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Introduction: Electroencephalogram (EEG)-based motor imagery (MI)

classification is an important aspect in brain-computer interfaces (BCIs),

which bridges between neural system and computer devices decoding brain

signals into recognizable machine commands. However, due to the small

number of training samples of MI electroencephalogram (MI-EEG) for a

single subject and the great individual differences of MI-EEG among different

subjects, the generalization and accuracy of the model on the specific MI task

may be poor.

Methods: To solve these problems, an adaptive cross-subject transfer learning

algorithm is proposed, which is based on kernel mean matching (KMM) and

transfer learning adaptive boosting (TrAdaBoost) method. First, the common

spatial pattern (CSP) is used to extract the spatial features. Then, in order to

make the feature distribution more similar among different subjects, the KMM

algorithm is used to compute a sample weight matrix for aligning the mean

between source and target domains and reducing distribution differences

among different subjects. Finally, the sample weight matrix from KMM is used

as the initialization weight of TrAdaBoost, and then TrAdaBoost is used to

adaptively select source domain samples that are closer to the target task

distribution to assist in building a classification model.

Results: In order to verify the effectiveness and feasibility of the proposed

method, the algorithm is applied to BCI Competition IV datasets and in-

house datasets. The results show that the average classification accuracy

of the proposed method on the public datasets is 89.1%, and the average

classification accuracy on the in-house datasets is 80.4%.

Discussion: Compared with the existing methods, the proposed method

effectively improves the classification accuracy of MI-EEG signals. At the same

time, this paper also applies the proposed algorithm to the in-house dataset,

the results verify the effectiveness of the algorithm again, and the results of

this study have certain clinical guiding significance for brain rehabilitation.

KEYWORDS

brain-computer interface, motor imagery, cross-subject transfer learning, kernel
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1 Introduction

Brain-computer interface (BCI) (Lin et al., 2021) is a
technology, which directly establishes information interaction
and control between the brain and external devices. BCI is
able to translate neural responses into control instructions by
decoding brain activity patterns from electroencephalogram
(EEG) (Narayanan and Bertrand, 2019) signals. Motor Imagery
(MI) (Tang et al., 2022) based BCI paradigm (MI-BCI) is
one of the most popular paradigms nowadays. MI is defined
as the cognitive process in which a person imagines their
muscles or limbs moving without actually moving. Due to
the above characteristics, the MI-BCI system has attracted
wide attention in fields as stroke rehabilitation, wheelchair,
or prosthetic control, etc. For example, stroke patients can
achieve rehabilitation training through MI (Wang et al., 2019) to
improve their motor function and restore the ability to control
body parts. Therefore, accurate identification and classification
prediction of MI-BCI signals is of great significance in the field
of medical rehabilitation.

However, generally the number of subjects participating in
the experiment is limited, which causes the dataset to be of
small sized. In addition, there are great individual differences
between subjects and between sessions (Saini et al., 2020),
and it is difficult to directly use the MI-EEG signals across
subjects to construct a robust classification model. Thus, how to
effectively distinguish the types of MI-EEG signals and achieve
high performances with small-sized datasets has become the
key challenge of MI-BCI system. Transfer learning improves
model performance in target tasks by learning and transferring
information from source tasks. Some researchers hope to reduce
the individual differences in the distribution of MI-EEG signals
through transfer learning (Cao et al., 2021; Xu et al., 2021), and
build a classification model with high robustness on the MI-EEG
signals of all subjects.

Transfer learning mainly includes three learning paradigms:
parameter transfer learning, feature transfer learning, and
instance transfer learning. For the parameter transfer learning,
there is a supervised weighted logistic regression-based transfer
learning (S-wLTL), which added the regularization parameters
to the objective function of the classifier to make the
classification parameters as close as possible to other similar
subjects. The classification accuracy of this method on BCIIV
dataset IIa reaches 75.6%, which is higher than that of common
spatial pattern (CSP) combined with support vector machine
(SVM) (Azab et al., 2019). Based on the MI-EEG signals of other
source subjects, a parallel multiscale filter bank convolutional
neural network is pre-trained, and then fine-tuned in the
individual target task. The experimental results show that the
classification accuracy of cross-subject classification reaches
75.9% (Wu et al., 2019). However, when the parameters of
the source domain are transferred to the target domain, the
catastrophic forgetting problem may occur with the iterative

optimization of the algorithm, which leads to low accuracy of
the results obtained by these methods (Guo et al., 2021).

