch block and DT-generated block. In
inference, the final segmentation of BSMM-Net is the output of the base decoder, which is composed of the base encoder blocks.

decoder is only deployed in the training step to deeply supervise
the MSMFF encoder.

3.1. Bilaterally symmetrical patch and
DT modality

The bilateral symmetry of the head is essential in locating
NPC tumors. An image and its horizontally flipped image are

simultaneously cropped into bilaterally symmetrical patches to
directly and efficiently use the bilateral difference of the head.
The cropping process of BSP is presented in Figure 2, where
the orange box represents the horizontally flipped block that
can flip the left and right sides of the image, and the green box
represents the image patch block that can crop the region of
the image and the flipped image in the labeled four points into
patches. As shown in Figure 2, the structure of normal tissues
in the raw image is similar to those in the horizontally flipped

Frontiers in Human Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1068713
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1068713 January 10, 2023 Time: 7:32 # 5

Zhou et al. 10.3389/fnhum.2022.1068713

image. Meanwhile, the lesion in the green contour breaks this
symmetry. T1, T2, and DT modalities are all fed into BSP to
fully utilize the information on the bilateral symmetry of the
head.

The DT modal image IDT is the difference between the T2
modal image IT2 and T1 modal image IT1:

IDT
(
x, y

)
= IT2

(
x, y

)
− IT1 (1)

where IT1
(
x, y

)
is the intensity of the T1 image in the

position
(
x, y

)
, and IT2

(
x, y

)
is the intensity of the T2

image in
(
x, y

)
. The output of the DT-generated block

IDTB
(
x, y

)
=

(
IT1

(
x, y

)
, IT2

(
x, y

)
, IDT

(
x, y

))
is a stack of

T1, T2, and DT modal images that are cropped into a series of
patches by BSP. With the use of BSP and DT-generated block,
the proposed network can directly utilize the information on the
bilateral symmetry of the head and high-water-content tissues.

FIGURE 2

Bilaterally symmetrical patch block. The bilaterally symmetrical patch block crops the images and their horizontally flipped images into patches
of the same size. Bilaterally flipped images are treated as an independent modality.

FIGURE 3

Modality-specific and multi-modal fusion feature encoder block.
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3.2. Modality-specific and multi-modal
fusion features

All levels of modality-specific and multi-modal fusion
features (MSMFFs) are crucial in feature fusion (Lan et al.,
2022). A modality-specific feature is only extracted from a
specific modality and contains exclusive and complementary
information. A multi-modal fusion feature is extracted from
the modality-specific features and multi-modal fusion features
of previous layers. As shown in Figure 3, the top residual
network (He et al., 2016) in the MSMFF encoder blocks
extracts multi-modal fusion feature MFFl from MSMFF Fl−1 ∈

R
H

2l−2 ×
W

2l−2 ×
C

22−l , where MFFl ∈ R
H

2l−1 ×
W

2l−1 ×
C × 21−l

2 is a
feature map related to the MSMFFs Fl−1 of former layers.

Modality-specific features MSFn
l ∈ R

H
2l−1 ×

W
2l−1 ×

C × 21−l
6 × 2 are,

respectively, extracted from the MSFn
l−1 of previous layers by

the corresponding residual network in the MSMFF encoder
blocks. Here, n = 1, 2, 3,4, 5, 6 denote T1 modal patches, T2
modal patches, DT modal patches, bilaterally flipped T1 patches,
bilaterally flipped T2 patches, and bilaterally flipped DT patches,
respectively, and l = 1, 2, 3,4 represent different depths.
Given the feature Fl−1 of former layer, the output MSMFFs

Fl =
(
MFFl,MSF1

l ,MSF2
l , ...,MSF6

l
)
∈ R

H
2l−1 ×

W
2l−1 × C × 21−l

are a concatenation of the multi-modal fusion feature MFFl and
all modality-specific features MSFn

l . The multi-modal fusion
feature MFFl can be calculated using the following equation:

