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Objective: Most Deep Learning (DL) methods for the classification of

functional Near-Infrared Spectroscopy (fNIRS) signals do so without

explaining which features contribute to the classification of a task or imagery.

An explainable artificial intelligence (xAI) system that can decompose the

Deep Learning mode’s output onto the input variables for fNIRS signals is

described here.

Approach: We propose an xAI-fNIRS system that consists of a classification

module and an explanation module. The classification module consists

of two separately trained sliding window-based classifiers, namely, (i) 1-D

Convolutional Neural Network (CNN); and (ii) Long Short-Term Memory

(LSTM). The explanation module uses SHAP (SHapley Additive exPlanations)

to explain the CNN model’s output in terms of the model’s input.

Main results: We observed that the classification module was able to classify

two types of datasets: (a) Motor task (MT), acquired from three subjects; and

(b) Motor imagery (MI), acquired from 29 subjects, with an accuracy of over

96% for both CNN and LSTM models. The explanation module was able to

identify the channels contributing the most to the classification of MI or MT

and therefore identify the channel locations and whether they correspond to

oxy- or deoxy-hemoglobin levels in those locations.

Significance: The xAI-fNIRS system can distinguish between the brain

states related to overt and covert motor imagery from fNIRS signals with

high classification accuracy and is able to explain the signal features that

discriminate between the brain states of interest.
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Introduction

Brain-Computer Interfaces (BCIs) provide communication
pathways between the brain and external devices to be
controlled (Wolpaw et al., 2002). BCIs have significant use in
motor rehabilitation and communication and can help persons
whose motor function or communication is compromised or
who cannot communicate with the outside world (Sitaram
et al., 2017). Furthermore, providing feedback of brain
activity related to specific mental states may help the user
control the BCI through operant learning or other forms of
learning. The choice of the brain signals acquired and the
features selected for feedback form essential steps in BCI
development (Benitez-Andonegui et al., 2020; Rieke et al.,
2020). BCIs may use electrical and magnetic signals acquired
from Electroencephalography (EEG; Stojic and Chau, 2020;
Gaur et al., 2021a,b), Magnetoencephalography (MEG; Roy
et al., 2020; Ovchinnikova et al., 2021; Rathee et al., 2021),
Electrocorticography (ECoG; Luo, 2020; Zhang et al., 2020), or
implanted electrodes, or hemodynamic signals acquired from
functional Magnetic resonance Imaging (fMRI; Simon et al.,
2020; Sorger and Goebel, 2020), or functional near-infrared
spectroscopy (fNIRS; Almulla et al., 2020; Li et al., 2020; Nazeer
et al., 2020; Shibu et al., 2020; Ghaffar et al., 2021).

fNIRS measures hemodynamic activity by quantifying
changes in the concentration of hemoglobin in the brain
based on optical intensity measurements. With multiple probes
over the subject’s entire scalp, fNIRS can detect hemodynamic
activations in the superficial layers of the brain, thus allowing
cognitive state determination using techniques such as pattern
classification. This neuroimaging modality has recently been
utilized to analyze brain functions in both healthy and diseased
conditions (Arenth et al., 2007; Irani et al., 2007; Arun et al.,
2018). fNIRS is a suitable signal acquisition system for BCI
applications owing to its portability, ease of setting up, and
robustness to artifacts caused by head motion (Naseer and Hong,
2015).

Coyle et al. (2007) were one of the first to validate the control
of a binary switch using mental imagery based fNIRS BCI with
an accuracy of above 80% for three subjects (Hong et al., 2015).
Sitaram and coworkers could classify the fNIRS signals for motor
imagery and motor execution with an accuracy of 80% for five
healthy volunteers (Sitaram et al., 2007). Over the last decade,
there has been increasing interest in fNIRS as the signal of choice
for developing BCI (Naseer and Hong, 2013; Hong et al., 2015;
Buccino et al., 2016; Naseer et al., 2016).