For the feature transfer learning, the algorithm based on
the maximum mean difference (MMD) (Pan et al., 2010) is
the common method. MMD is used to select features that are
more relevant to the target task by measuring the distribution
difference between source and target domain samples. Li et al.
(2020) proposed a discriminative transfer feature learning
(DTFL), which enhances class discrimination information by
minimizing the marginal and condition distribution between
the source and target domain, while maximizing the distance
between the classes. The experimental results show that
classification accuracy is 83.5%. In addition, a weighted logistic
regression method (Chen et al., 2022) based on Euclidean
feature space is proposed, and the MI-EEG signals of different
subjects are aligned in Euclidean space (He and Wu, 2019)
to reduce the difference of signals. Then the Kullback–Leibler
(KL) divergence (Shibanoki et al., 2018) of CSP features
between different subjects is calculated in Euclidean space,
and the average classification accuracy of this method is 85%.
The feature transfer learning method reduces the distribution
differences between the source and target domain by specific
data distribution analysis methods. However, when the data
distribution between source and target domain samples are very
different, the effect of feature transfer learning will be seriously
affected, and even may cause negative transfer (Wan et al., 2021).

For the instance transfer learning, the main idea is to train
the target classifier by selecting the source domain samples with
more similar distribution to the target samples. For examples,
Tan et al. (2018) proposes an instance transfer ensemble learning
for Alzheimer’s disease classification, which is used to select and
transfer source domain samples with similar to target domain
samples by instance transfer learning algorithm (ITL) based on
wrapper mode, thereby obtaining optimal transferred domain
samples. Dai et al. (2007) proposed a boost transfer learning
(TrAdaBoost) algorithm, which applied the idea of adaptive
boosting (Adaboost) (Chen et al., 2021) in transfer learning
to improve the instance weight of the target classification
task and reduce the instance weight of the unfavorable target
task. Similarly, Huang et al. (2007) proposed a kernel mean
matching (KMM) algorithm, which aims to make the probability
distribution of the weighted source domain sample and the
target domain sample as close as possible.

Inspired by the above studies, this study combines KMM
and TrAdaBoost algorithms to analyze MI-EEG signals for the
first time and proposes a KMM-TrAdaBoost instance transfer
learning algorithm. The KMM-TrAdaBoost is mainly used to
solve the problem that the small number of training samples of
MI-EEG for a single subject and the great individual differences
of MI-EEG signals among different subject resulting the poor
performance of the classification model. Firstly, the algorithm
preprocesses the source and target domain samples to extract
their CSP features. Then uses the KMM algorithm to obtain
the sample weight matrix between source and target domain,
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which is used as the initial weight matrix of TrAdaBoost to
solve the problem that TrAdaBoost algorithm is sensitive to
the initialization weight. Finally, the strong classifier, which
integrates multiple weak classifiers based on TrAdaBoost is used
for classification. The KMM-TrAdaBoost algorithm proposed
in this paper can effectively improve the classification accuracy
for a single subject in the case of small samples. At the same
time, the model also showed good performance on the samples
of different subjects, and obtained high classification accuracy
and generalization performance, which reduced the influence
of individual differences on MI-EEG classification. In addition,
this method has certain clinical value for cross-individual
rehabilitation therapy.

2 Methodology

2.1 Overview

The flow chart of proposed KMM-TrAdaBoost is shown in
Figure 1. Firstly, the KMM algorithm is used to calculate the
weights matrix of all training sample to estimate the similarity
between the source and target sample. Then the matrix is used
as the initialization weight matrix of TrAdaBoost algorithm.
Finally, the strong classifier, which integrates multiple weak
classifiers based on TrAdaBoost is used for classification. The
specific algorithm steps are as follows:

(1) Preprocessing all source and target domain data. The
preprocessing steps comprise band-pass filtering, time
window processing, and channel selection.

(2) Spatial features extracting. Spatial features are extracted
from the preprocessed data by using CSP algorithm.

(3) Calculating sample weight matrix. The KMM algorithm
is used to obtain a sample weight matrix, which makes the
mean values of the features between the source and target
domain as close as possible.