MFFl = ResMFF
l

(
Fl−1

)
= BaseBlockMFF3

l(
BaseBlockMFF2

l

(
BaseBlockMFF1

l
(
Fl−1

))
+ Fl−1

)
+

BaseBlockMFF1
l

(
Fl−1

)
+ Fl−1 (2)

BaseBlockMFFn
l (F) = ReLU

(
BN

(
WMFFn

l ∗F + BMFFn
l

))
where BaseBlock (·) is the base block of the proposed network,
WMFFn

l is the xth convolution kernel of the l-th multi-modal
fusion feature layer, the symbol ∗ represents the convolution
operation, and BMFFn

l is the bias. BN (·) and ReLU (·) are batch
normalization and rectified linear units, respectively (Nair and
Hinton, 2010; Ioffe and Szegedy, 2015). The modality-specific
features MSFn

l of the MSMFF encoder blocks can be extracted in
a similar way by feeding the modality-specific features MSFn

l−1
of previous layers into the corresponding residual network.

As depicted in Figure 1, the MSMFFs are skipped into
the base decoder blocks and then fused together to fully
utilize the bilateral symmetry of the head and complementary
information of modalities in delineating NPC lesions. These
base decoder blocks follow the CBAM and residual network for
enhancing the difference between the lesions and backgrounds,
as illustrated in Figure 4. The MSMFFs FL−l and multi-
modal fusion feature FSl−1 are concatenated and fed into the
residual network of a base decoder block. In particular, the

residual network applies three 3 × 3 convolutions to fuse the
different level features FL−l and FSl−1, followed by a CBAM
module that enhances spatial features by aggregating global
spatial information and channels. Exporting aggregated feature
BDl from the base decoder is mathematically expressed as
Equation 3. Res (·) is the residual network block-like Equation
2. CBAM (·) denotes the CBAM, which is a concatenation of
the CAM and position attention module (PAM) as described in
Equation 4.

FSl = CBAMl
(
ResBD

l
((
FL−l, FSl−1

)))
+

ResBD
l
((
FL−l, FSl−1

))
(3)

CBAM (FRes) = PAM (CAM (FRes)) (4)

CAM (FRes) = Sigmoid(
WCAM3

∗BaseBlockCAM2
(

MaxPool
(

BaseBlockCAM1 (FRes)
))

+BCAM3
+WCAM3

∗BaseBlockCAM2(
AvgPool

(
BaseBlockCAM1 (FRes)

))
+ BCAM3

)
⊗ FRes

PAM (FCAM) = Sigmoid
(

BaseBlockPAM

(
MaxPool (FCAM) , AvgPool (FCAM)

))
⊗ FCAM

where BaseBlock (·) is shown in Equation 2. MaxPool (·)
and AvgPool (·) are the max pooling function and average
pooling function, respectively. The two pooling functions
compute spatial context descriptors in CAM and downsample
along the channel axis in PAM.

⊗
denotes element-wise

multiplication. Sigmoid (·) is a Sigmoid function to generate
channel attention and spatial attention. With these functions,
the base decoder can aggregate validating features and precisely
contour the NPC lesions.

Compared with the encoder of Unet, the structure of the
MSMFF encoder is more intricate and needs a large number
of datasets for training. The limited size of the NPC MRI
dataset is not large enough to support the training of the
MSMFF encoder; therefore, the MSMFF decoder is proposed
as a deep supervisor (Lee et al., 2015) to supervise the MSMFF
encoder during training to improve the validity of MSMFFs.
As shown in the green dashed frame of Figure 1, the MSMFF
decoder is composed of MSMFF decoder blocks, as depicted
in Figure 5. Similar to MSMFF encoder blocks, the output
of MSMFF decoder block is a concatenation of modality-
specific features and multi-modal fusion features generated by
base decoder-like networks using the MSMFFs from previous
MSMFF decoder block and MSMFF encoder. Supervised by the
modality-specific residual network in MSMFF decoder blocks,
the modality-specific residual network block in the MSMFF
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FIGURE 4

Base decoder block.

encoder can extract more target-relating modality-specific
features than the one only supervised by the base decoder.
The multi-modal fusion residual network block in the MSMFF
decoder prompts the MSMFF encoder to aggregate more
validating complementary information of different modalities
than without the MSMFF decoder.