One of the broad aims of BCI research is to develop
methods that improve the accuracy of brain state classification
and ease of implementation. For the past decade, fNIRS-
based BCIs primarily focused on extracting informative features
from signals and implementing machine learning algorithms
like K-Nearest Neighbor (KNN) and Support Vector Machine
(SVM). The features included statistical properties like mean

(Holper and Wolf, 2011; Faress and Chau, 2013; Naseer and
Hong, 2013), signal peak (Bauernfeind et al., 2011; Holper and
Wolf, 2011), signal slope (Naseer and Hong, 2013; Hong and
Santosa, 2016), signal skewness (Tai and Chau, 2009; Holper and
Wolf, 2011), signal kurtosis (Tai and Chau, 2009; Holper and
Wolf, 2011), of the fNIRS time domain signals. Filter coefficients
and discrete wavelet transforms (DWTs) have also been used
(Khoa and Nakagawa, 2008; Abibullaev and An, 2012).

However, the extraction of these statistical features alone
may limit classification performance as it depends on the
types of features extracted which may not be an exhaustive
set of discriminating features. Such manual feature selection is
obviated by deep learning techniques which directly process the
raw data. Deep learning has gained immense popularity due to
its ability to automate feature selection and extraction processes
(Chiarelli et al., 2018; Trakoolwilaiwan et al., 2018; Tanveer et al.,
2019; Janani et al., 2020).

Deep learning models, along with their ability to extract
features and learn from those features, are being used for various
applications like classification, detection, and segmentation of
images. Convolutional Neural Networks (CNN) are trained
commonly for image classification (O’Shea and Nash, 2015;
Nguyen et al., 2019; Olmos et al., 2019) and consist of
convolutional layers for feature extraction from images. With
multiple, fully connected layers, these models can learn to
distinguish features of labeled images. Long short-term memory
(Hochreiter and Schmidhuber, 1997) is a variant of the recurrent
neural network and is designed specifically for time-series
data. LSTM has the ability to remember important information
for longer periods of time, and hence is most commonly
used for sequence prediction, like speech recognition (Ying
et al., 2020), human activity recognition (Wang and Liu,
2020), etc.

Trakoolwilaiwan et al. performed a study comparing the
classification performance of SVM, Artificial Neural Networks
(ANN), and Convolution Neural Networks (CNN). In the above
work, the input data to the CNN consisted of changes in HbO-
(oxyhemoglobin) and HbR-(deoxyhemoglobin) concentration
of all channels available with a dimension of M by N where
M is the number of data points and N is the number of
channels available. Various combinations of 1D CNNs (single
and multiple convolutional layers, and varying the number of
filter kernels) achieving an average classification of over 89% for
discriminating rest, left, and right states (Trakoolwilaiwan et al.,
2018).

Nagabushanam et al. (2020) compared Support Vector
Machine (SVM) and Long-Short Term Memory (LSTM)
classification techniques from EEG signals for various tasks and
showed that LSTM performs better than SVM by roughly 15%.

A recent study by Z. Shi et al. (Lu et al., 2020) comparing
machine learning models like SVM, KNN, and LDA with
deep learning models like long short-term memory-fully
convolutional network (LSTM-FCN), found that deep learning

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1029784
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org


Shibu et al. 10.3389/fnhum.2022.1029784

models could achieve a decode mental arithmetic task with a
classification accuracy of 97%.

In a recent study by Ghonchi et al. (2020), spatiotemporal
maps were extracted from fNIRS-EEG signals during a motor
imagery task to classify the task conditions by a deep neural
network. The authors were able to classify the brain states of
motor imagery with an accuracy of 99%.

With the growing ability of complex yet reliable Deep
Learning models to classify brain states there seems to be a
tradeoff between with accuracy and interpretability of a model’s
output. Deep Learning network was in the past a black box,
because an explanation in terms of which features affected the
trained model to arrive at a specific decision was missing.

The eXplainable Artificial Intelligence (XAI) developed in
recent years aims to explain the supervised machine learning
models (Gunning and Aha, 2019). A few XAI models in the
recent literature are summarized below:

1. Local Interpretable Model-Agnostic Explanations (LIME;
Ribeiro et al., 2016) attempts to comprehend the models
by varying the input data samples and analyze the changes
in predictions. LIME modifies a single input value by
changing the feature value and then observes the result.
LIME generates a list of explanations that indicate the
contribution of each characteristic to the data sample
prediction. LIME has a few drawbacks, such as the fact
that its explanations are not resilient, meaning that a
minor change in the input causes the explanations to alter
substantially the importance of features (Alvarez-Melis and
Jaakkola, 2018).