(4) Training several weak classifiers. The sample weight
matrix, which is calculated by KMM algorithm, is as an
initialization sample weight matrix of the TrAdaBoost
algorithm. Then, several weak classifiers are trained based
on the weighted samples.

(5) Obtaining strong classifier by voting strategy. According
to the weight of each classifier, the final strong classifier is
obtained by using the voting strategy.

2.2 CSP algorithm

Common spatial pattern (Ang et al., 2012) is a spatial
filtering feature extraction algorithm for two-class MI-EEG
tasks, which aims to use matrix diagonalization to find a
set of optimal spatial filters and project them to maximize
the variance difference between the two class of signals. And

then, the specificity feature vectors with high discrimination
were obtained to achieve the task of distinguishing two kinds
of MI-EEG signal. The CSP algorithm flow is shown in
Figure 2.

Suppose X1 and X2 are the time-space signal matrices of
multichannel evoked responses under the dichotomous MI task,
and their dimensions are N∗T. N are the number of channels of
the EEG device, and T is the number of sampling points of each
channel. X1 and X2 can be expressed as:

X1 = [C1 CM ]

[
S1

SM

]
X2 = [C2 CM ]

[
S2

SM

]
(1)

Where S1 and S2 represents two classification MI tasks in
source domain, and they are assumed to be linearly independent
of each other. SM represents a source signal that is common
to both types of tasks, assuming that S1 consists of m1 source
domain signals and S2 consists of m2 source domain signals.
Then, C1 and C2 are composed of m1 and m2 common spatial
patterns associated with S1 and S2, respectively. Each spatial
pattern is a N∗1 dimensional vector, which represents the
distribution weight of the signal caused by a single source signal
on N leads. CM represents the corresponding shared spatial
pattern with SM . The goal of CSP algorithm is to design a
spatial filter to obtain the spatial factor W, and its process is
shown as follows. (1) Normalizing X1 and X2, respectively, their
corresponding covariance matricesR1 andR2 are calculate. They
can be expressed as:

R1 =
X1XT

1

trace(X1XT
1 )

R2 =
X2XT

2

trace(X2XT
2 )

(2)

Where trace(•) is the sum of the entries on the diagonal for
the matrix, and T is the transpose of the matrix. (2) The mixed
spatial covariance R from R1 and R2 can be expressed as:

R = R1 + R2 (3)

Where R1 and R2 are the average covariance
matrices, respectively.

Based on the eigenvalue decomposition theory, R is
expressed as R = UλUT , where U is an eigenvector of
the matrix, λ is the corresponding eigenvalue. In addition,
the eigenvalues are arranged in descending order, and the
corresponding eigenvectors are also rearranged. Then, principal
component analysis theory (Ahuja et al., 2022) was used to
calculate the whitening matrixP, and it be expressed as:

P =
√

λ−1UT (4)

(3) Based on the whitening matrixP, the covariance matrix
R1 and R2 can be transformation, and it is expressed as:

S1 = PR1PT S2 = PR2PT (5)

Where S1 and S2 have a common eigenvector. if S1 =

Bλ1BT , then S2 = Bλ2BT and λ1 + λ2 = I, where B is common
eigenvector of S1 and S2, and I is the identity matrix. Since
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FIGURE 1

Flow chart of kernel mean matching-transfer learning adaptive boosting (KMM-TrAdaBoost) algorithm.

FIGURE 2

Flow chart of common spatial pattern (CSP) algorithm.

the eigenvalues of the two matrices always add up to 1, the
eigenvector of S1 corresponding to the largest eigenvalue cause
S2 to have the smallest eigenvalue.

The projection matrix W is the corresponding spatial filter,
and it be expressed as W = BTP. Then the EEG data of the
single task experiment Xi can be transformed into Z =W∗Xii =
(1, 2). For the EEG signals, the feature value fp can be expressed
as:

fp = lg
[

var(Zp)
sum(var(Zp))

]
p= (1, 2, 3..., 2m) (6)

2.3 KMM-TrAdaBoost algorithm

2.3.1 KMM algorithm
Instance transfer learning is to select samples from the

source domain, which are consistent with the distribution of
the target samples, and improves model performance in target
tasks by transferring information from source domain. The
KMM (Huang et al., 2007) algorithm maps the source domain
samples from original feature space into reproducing kernel
Hilbert space (RKHS) (Gertton et al., 2012), and then calculates
the difference between the mean value of the source and target
domain data under the RKHS space. Finally, a set of weight
parameters matrix are obtained, which are used to weight
the samples in the source domain to make the probability
distribution consistent with the samples in the target domain.
The calculation process of KMM algorithm is as follows.