BSMM-Net consists of the abovementioned MSMFF
encoder and base decoder and can achieve a good outline
sketching performance by fully utilizing the bilateral symmetry
of the head and complementary information of modalities.
Supervised by the MSMFF decoder, the MSMFF encoder can
extract representative MSMFFs from the bilaterally symmetrical
patches. The base encoder outputs the final prediction of
BSMM-Net by aggregating the MSMFFs.

4. Experiments

4.1. Data

The BSMM-Net is tested on the NPC MRI dataset from
the Chinese Sun Yat-sen University Cancer Center. The dataset
contains 7,633 pairs of T1 and T2 modalities from 745 patients
who were treated at Sun Yat-sen University Cancer Center from
January 2010 to January 2013. The training and testing sets
include 670 (7,034 slices) and 75 (599 slices) patients.

All MRIs are scanned by cross-sectional position using
1.5-T or 3.0-T MRI systems with head-neck combined coils.
The scanning parameters are as follows: T1 (FSE, axial
plane, TR = 540 ms, TE = 11.8 ms) and T2 (FSE, axial
plane, TR = 4,000 ms, TE = 99 ms). The resolution of
MRIs is different from 320 × 320 to 512 × 512. In
particular, 7,633 slices with NPC lesions are chosen before
normalization. First, three radiologists individually draw the
labels following the same delineation protocol and then review
them together and decide on the final labels. Patients are selected
according to the following rules: presence of biopsy-proven

NPC, undergoing intensity-modulated radiation therapy, and
presence of complete imaging and clinical data.

4.2. Training details and evaluation
metrics

The proposed BSMM-Net is trained, evaluated, and tested
using PyTorch 1.9 with the CUDA 11.4 and a single NVIDIA
RTX 2080 Ti GPU. Adam optimizer is used for training the
network. The betas, weight decay, and learning rate of Adam
are, respectively, set to (0.9, 0.9999), 0.001, and 0.0001. The
training process is stopped when the loss function on the
validation set stops decreasing over 7 epochs to avoid overfitting.
A horizontal flip is conducted for all images of the train set for
data augmentation. Patches with size 128 × 128 are cropped
as inputs that are randomly shuffled before each epoch during
training to solve the problem of the variable sizes of images. The
input of the multi-modal fusion network of the first MSMFF
encoder block is a concatenation of patches of six modalities.
Additionally, the input of the modality-specific net is patches
of the corresponding modality. In the proposed network, an
MSMFF decoder is used to supervise the proposed MSMFF
encoder through the auxiliary loss function La. A principal
loss function Lp is also applied to optimize the whole network
consisting of MSMFF encoder and base decoder. The auxiliary
loss function La and principal loss function Lp are the linear
combinations of soft dice loss LDICE and cross-entropy loss LCE,
respectively, as shown in Equations 5, 6 (Li and Lee, 1993; Bertels
et al., 2020):

La = αa · LDICE

(GT7,PredMSMFF)+ βa · LCE (GT7,PredMSMFF) (5)

Lp = αp · LDICE

(GT,Predbase)+ βp · LCE (GT,Predbase) (6)
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FIGURE 5

Modality-specific and multi-modal fusion feature decoder block.

where GT means the ground truth and is delineated by
radiologists. GT7 is a stack of seven same-ground truths GT.
PredMSMFF is the output of the MSMFF decoder and is only
used to supervise the MSMFF encoder during training. Predbase

aggregates multilevel, multi-modal, and bilaterally symmetrical
features from the MSMFF encoder and is the output of the
base decoder. Hyperparameters αa, βa, αb, and βb are all
empirically set to 0.25.