2. Deep Learning Important FeaTures (DeepLIFT) DeepLIFT
aims to explain the difference between a neural reference

and an input (Shrikumar et al., 2017). DeepLIFT is a
model explanation that gives input variables a significant
score. This score is determined by building a partial
derivative-like function that is used in conjunction with the
chain rule to track the change in the output layer relative to
the input layer.

3. SHAP (SHapley Additive exPlanations) is a method that
uses shapley values to explain the model’s output (Lundberg
and Lee, 2017). Shapley values are a concept acquired from
game theory where different players in a coalition are
analyzed for each player’s contribution to the coalition’s
success. DeepSHAP is a fast approximation approach
for computing SHAP values in DeepLIFT’s built-in deep
learning models. It uses feature significance determined
using linear composition rules to explain the output, and
the chain rule to back propagate the activation difference
from the output layer to the original input.

Given its success in recent literature, we propose a
SHAP-based explainable AI-fNIRS (xAI-fNIRS) system in our
study. We will use this approach: (i) to classify fNIRS signals
obtained during overt motor execution tasks as well as covert
motor imagery tasks to accurately predict the task; and (ii) to
find the contribution of each channel to the model’s performance
during classification. The proposed xAI-fNIRS system shown
in Figure 1, comprises of a classification Deep Learning model
for classifying brain states, during overt motor execution and
covert motor imagery conditions which is generalized over two
different datasets, followed by an explanation module. The latter
consists of DeepSHAP network to introduce explainability to the
model output by constructing a decomposition of CNN output
on the input variables (i.e., channels).

FIGURE 1

Overview of xAI-fNIRS system. The Deep Learning Model in the prediction module uses the data from each participant in the form of frames as
input. The model provides a prediction based on this data, such as 97% LMI (Left Motor Imagery/Left Active). The Deep Learning Predictions are
then explained in terms of input variables such as channel 1 HbO, channel 2 HbR, and so on in the Explanation module.
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Methods

Data acquisition

Dataset A
Three healthy subjects (Two females and one male) with

a mean age of 25 years participated in the study. Ethical
clearance was obtained for data acquisition from the Institutional
Ethics committee of Sree Chitra Tirunal Institute for Medical
Sciences and Technology ethics committee. For data acquisition,
a continuous wave, multichannel fNIRS device (NIRsport from
NIRx Medical Technologies LLC, Berlin, Germany, RRID:
SCR_002491 and NIRStar (v.15.2) software (from NIRx Medical
Technologies LLC, Berlin, Germany, RRID: SCR_014540) with
two wavelengths (750 nm and 830 nm) and a sampling
frequency of 7.8125 Hz, was employed. A total of eight
sources and eight detectors were used in combination to form
20 channels. They were placed over bilateral motor cortices
for signal acquisition, as shown in Figure 2. The Optode
locations are based on the international 10–20 system (Homan
et al., 1987). The distance between the source and the detector
was 3 cm.

Dataset B
We used an open-access dataset from Technische Universität

Berlin containing fNIRS motor imagery data. The dataset
contained 28 right-handed and one healthy left-handed subjects
with average age (years) 28.5± 3.7.

FIGURE 2

The arrangement of source (red circle) and detector (blue circle)
for Dataset A.

FIGURE 3

The arrangement of source (red circle) and detector (blue circle)
for Dataset B.

There were no neurological, neuropsychiatric, or other
brain-related illnesses reported by any of the subjects. The
experimental protocol was explained to all volunteers, and
informed consent was obtained from all participants (Shin et al.,
2017).

At the sampling rate of 10 Hz NIRS data was acquired
using NIRScout (NIRx GmbH, Berlin, Germany). One
physiological NIRS channel is created by each nearby
source-detector pair. At three brain areas, 14 sources and
16 detectors were used to create 36 physiological channels.
The frontal (nine channels around Fp1, Fp2, and Fpz), motor
(12 channels around C3 and C4, respectively), and visual
(three channels around Oz) portions of the brain were studied
(Figure 3).