min

∣∣∣∣∣
∣∣∣∣∣ 1
m

m∑
i=1

βiφ(xsi )−
1
n

n∑
i=1

φ(xti )

∣∣∣∣∣
∣∣∣∣∣
2

H

(7)

Where xsi is a set of source domain sample (i = 1, 2, ...,m),
andxti is a set of target domain sample (i = 1, 2, ..., n). H
denotes the RKHS with a characteristic kernel k. βi ∈

[0, 1] represents the weight of the i−th source domain
sample. φ(•) is the mapping function from the original
space to the RKHS, and satisfies the following relation: <

φ(x), φ(y) >H= k(x, y). k(x, y) is a Gaussian kernel function,
namely:

k(x, y) = exp(−||x− y||2
/

2σ2) (8)

where σ represents the size of the Gaussian kernel. Combining
Equations 7, 8, the MMD between each source and target
domain is defined as:

min(
1
m2 (

m∑
i=1

βiφ(xsi ))
2
−

2
nm

n∑
i=1

βiφ(xsi )
n∑

i=1

φ(xti )+ c) (9)

where c stands for constant, and
∑m

i=1 βiφ(xsi )
2 and∑n

i=1 βiφ(xsi )
∑n

i=1 φ(xti ) can be reduced to a matrix form
as:

(
∑m

i=1 βiφ(xsi ))
2

= (β1φ(xs1)+ ...+ βmφ(xsn))
2

= [β1 β2...βm]
∗
[

k(xs1, x
s
2) ... k(xs1, x

s
m)

.

.

.

.

k(xsm, xs1) ... k(xsm, xsm)

]
∗
[β1 β2...βm]

T
= βTK

(10)
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∑m
i=1 βiφ(xsi )

∑n
i=1 φ(xti )

= [
∑n

j=1 k(x
s
1, x

t
j ) ...

∑n
j=1 k(x

s
n, x

t
j )]
∗
[β1 β2 ... βm]

T
= gTβ

(11)
Where Ki,j = k(xsi , x

s
j ) and gj = m

n
∑n

j=1 k(x
s
i , x

t
j ). Then the

final quadratic optimization objective function is as follows.

min(
1
n2 βTKβ−

1
m2 g

Tβ) (12)

2.3.2 TrAdaBoost algorithm
Inspired by the algorithm of AdaBoost (Chen et al., 2021),

TrAdaBoost (Dai et al., 2007) uses weight automatic updating
mechanism to constantly adjust the weight of samples, so as
to keep important source domain samples and eliminate the
samples that are not similar to the distribution of target domain
samples. The principle of the TrAdaBoost algorithm is shown in
Figure 3.

Ds
= {(xsi , y

s
i)}

n
i=1 represents samples from source domain,

where xsi ∈ Ds(i = 1, ..., n) is a sample example, ysi is the
corresponding ground-truth labels. Dt

= {(xtj , y
t
j )}

m
j=1

represents samples from target domain, where xtj ∈ Dt(j =
1, ...,m) is a sample example,ytj is the corresponding ground-
truth labels. n and m represent the sizes of Ds and Dt . Tt is
the test samples from target domain, which is assumed to
follow a different probability distribution from Ds and the same
probability distribution as Dt . The goal of transfer learning is to
train a classifiercwith the minimum classification error based on
a small amount of target domain samples Dt and a large amount
of source domain samples Ds. The specific algorithm flow is
shown as follows.

(1) Initialize samples weight w1
= (w1

1, ..., w1
n+m) from

source and target domain samples D = {Ds , Dt
}:

w1
k =

1
n+m

, k = 1, ..., n+m (13)

(2) Set initial parameter β of source domain sample:

β = 1/(1+
√

2 ln n/N) (14)

Where N is the number of iterations.
(3) Normalizing the weight vector w, and a weak classifier hl

is trained based on the weighted sample D and test data Tt , and

FIGURE 3

Flow chart of TrAdaBoost algorithm.
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SVM is adopted as a weak classifier in this paper. Calculate the
error of the weak classifier hl on the training dataset of the target
domain, and the calculation formula is as follows.