Dice similarity coefficient (DICE), precision (PREC), recall
(RECALL), and the intersection of union (IoU) are adopted
to evaluate the segmentation performance. These evaluation
metrics are calculated using Equations 7–10:

DICE =
2NUM (GT ∩ Predbase)

NUM (GT)+ NUM
(
Predbase

) (7)

PREC =
NUM (GT ∩ Predbase)

NUM
(
Predbase

) (8)

RECALL =
NUM (GT ∩ Predbase)

NUM (GT)
(9)

IoU

=
NUM (GT ∩ Predbase)

NUM (Predbase)+NUM (Predbase)−NUM (GT ∩ Predbase)

(10)

where NUM(·) is the number of pixels divided into lesions
by segmentation models or radiologists. The mean evaluation
metric of global slices is denoted by subscript “S.” The average
of the evaluation metrics of all patient cases is a metric for
3D results and is denoted by subscript “V.” For example,
DICES means the global dice similarity coefficient, and DICEV

represents the case dice similarity coefficient.

4.3. Comparison with state-of-the-art

The detailed numerical results of BSMM-Net and compared
models including base Unet (Ronneberger et al., 2015),
SwinUnet (Cao et al., 2021), TransUnet (Lan et al., 2022), and
BASNet (Qin et al., 2019) are summarized in Table 1. For the
compared models, the inputs are a concatenation of T1, T2,
and DT images. The base Unet, which is the baseline of the
proposed method, is an Unet with batch normalization and
residual networks. Similar to the proposed BSMM-Net, the
feeding inputs are cropped. For the other compared models, the
input images are resized according to reference. As shown in
Tables 1, 2, the proposed model achieves the results with DICES,
PRECS, RECALLS, IoUS, DICEV , PRECV , RECALLV , and IoUV

of 0.82± 0.12, 0.82± 0.15, 0.86± 0.13, 0.72± 0.15, 0.85± 0.06,
0.83± 0.10, 0.87± 0.06, and 0.74± 0.08, respectively. The bold
value indicates that the metrics of related results are significantly
better than those of the compared model that ranked second.
Except for precision, the other metrics of the proposed method
are significantly better than those of the compared models. The
t-test results for the proposed method vs. the competing method
are shown in Table 3 and prove the significant difference in
results between the proposed model and compared models.
According to Tables 1, 2, a comparison of the results of base
Unet and SwinUnet reveals that the metrics of volumes are
not in direct proportion to the metrics of slices. The next best
model to DICE and IoU is the TransUnet in terms of slices and
volumes.

The representative visual segmentation examples are
presented in Figure 6. The green regions are the true positive
region, which is the ground truth and correctly contoured by
models. The blue regions represent the false positive region,
which is the background and delineated into NPC lesions by
the models. The red regions mean the false negative region,
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TABLE 1 Comparison of different models in slices (2D).

Method DICES PRECS RECALLS IoUS

Base Unet 0.76± 0.20 0.75± 0.20 0.81± 0.23 0.64± 0.20

SwinUnet 0.76± 0.17 0.86± 0.16 0.71± 0.20 0.63± 0.18

TransUnet 0.78± 0.15 0.82± 0.16 0.78± 0.18 0.66± 0.17

BASNet 0.66± 0.26 0.78± 0.27 0.61± 0.27 0.53± 0.24

BSMM-
Net

0.82± 0.12 0.82± 0.15 0.86± 0.13 0.72± 0.15

TABLE 2 Comparison of different models in volumes (3D).

Method DICEV PRECV RECALLV IoUV

Base Unet 0.76± 0.20 0.75± 0.20 0.82± 0.23 0.64± 0.20

SwinUnet 0.80± 0.07 0.87± 0.09 0.74± 0.09 0.67± 0.09

TransUnet 0.81± 0.07 0.84± 0.10 0.80± 0.09 0.69± 0.08

BASNet 0.72± 0.11 0.83± 0.11 0.65± 0.14 0.57± 0.12

BSMM-Net 0.85± 0.06 0.83± 0.10 0.87± 0.06 0.74± 0.08

which is the ground truth and is overlooked by the models in
predicting the NPC lesions. The corresponding DICES of each
visualized image are shown on top of the image. From the third
and fourth rows of Figure 6, the BSMM-Net can achieve better
segmentation than other models from the images whose NPC
lesions have bad left and right symmetry. A comparison between
the rightmost columns of Figure 6 with other columns reveals
that the results of BSMM-Net are more similar to those of the
manual segmentation by radiologists.