Experimental procedure

Dataset A
The subjects were asked to be seated on a chair facing

a computer monitor on which the experimental task was
displayed. To generate a robust signal of the neural activity,
subjects were requested to perform a motor execution. Subjects
were instructed to relax before the paradigm began, to stabilize
blood flow to the cortex. They were then instructed to relax
during the rest period and open and close their left-hand
or right-hand palm depending on the screen’s cue. Each
subject had four sessions, and each session had 10 rest
periods, each following an experimental event. The experiment
involved 10 active motor execution tasks (five left and five
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right), each of 20-s duration separated by 20 s rest periods
(Figure 4).

Dataset B
Subjects were asked to engage in kinesthetic motor imagery

(imagining opening and closing their hand while grasping a
ball). A visual instruction appears on the screen in the form
of a black arrow pointing left or right for 2 s. Throughout
the activity, MI was performed for 10 s at a time, followed
by a 15–17 s rest interval. In a single session, this was done
20 times (10 trials for each left- and right-hand MI in a single
session: 30 trials for each one in the whole three sessions).
MI tasks were done in a single session based on 10 following
blocks, each consisting of one of two conditions: left-hand
MI first, then right-hand MI, or vice versa (Shin et al., 2017;
Figure 5).

Signal pre-processing

AnalyzIR Toolbox (Santosa et al., 2018) was used to
pre-process the fNIRS data. The raw signals were passed
through a bandpass filter with a passband of 0.01–0.2 Hz.
The filter helps in removing cardiac, respiratory, and other
motion artifacts from the signal. Filtered signals were
converted to oxygenated (∆cHbO(t)) and deoxygenated
(∆cHbR(t)) hemoglobin concentration changes using modified
Beer-Lamberts Law (Baker et al., 2014):

[
1cHbO (t)
1cHbR (t)

]
=

1
lxd

[
αcHbO (λ1) αcHbR (λ1)

αcHbO (λ2) αcHbR (λ2)

]−1 [
1A (t, λ1)

1A (t, λ2)

]
(1)

where ∆A(t,λj), j represents unitless absorbance (optical
density), which is a measurement of the variation in
light emitted at a specific wavelength. λj, αcHbO(λ1) and
αcHbR(λ1) are the extinction coefficients of HbO and HbR

FIGURE 4

Dataset A: The paradigm for the experimental procedure
includes rest and active motor tasks: right- and left-hand motor
execution, starting from rest-state on both hands followed by
left-hand motor execution task then both hand rest followed by
right-hand motor execution.

(µ−1 mm−1) respectively, d is the unitless differential path
length factor (DPF), and l is the distance between the
emitter and detector. With the distance between the source
and detector by default was maintained at 30 mm, NIRS
signal is able to penetrate 15 mm into the gray matter of
the brain (Gratton et al., 2006; Zhou et al., 2020; Yücel
et al., 2021). Because fNIRS signals are sensitive to motion
artifacts like respiration and heartbeat, channels having a
coefficient of variation (CV, the standard deviation/mean)
of each wavelength exceeding 7.5 were discarded
(Minati et al., 2011; Balardin et al., 2017; Pfeifer et al., 2018).

Background

Convolutional neural network

The CNN architecture shown in Figure 6 can be divided into
four parts (O’Shea and Nash, 2015):

1. The input layer consists of an input matrix, which in our
case, on the x-axis represents the fNIRS channels and the
y-axis represents the fNIRS time-series data from each
channel after windowing.

The convolutional layer has 32 1D kernels of size
3 (span in time, and spans across all channels), which
calculates the neurons’ output for each channel.