εl =

n+m∑
i=n+1

wl
i
∣∣hl(xti )− yti)

∣∣∑n+m
i=n+1 w

l
i

(15)

Where l= 1, ...,N represents the l − th iteration.
(4) Set up βl = εl/(1− εl), and update weight

wl+1
i =

{
wl
iβ
|hl(xi)−yti )| i = 1, 2, 3, ..., n

wl
iβ
−|hl(xi)−yti )|
l i = n+ 1, ..., n+m

(16)

(5) Repeat steps (3–4) and iterate for N times to obtain the
final strong classifier

h(x) =


1,

∑N
l=dN/2e ln(1/βl)hl(x) ≥ 1

2
∑N

l=dN/2e ln(1/βl)

0, other
(17)

2.4 Statistical analysis for different
datasets

For different datasets, the two-tailed t-test (Xie et al., 2022)
was used to compare the significant difference between the
proposed method and state-of-the-art methods, and P < 0.05

FIGURE 4

Experimental paradigm.

FIGURE 5

The position of electrode. (A) Electroencephalogram (EEG) electrode position (B) EOG electrode position.
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was considered statistically significant. All statistical tests were
carried out with Origin 2022 software.

3 Result and discussion

3.1 Dataset

3.1.1 Public dataset
For the public dataset 1, the BCI Competition IV dataset 2a

(Blankertz et al., 2006) is used for research. The dataset consisted
of EEG signals recorded by 22 electrodes from nine subjects with
three EOG scalp electrode locations. The dataset consists of four
tasks, which are left hand, right hand, foot and tongue MI task.
72 MI experiments were performed for each task, and a total
of 288 experiments. The signal sampling frequency was 250 Hz,
and the band pass filter between 0.5–100 Hz and notch filter of
50 Hz are used to eliminate the power frequency interference.
In order to be consistent with the in-house dataset, only the MI
data of the left and right hands MI task are used in this paper.
Specific experimental paradigms are shown in Figure 4, and
EEG electrode positions are shown in Figure 5A as follows: Fz,
FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1,
CPz, CP2, CP4, P1, Pz, P2, and POz, left mastoid reference, right
mastoid grounding. The position of EOG electrode is shown in
Figure 5B.

For the public dataset 2, BCI Competition IV dataset I
(Blankertz et al., 2006) is adopted for research. The data set was
EEG signals recorded by 59 electrodes in 7 subjects. There are
three categories of MI tasks, namely left and right hand and
foot imagination. The sampling frequency is 100 Hz. In order to
ensure the consistency of experimental paradigm, left and right
hand categories are extracted from three motor imagination
tasks in this paper, and each category of each user has 100
samples. Electrode position adopts international 10/20 system.

3.1.2 In-house dataset
An in-house dataset was recorded from 20 subjects (S01-

S20) who are divided into two groups, including ten (S01-S10)
who are good at table tennis and 10 (S11-S20) who are not. Scan
software, Neuroscan37 Quik-Cap electrode cap and SynAmps2
amplifier, and MATLAB software were used for data acquisition
and analysis. The prompting mode of “preparation-prompt-
movement” was adopted. The prompting was divided into two
ways: imaginary right-handed attack and left-handed attack.
Each player did 144 experiments. The dataset collected in this
paper consists of 32 electrodes, A1 and A2 are used as reference
electrodes, and EEG signals are collected from the scalp of each
subject at a sampling frequency of 250 Hz. “HEOL” and “HEOR”’
is used to obtain the horizontal electro-oculogram. “VEOU” and
“VEOL” is used to obtain the vertical electro-oculogram.

TABLE 1 Results of comparison with state-of-the-art methods on the public dataset 1 and public dataset 2.