4.4. Ablation study

The validity of BSP, a decoder with CBAM and MSMFF
encoder, is validated in this subsection, and the results are
illustrated in Table 4. The notation “

√
” means the utilization

of the modules. The bold value indicates that the metrics of
related results are best. The base Unet, which is a simple
Unet-like network, is the BSMM-Net without CBAM, BSP, and
modality-specific residual networks of MSMFF encoder. When
BSP is applied or the decoder with CBAM is deployed, all
the evaluation metrics are substantially improved. However,
when BSP and CBAM are applied concurrently, the RECALL

FIGURE 6

Visualization of segmentation masks. The green regions are the
NPC lesion regions correctly segmented by the models. The
blue regions are the false positive regions erroneously divided
into targets by models. The red regions are the false negative
regions and the regions of NPC lesions missed by the models.

is improved and the PREC drops. According to the fifth row
of Table 4, the DICE, PREC, and IoU of model with the
MSMFF encoder can also achieve remarkable improvement.
The Table 5 shows the t-test results for the base Unet vs.
enhancements. According to the Table 5, except the difference
of RECALLS between base Unet and base Unet with BSP module
is nonsignificant, the other p-values are significant.

5. Discussion

This study proposes a neural network to delineate NPC
in MRI images. Results show that BSMM-Net significantly
outperforms state-of-the-art techniques in terms of DICE,
RECALL, and IoU metrics. This improvement can be attributed
to the use of the bilateral symmetry of the head and the
complementary information aggregated from MSMFFs. As
listed in Tables 1, 2, the PREC of SwinUnet is higher and the
other metrics are lower than those of TransUnet, which also
utilizes transformers. This finding indicates that the SwinUnet
missed more true positive regions than TransUnet because the
former utilizes the sliding window to relieve the computation

TABLE 3 The t-test results for the proposed method vs. the competing method.

Paired t-test P-value of DICES P-value of PRECS P-value of RECALLS P-value of IoUS

BSMM-Net vs. base Unet †† ∼ †† ††

BSMM-Net vs. SwinUnet †† * †† ††

BSMM-Net vs. TransUnet †† †† †† ††

BSMM-Net vs. BASNet †† † †† ††

∼Nonsignificant, *p ≤ 0.05, †p ≤ 0.005, ††p ≤ 0.001.
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TABLE 4 Nasopharyngeal carcinoma segmentation results of ablation experiments.

Method DICES PRECS RECALLS IoUS

Base Unet BSP CBAM decoder MSMFF encoder
√

0.76± 0.20 0.75± 0.20 0.81± 0.23 0.64± 0.20
√ √

0.81± 0.14 0.82± 0.16 0.83± 0.16 0.70± 0.17
√ √

0.81± 0.14 0.82± 0.16 0.84± 0.16 0.70± 0.17
√ √ √

0.81± 0.14 0.79± 0.15 0.87± 0.16 0.70± 0.16
√ √ √ √

0.82± 0.12 0.82± 0.15 0.86± 0.13 0.72± 0.15

“
√

” marks represent utilized modules.

TABLE 5 Hypothesis validation results of the base Unet vs. enhancements.

Paired t-test P-value of DICES P-value of PRECS P-value of RECALLS P-value of IoUS

Base Unet vs. base Unet + BSP †† †† ∼ ††

Base Unet vs. base Unet + CBAM decoder †† †† * ††

Base Unet vs. base Unet + BSP + CBAM
decoder

†† †† †† ††

Base Unet vs. BSMM-Net †† †† †† ††

∼Nonsignificant, *p ≤ 0.05, ††p ≤ 0.001.