The learnable kernels (filters used to extract features
from the image matrix) use a small spatial dimensionality.
When the data arrives at the convolutional layer, it
convolves each filter across the input’s temporal dimension
to produce a 2D feature map. The kernels have a
corresponding activation map. Convolutional layers are
optimized through three hyper-parameters, namely depth,
stride, and zero-padding (Albawi et al., 2017). Depth
of an image (assume a color image of dimension
50 × 50 and a depth of 3 which is RGB) or a grayscale
video (dimension is height and breadth, and depth are
the frames). Each convolutional layer has its own filter
of a certain dimension which slides over the input
matrix, this is controlled by stride. Stride is the number
of pixels shifts over the input matrix. Zero padding
is a commonly used modification where symmetrically
zeros are added to the input matrix. This is done to
preserve the dimension of the input volume in the
output volume.

2. The pooling layer down samples along the temporal
dimension, reducing the number of parameters within that
feature map.

3. The fully connected layers contain neurons directly
connected to adjacent layers without connecting to any
of the neurons within the same layer. These three layers
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FIGURE 5

Dataset B: Each session comprised a 1 min pre-experiment resting period, 20 repetitions of the given task, and a 1-min post-experiment resting
period. The task started with 2 s of a visual introduction of the task, followed by 10 s of a task period and resting period.

FIGURE 6

The structure of the CNN used in this study. From the input data (left), the convolutional (encoding) layers extract feature maps. Subsequently,
these feature maps are resampled (max-pooling) to a coarser resolution before flattening to a 1-dimensional array. This is then passed on to the
first fully connected network which applies weights to predict the correct label. Lastly, the final output layer computes and presents probabilities
for each label (Gratton et al., 2006). CNN, convolutional neural network.

produce a class score from the activation maps, which are
then used for classification.

Long short-term memory

• Long Short-Term memory, shown in Figure 7, is a type
of Recurrent Neural Network (RNN) architecture that
allows learning from long-term dependencies (Hochreiter
and Schmidhuber, 1997; Sutskever et al., 2014; Lipton
et al., 2015). The central concept of LSTM is a memory
cell that maintains its state over time and is made
up of explicit memory (cell state vector) and gating
units that control information flow into and out of the
memory.

• The LSTM’s memory is represented by the cell state vector,
which alters the forgetting of old memory (forget gate) and
the addition of new memory (input gate). The output from

the previous time step, the current input, and, optionally,
the cell status vector are used to govern the flow of
information to and from memory.

Classification metrics

This section explains the strategy used to evaluate
the model’s performance using Accuracy, Precision,
Recall, and F1 score (Goutte and Gaussier, 2005; Lin
et al., 2018; Powers, 2020). First, a brief definition of
key terms:

False-positive (FP): the rejection of true null hypothesis;
False negative (FN): acceptance of the false null hypothesis;
True positive (TP): outcome of the model that correctly
predicts observation belonging to the positive class. True
negative (TN): outcome of the model that correctly predicts
observation belonging to the negative class. Accuracy,
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FIGURE 7

The structure of the LSTM neural network. Each LSTM neuron accepts sequential input data and has three regulators (Input-, output- and forget-
gate). It processes the input sequence and determines features based on input data. The remaining structure consists of a dense neural network
of three layers (Balardin et al., 2017). LSTM, long short-term memory.

precision, recall, and F1 score are computed using these
as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Precision = TP/(TP + FN) (3)

Recall = TP/(TP + FN) (4)

F1 score = 2× (Precision× Recall) / (Precision+Recall) (5)

Proposed sliding window approach

A sliding window looks at the latest samples from the signal.
fNIRS data is recorded as a time-series with M time samples and

FIGURE 8

An example of a sliding window approach where M is time in
frames, N is the number of channels, and WS is the window size.

N channels where X1 is the latest block of size WS, and this block
slides one row in time (from row1 to rowM-WS) till XM-WS. This
gives an output of dimension [(M-WS) ×WS × N] as shown in
Figure 8.

For our study, we selected a window size of 50, which
represents roughly 6 s of data for dataset A and 5 s for dataset B
(open access). From the sliding window function’s output, each
block’s dimension was computed as 1×WS×N which is shown
in Figure 9 where time is the WS and N is number of channels.
Finally, this is labeled as “left,” “rest,” or “right” based on the
experimental paradigm.