Acc K

Method EA-CSP-LDA CA-JDA Ours EA-CSP-LDA CA-JDA Ours

Public dataset 1 A01 86.2% 65.8% 92.5% 0.72 0.43 0.81

A02 58.6% 51.8% 89.7% 0.43 0.35 0.75

A03 96.6% 65.9% 92.6% 0.90 0.44 0.83

A04 71.6% 62.3% 81.9% 0.57 0.46 0.65

A05 54.6% 54.8% 90.2% 0.36 0.40 0.79

A06 66.9% 58.6% 85.6% 0.46 0.42 0.69

A07 68.9% 67.2% 91.7% 0.48 0.47 0.78

A08 86.9% 88.2% 89.9% 0.73 0.70 0.71

A09 77.9% 71.9% 87.9% 0.60 0.58 0.76

Average± Std (74.2± 12.3)% (65.1± 9.5)% (89.1± 3.1)% 0.58± 0.16 0.47± 0.09 0.75± 0.05

Public dataset 2 A01 75.8% 62.8% 89.5% 0.59 0.46 0.75

A02 75.9% 59.9% 83.5% 0.59 0.39 0.67

A03 74.8% 60.9% 84.6% 0.58 0.40 0.69

A04 73.5% 61.3% 85.1% 0.56 0.41 0.70

A05 90.6% 68.6% 90.8% 0.79 0.48 0.81

A06 77.8% 67.8% 80.9% 0.61 0.47 0.60

A07 85.9% 61.8% 84.2% 0.71 0.41 0.62

Average± Std (79.1± 5.6)% (63.3± 3.0)% (85.5± 2.9)% 0.63± 0.07 0.43± 0.03 0.69± 0.06

Std stands for standard deviation. Bold indicates the maximum value in the current indicator.
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3.2 Data preprocessing

In the data preprocessing stage, 3 EOG channels were
deleted and 22 EEG channels are retained for the public dataset.
Different from the public dataset, the in-house dataset deletes
the 6 electrode data of “HEOL,” “HEOR,” “A1,” “A2,” “VEOU,”
and “VEOL.” 26 EEG channels are retained to reduces the false
recording caused by the EOG signal. According to the principle
of event related desynchronization (ERD) and event related
synchronization (ERS) (Tang et al., 2022), when people perform
MI tasks, the cerebral cortex will produce obvious rhythm
signals, which are divided into 8–12 Hz µ rhythm signals and
13–30 Hz β rhythm signals. In order to improve the signal-to-
noise ratio of EEG signals, 8–30 Hz band-pass filtering is used
to process the data and remove the baseline. At the same time,
the corresponding EEG signal was extracted as the subsequent
analysis data by using the time window of 0.5–3.5 s after the
appearance of the prompt.

The MI-EEG data used in this paper consists of two parts,
including nine subjects from the IV2a dataset (A01, A02,..., A09)

TABLE 2 Comparison of the accuracies (%) between the proposed
algorithm and other methods on the public dataset 1 and
public dataset 2.

Target CSP+
KMM

CSP+
TrAdaboost

CSP+
SVM

Ours

Public
dataset 1

A01 83.3% 75% 60.7% 92.5%

A02 87.3% 78.4% 59.6% 89.7%

A03 86% 76.8% 63.5% 92.6%

A04 78.4% 72.3% 53.9% 81.9%

A05 85.6% 80.4% 54.6% 90.2%

A06 78.3% 72.6% 67.2% 85.6%

A07 87.8% 84.3% 54.3% 91.7%

A08 85.6% 81.4% 58.2% 89.9%

A09 84.2% 80.3% 54.9% 87.9%

Average±
Std

(84.1±
3.1)%

(77.9± 3.6)% (58.5±
4.1)%

(89.1±
3.1)%

Public
dataset 2

A01 73.3% 78.6% 60.4% 89.5%

A02 77.3% 79.4% 57.6% 83.5%

A03 76.5% 78.8% 53.5% 84.6%

A04 74.4% 76.7% 58.9% 85.1%

A05 72.6% 80.4% 54.9% 90.8%

A06 74.3% 72.8% 58.2% 80.9%

A07 72.8% 84.3% 54.3% 84.2%

Average±
Std

(74.4±
1.5)%

(78.7± 3.0)% (56.8±
2.2)%

(85.5±
2.9)%

Std stands for standard deviation. Bold indicates the maximum value in the
current indicator.

and twenty subjects (S01-S20) from the in-house dataset. For the
IV2a dataset, the EEG data of one subject was selected as the
target domain data, and the data of the other eight subjects was
selected as the source domain data. For the 20 subjects from the
in-house dataset, they were divided into two groups: 10 subjects
who could play ping-pong and 10 subjects who could not. There
were 10 subjects in each group. One subject from the same group
was selected as the target domain data, and the remaining 9
subjects were used as the source domain data. In each set of
data, 70% of the data is the training set and 30% of the data
is the test set.