of transformers. Some long-range or symmetrical relationships,
which are important for locating NPC lesions, can be elided by
the sliding windows of SwinUnet. The difference in performance
between SwinUnet and TransUnet proves that the long-range
spatial relationship including the bilateral symmetry of the
head is a key for detecting NPC lesions. Although resnet34
(Li et al., 2021) used as an encoder by BASNet is pre-trained
in the ImageNet datasets, the dataset is not large enough to
train a large number of parameters of BASNet. Therefore, the
BASNet achieved the worst performance in the experiments.
According to Tables 1, 2, the precision of the BSMM-Net is
lower than that of the SwinUnet and TransUnet. The lower
precision of the proposed model means more backgrounds are
segmented into NPC lesions by the BSMM-Net than by the
SwinUnet and TransUnet. Since the proposed model is trained
through cropped images, the global information of the whole
images is lost and the BSMM-Net predicts more false positive
regions. Compared with the false positive regions caused by
the proposed model, the far more true positive regions by the
proposed model than the compared models are more valuable in
other metrics and more useful in the practical clinic. Compared
with the TransUnet, BSMM-Net can more directly utilize the
information on the bilateral symmetry of the head through
the bilaterally symmetrical patches. The MSMFF encoder can
aggregate more representative complementary information than
the compared models by utilizing the MSMFFs. Hence, BSMM-
Net is feasibly deployed to delineate NPC tumors in practical
applications.

In the ablation study, BSP shows significant improvements
attributed to the bilateral symmetry of the head. The decoder
with CBAM also achieves similar improvement to BSP by re-
weighing the features of pixels through the attention generated
from the global and channel information. However, the DICE
and IoU of the model utilizing BSP and decoder with CBAM

have no difference from those of the models only using BSP
or CBAM. In addition, the RECALL and PREC of the model
with BSP and CBAM improve and decrease, respectively.
BSP and CBAM allow the model to correctly segment some
NPC regions that are missed by each other, thus improving
the RECALL of the model with both these blocks. However,
the poor PREC means that the backgrounds segmented into
targets by the models with BSP and models with CBAM
decoder are also divided into targets by the model with BSP
and CBAM. As listed in Table 4, the MSMFF encoder can
further improve the DICE and IoU by utilizing MSMFFs. This
finding proves that the proposed MSMFF encoder can aggregate
more complementary information from different modalities
than directly feeding the modalities. The ablation study and
comparison with state-of-the-art models demonstrate that the
bilateral symmetry of the head and complementary information
aggregated from the MSMFF encoder can improve the precision
of NPC segmentation. In general, the proposed method can
assist physicians to delineate the primary tumors of NPC on
multi-modal MRIs.

Even though the proposed method attains great
improvement in the NPC delineation task, some limitations
remain to be solved in future studies. (1) In this study, the
number of datasets is insufficient at present. In the follow-up
study, additional MRI images will be acquired to improve the
robustness and generalization of the proposed method. (2)
The proposed model is experimented with in 2D form and,
thus, may overlook the effect of 3D spatial information of the
head. The future study will utilize the 3D spatial information to
achieve improvements. (3) The dataset used in this article expels
the images obtained when the patient’s position conspicuously
tilts to one side. If images with asymmetrical positions can be
rotated to ensure the bilaterally symmetrical patient position,
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then the proposed method can achieve further improvement.
Therefore, the proposed method can further improve the
segmentation of NPC for future use.

6. Conclusion

In this study, BSMM-Net is proposed to precisely delineate
NPC in multi-modality MRI of the head. The baseline of the
proposed model is an Unet-like network, which can utilize
long-range skipping to fuse high-level and low-level features.
The raw image and its horizontally flipped one are cropped
into bilaterally symmetrical patches, which are then directly
fed into the proposed network to simulate radiologists locating
NPC lesions according to the difference between the left
and right sides of the head. For the full utilization of the
complementary information between modalities, the MSMFF
encoder is designed to extract MSMFFs. An MSMFF decoder
that is structurally similar to the MSMFF encoder is used as a
deep supervisor during training. The experiments demonstrate
the effectiveness of the proposed method on a clinical dataset.
The mean dice similarity scores of the proposed model are
better than the baseline and those of SwinUnet, TransUnet, and
BASNet at 0.82 ± 0.12 and 0.86 ± 0.06 in slices and cases.
The superiority of BSMM-Net can mostly be attributed to the
complementary advantages of the proposed methods.
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