FIGURE 9

The input data consisting of concentration changes of HbO and
HbR in all channels. N for Dataset A varies as we did not have
consistent number of channels for all subjects, but for Dataset
B, N is 76 (36 for HbO channels and 36 for HbR channels). Time
refers to window size.
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TABLE 1 Input and output shapes of the Convolutional Neural
Network of this study.

Layer Input
size

Output
size

Properties

Convolutional Layer 1 50,26 50,32 32 filters with kernel
size 3, strides 1

Max Pooling layer 1 50,32 28,32 Pool size 2
Flatten layer 1 28,32 896
Fully connected layer 1 896 500 500 hidden nodes
Dropout layer 1 500 500 Dropout rate set to 50%
Fully connected layer 2 500 120 120 hidden nodes
Dropout layer 2 120 120 Dropout rate set to 50%
Fully connected layer 3 120 3 3 hidden nodes

TABLE 2 Input and output shapes of Long Short-Term Memory Neural
Network of this study.

Layer Input
size

Output
size

Properties

LSTM layer 50,26 50,120 120 LSTM neurons
Flatten layer 1 50,120 6,000
Fully connected layer 1 6,000 500 500 hidden nodes
Dropout layer 1 500 500 Dropout rate set to 50%
Fully connected layer 2 500 120 120 hidden nodes
Dropout layer 2 120 120 Dropout rate set to 50%
Fully connected layer 3 120 3 3 hidden nodes

We followed two approaches to label each block:

• Labeling approach 1: Consider a block of specific window
size, WS. If, for example, the label “rest” appears in more
than 50% of the latest block, then that block is labeled as
“rest.” The same method is applied to label blocks as “right”
or “left.” For Dataset A this approach has a latency of 4 s,
and for Dataset B it has a latency of 5 s.

• Labeling approach 2: Consider a block of window size
(WS). If all the latest 1 s of labels for this block have a
specific label, say left, then that block is labeled as left
Likewise, the same is done in case the latest 1 s is labeled
as rest or right. For both Dataset A and Dataset B, this
approach has a latency of 1 s.

Proposed structure

For better understanding of the CNN and LSTM models,
the input and output sizes of each layer in our proposed
CNN model are summarized in Table 1 and likewise for
LSTM model are summarized in Table 2. Relu is an activation
function that stands for rectified linear unit. If the input is
positive, this piecewise linear function will output the input
directly; otherwise, it will output a zero (Goodfellow et al.,
2016; Arora et al., 2018; Agarap, 2019). Because it is faster
to train the model and generally produces high accuracy,
most neural networks utilize relu as their default activation
function. Softmax is also an activation used in the output layer

of the neural network that predicts a multinomial probability
distribution for a multi-class classification problem (Goodfellow
et al., 2016). Both Dataset A and B used “relu” as the activation
function for all layers except the fully connected layer 3
which used a “softmax” as its activation function. Adam is
used as an optimization algorithm instead of the classical
stochastic gradient descent approach to iteratively update the
weights based in the training data (Kingma and Ba, 2017).
We used Adam as an optimizer as it has various benefits like
easy implementation, computational efficiency, less memory
requirements, etc.

DeepSHAP explanation module

It is computationally expensive to explore every potential
feature combination while working with our datasets.
DeepSHAP is a useful tool for estimating Shapley values in
deep learning models. We are able to maintain the interpretive
capability of Shapley values while maintaining the computational
power and accurate outcomes of deep learning models. We can
model Shapley values by additive feature attribution techniques
for SHAP estimates. Through the explanatory model g, we
describe the “coalition vector” z′ for SHAP as follows:

g
(
z′
)
= ∅0 +

∑M

j = 1
∅jZ

′

j (6)

Here, we add the feature attribution for j, ∅j, multiplied by
the coalition vector for j, Z

′

j , from feature j = 1 to the largest
coalition size, M. (z′ ∈ {0, 1}M) is the “coalition vector”. In the
coalition vector, each feature is either “present” or “missing”
in the combination of characteristics, denoted by a 1 or a
0.

We used DeepSHAP for our explanation module as it is
optimized for explaining deep neural networks while having
benefits which are:

(a) Global interpretability—The SHAP values can describe
how each predictor or input variable contributes, either
negatively or positively, to the target variable. This can
be used to show each predictor’s positive and negative
relationship with the target.