3.3 Result evaluation index

To evaluate the performance of the classification model,
the accuracy (Acc) and Kappa value (K) are measured, and the
calculation equations are as follows:{

Acc = TP+TN
TP+FN+TN+FP

K = Acc−pe
1−pe

(18)

Where TP is the number of samples correctly classified
as positive label, TN is the number of samples correctly
classified as negative label, FP is the number of samples
misclassified as positive label, and FN is the number of samples
misclassified classified as negative label. Pe = (a1 × b1 + a2 ×

b2 + ...+ az × bz)/n2 represents the random classification rate
of model to samples. a1, a2, ..., az represents the actual sample
size of each type of sample, and b1, b2, ..., bz represents the
number of samples of each type predicted by the model n is
the total number of samples. Through the comparative analysis
of Kappa values, the influence of random classification on the
accuracy of the model can be eliminated.

3.4 Analysis of experimental results

3.4.1 Comparison with state-of-the-art
methods

In order to verify the effectiveness of the proposed algorithm
(Ours), the following two methods are compared, including the
EA-CSP-LDA (He and Wu, 2019) and CA-JDA (Iturrate et al.,
2013) algorithm.

The EA-CSP-LDA algorithm reduces the difference of cross-
subject signals based on the Euclidean space data alignment
approach. For the CA-JDA algorithm, joint distribution
adaptation (JDA) is used to align the edge probability
distribution and conditional probability distribution of cross-
subject signals to achieve effective transfer learning. From these
results in Table 1, we can obtain the following insightful
observations.

(1) Compared with the proposed method, the EA-CSP-LDA
and CA-JDA algorithms do not take into account the samples
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FIGURE 6

The classification accuracy curve at different training sizes. (A) The result of public dataset 1. (B) The result of public dataset 2.

with large differences, especially for the recognition of cross-
individual MI-EEG signals, so the performance of the above
algorithms is poor.

(2) The proposed method obtains the best prediction results
on the MI-EEG classification tasks, verifying its effectiveness
and superiority.

TABLE 3 T-test results for the proposed method vs. state-of-the-art
methods.

Paired T-test P-value

Public dataset 1 Public dataset 2

Ours vs. EA-CSP-LDA * *

Ours vs. CA-JDA * **

∼ nonsignificant, *P ≤ 0.05, **P ≤ 0.01.

TABLE 4 Separate session of T-test statistical analysis for the
proposed method vs. state-of-the-art methods.

Paired T-test P-value

Ours vs. EA-CSP-LDA Ours vs. CA-JDA

A01 * **

A02 * *

A03 ∼ **

A04 * *

A05 * *

A06 * *

A07 * *

A08 ∼ ∼

A09 * *

Average * *

∼ nonsignificant, *P ≤ 0.05, **P ≤ 0.01.

3.4.2 Ablation experiment
To verify the effectiveness of the proposed algorithm (Ours),

ablation experiments are carried out for the following model:
CSP+KMM, CSP+TrAdaboost, and CSP+SVM.

The ablation experiment is carried out on public dataset 1
and public dataset 2, and the results are shown in Table 2. It
can be seen from Table 2 that the average classification accuracy
of CSP+KMM algorithm is only 84.1%. The main reason is that
KMM is an unsupervised algorithm and cannot effectively use
the label information of source and target domain data. The
average classification accuracy of CSP+TrAdaboost algorithm
is only 77.9%, the main reason is that TrAdaboost is sensitive
to the sample initialization weight matrix, while the traditional
TrAdaboost algorithm assigns the same initialization weight
to all samples. Compared with the traditional TrAdaboost
algorithm, this paper uses the KMM algorithm to calculate
the importance of samples as the initial sample weight matrix

TABLE 5 Separate session of T-test statistical analysis for the
proposed method vs. state-of-the-art methods.

Paired T-test P-value

Ours vs. EA-CSP-LDA Ours vs. CA-JDA

A01 * **

A02 ∼ **

A03 * *

A04 * *

A05 ∼ *

A06 * **

A07 ∼ **

Average * *

∼ nonsignificant, *P ≤ 0.05, **P ≤ 0.01.
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FIGURE 7

The classification accuracy curve in the in-house dataset. (A) The result of table tennis group. (B) The result of non-table tennis group.