(b) Local interpretability—The SHAP value is assigned to each
observation, which increases the transparency by showing
how each case is predicted in terms of the contribution
of each of the predictors. Traditional interpreters don’t
explain individual cases but rather across the entire
population. This enables us to pinpoint and contrast the
impact of the predictors.

Using SHAP we can also find feature dependence, which is
a form of global interpretation plot, where we choose a feature,
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and plot a point with the feature value on the x-axis and the
appropriate Shapley value on the y-axis for each data instance.

Mathematically, we can describe the plot as:
{(

x(i)j ,∅(i)j
)}n

i = 1
With feature dependence we can also find SHAP interaction,

which is interaction effects when pairwise features are
attributions are considered. It is mathematically given as:

∅i,j =
∑

S⊆{i,j}

|S|! (M − |S| − 2)!
2 (M − 1)!

δij (S) (7)

When i 6= j:

δij (S) = f̂
(
S ∪

{
i, j
})
− f̂ (S ∪ {i})− f̂

(
S ∪

{
j
})
+ f̂ (S) (8)

Where S represents a subset of all features N except the i-th
feature and M is the number of input features. This formula
calculates the difference between the SHAP values of the i-th
feature with and without the j-th feature and can be used to
interpret the SHAP interaction value of the i-th feature with
respect to the j-th feature. This enables us to compute SHAP
interaction values using the algorithm for computing SHAP
values (Lundberg and Lee, 2017).

Results

Hemodynamic response

The hemodynamic response obtained from subject 2 of
Dataset A having 26 channels across all sessions of each task
for rest, left, and right motor tasks with a window size of 50 are
shown in Figure 10.

Changes in HbO- and HbR-concentration were measured as
input to our proposed model.

Classification accuracies

LSTM and CNN were used to determine classification
accuracies for each run of every subject. 10-fold cross-validation
was performed on data with training- and validation- data split
as 75% for training and 25% for testing.

The result of validation accuracy for each run of every
subject for a window size WS of 50 samples (roughly 6 s of data)
is shown in Figures 11 and 12 below:

The mean classification accuracy of CNN for Dataset A was
97.68% ± 0.05%, and that for Dataset B was 97.92% ± 0.28%.
In LSTM, an average classification accuracy of 98.69% ± 0.04%
was recorded for Dataset A and 97.88% ± 0.21% for Dataset B.
To test the model for overfitting we randomized the labels. We
then performed a permutation test with 10-fold cross-validation
on Dataset A with randomized labels, which gave an accuracy
of 39.54% ± 1.60% and 36.06% ± 1.88% for CNN and LSTM,
respectively. Similarly, 10-fold cross-validated permutation test

on Dataset B with randomized labels gave average accuracies
of 56.55% ± 0.33% for CNN and 56.62% ± 0.39% for LSTM.
Therefore our model is robust.

Subject independent classification

For subject independent classification we combined a few
subjects (a combination of three, five and 10) for training
and leaving out one for testing with 10-fold cross validation.
The results are shown in Table 3. Dataset A gave an average
classification accuracy of 50%. The same couldn’t be done for
Dataset B as the number of channels from one subject to another
varied.

Classification accuracy and validation
loss

Figure 13 shows that our model is not overfitting for both
CNN and LSTM as training- and validation- accuracies and
losses plots converge for each epoch.

Visualizing the convolutional filters

Figure 14 shows the CNN model’s features for subject 3 of
Dataset A, which is challenging to interpret. SHAP values were
used to understand which features contributed the most. This is
explained in the next section.

FIGURE 10

Hemodynamic response from rest, left- and right-motor
task blocks of subject 2 from Dataset A where channels
1–13 represents HbO and 14–26 represents HbR. Yellow lines
represent maximum, and purple represents minimum values
respectively.
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FIGURE 11

Classification accuracies of CNN and LSTM model using labeling approach -1 and -2 for Dataset A.

TABLE 3 Subject independent classification.