FIGURE 8

Topographic map of weight distribution. (A) The result of table tennis group. (B) The result of non-table tennis group. (C) The event related
desynchronization (ERD) analysis for the left hand motor imagination. (D) The ERD analysis for the right hand motor imagination.

of TrAdaboost. Experimental results verify the effectiveness
of this idea, and the average classification accuracy of the
proposed algorithm is 89.1%, which is higher than that of other
classification methods. The average classification accuracy of the
CSP+SVM algorithm is only 58.5%, which proves that there is a
big difference between the data of each subject in MI task, and

the model trained by other subjects cannot be well used for the
current subject.

3.4.3 Algorithm robustness analysis
In order to analyze the robustness of the our algorithm,

different numbers of training trials were analyzed, including

Frontiers in Human Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1068165
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1068165 December 20, 2022 Time: 10:46 # 11

Feng et al. 10.3389/fnhum.2022.1068165

five groups of 5:5, 6:4, 7:3, and 8:2, respectively. The results are
shown in Figure 6. For different groups, the algorithm presented
in this paper shows good classification accuracy and robustness,
with the average accuracy of 82.0% and the highest average
accuracy of 82.1% in the public dataset 1 and 2, respectively.
For the groups of 5:5 and 6:4, the classification performance
of the algorithm is relatively poor because there are too few
training samples. In view of the above problems, we plan to
carry out further research on the classification algorithm of
motion imagination signals under small samples in the future.
In addition, In order to measure the statistical significance of
our algorithm, we conducted a T-test statistical analysis for the
above two state-of-the-art algorithms and the algorithm in this
paper. The results are shown in Tables 3–5.

3.4.4 Application of algorithm on the in-house
dataset

To verify the superiority of the proposed method, a
comparative experiment is carried out on in-house dataset, and
the results are shown in Figures 7A, B. For the local dataset,
our algorithm still outperforms the other three comparison
algorithms.

Meanwhile, by comparing the average classification
accuracy between the table tennis group and the non-table
tennis group, it can be seen that the average classification
accuracy obtained by each algorithm of the table tennis group
is better than that of the non-table tennis group. Previous
studies have shown that when athletes repeatedly train the same
skills for a long time, the number of neural synapses in the
brain will change and the connections between various brain
regions will be strengthened (Ericsson and Lehmann, 1997).
Correspondingly, it will also enhance the activation degree of
the motor center, which can help athletes to complete training
more quickly and stably (Scott, 2004). In order to show whether
the corresponding brain region will have corresponding
responses during motor imagination, the topographic map
are drawn in the Figure 8 (see Supplementary Appendix 1
for drawing details). For the two groups of subjects, it can be
seen that the response area is at the regions corresponding to
the primary motor cortex. From the color bar on the right,
the non-table tennis group has a relatively weak degree of
activation, while the participants who could play table tennis
has a relatively strong degree of activation. Further, for the
ERD analysis (see Supplementary Appendix 2 for drawing
details), Figure 8C shows that the right areas (C4) shows a
power decrease in specific frequency bands when the left hand
movement is imagined, while Figure 8D shows that the left
areas (C3) shows a power decrease in specific frequency bands
when the right hand movement is imagined. Based on the
above theory, we can try to carry out rehabilitation training
for stroke patients for a certain period of time, which has
certain clinical guiding significance for brain rehabilitation
treatment.

4 Conclusion

Facing the small number of MI-EEG training samples of a
single subject and the large individual differences of MI-EEG
signals among different subjects, an instance transfer learning
algorithm based on KMM-Tradaboost was proposed. In this
paper, the algorithm firstly preprocesses the source and target
domain data, and then extracts the spatial features of the
preprocessed data by using the CSP algorithm. After obtaining
the spatial features, the KMM algorithm is used to calculate the
sample weight matrix and initialize the TrAdaBoost algorithm.
Finally, a strong classifier is trained by the TrAdaBoost
algorithm after the initial weights are assigned, which is used to
classify the MI-BCI data. The experimental results show that the
algorithm proposed in this paper is superior to other algorithms,
and provides a new idea to solve above problems. At the same
time, this paper also applies the proposed algorithm to the in-
house dataset, the results verify the effectiveness of the algorithm
again, and the results of this study have certain clinical guiding
significance for brain rehabilitation.
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