Model Training
with subjects

Testing
with subjects

Testing Accuracy

Labeling Approach 1 Labeling Approach 2

CNN 1 and 2 3 51.06% (+/- 0.09%) 51.62% (+/- 0.11%)
LSTM 49.53% (+/- 0.10%) 47.98% (+/- 0.11%)
CNN 1–3 4 47.99% (+/- 0.10%) 47.98% (+/- 0.08%)
LSTM 48.20% (+/- 0.08%) 44.32% (+/- 0.09%)
CNN 1–4 5 42.30% (+/- 0.11%) 43.30% (+/- 0.07%)
LSTM 46.05% (+/- 0.06%) 42.13% (+/- 0.08%)
CNN 1–5 6 57.22% (+/- 0.08%) 50.13% (+/- 0.12%)
LSTM 53.72% (+/- 0.02%) 48.52% (+/- 0.08%)
CNN 1–6 7 47.33% (+/- 0.10%) 50.55% (+/- 0.08%)
LSTM 50.20% (+/- 0.08%) 46.19% (+/- 0.05%)
CNN 1–7 8 52.93% (+/- 0.06%) 51.10% (+/- 0.11%)
LSTM 53.29% (+/- 0.07%) 52.27% (+/- 0.05%)
CNN 1–8 9 54.87% (+/- 0.08%) 54.12% (+/- 0.09%)
LSTM 56.78% (+/- 0.10%) 53.02% (+/- 0.13%)
CNN 1–9 10 50.10% (+/- 0.09%) 38.38% (+/- 0.07%)
LSTM 48.22% (+/- 0.09%) 42.23% (+/- 0.08%)

Explanations

Our studies involved a Deep Learning model, and
this necessitated the use of an explainer module. In our
study, we used DeepExplainer, a module in DeepSHAP.
The DeepExplainer examined the CNN model along with
2,000 random samples of data from the training set. SHAP
values were extracted from 1,000 random samples from the
test dataset. We obtained a SHAP value of the dimension
3× 1,000× 50× 72 where 3 is the number of classes and 1,000 is
the number of random samples of dimension 50 frames of data
from 72 channels.

Figure 15, for Dataset A, the 10 most important channels
for each of the three brain states (Left active, right active,
and Rest) are shown. Figure 16, for Dataset B, the 10 most

important channels for each of the three brain states (LMI,
RMI, and Rest) are shown. With respect to deThe Channels
are ranked by decreasing mean relevance calculated from local,
back-propagated relevance ratings over subject 1 for Dataset A
and subject 1 for dataset B.

In Figures 15 and 16, the parameters are displayed as a
blue horizontal bar in ascending order of global parameter
importance, as determined by mean relevance. All of the
individual data points are colored by parameter value and sorted
by mean importance in the local explanation summary. The
number of data-points at the related level of relevance correlates
with the height of the data-points for each feature, as determined
by back-propagated relevance scores for each feature. The feature
value linked with the local explanation is used to color-code
this. The influence of a feature on the model’s categorization is
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FIGURE 12

Classification accuracies of CNN and LSTM model for Dataset B where each subject had three sessions and all three were combined for 10-fold
cross-validation, and 5-fold cross-validation was done for combined sessions.

indicated by the position of the dot on the x-axis. Multiple dots
that land at the same × location pile up to demonstrate density.

For example, Figure 15B Right active (Motor task) seems to
associate with the high FC3C3deoxy and low C1FC1oxy from
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FIGURE 13

Training- and testing-accuracy and loss for CNN and LSTM. (A) Subject 1 of Dataset A and (B) Subject 12 of Dataset B.

FIGURE 14

Spatiotemporal features from 32 1-d CNN filters where each filter has three coefficients (Shown for subject 3 with 26 channels for CNN classifier).

the left cortex. Likewise, Figure 16B Right motor imagery seems
to be associated with high AF4AFzdeoxy and C2C4deoxy from
the right frontal cortex and right motor cortex. The summary
distribution allows us to get an idea of what to expect from the
fNIRS signal classification model.

Another interesting finding is shown in Figure 17A Left
motor imagery and (B) Right motor imagery where high values
of channel C6C4deoxy contribute to other classes (rest or motor

left imagery) than itself (right motor imagery), but it contributes
to Rest state in (C) where it clearly shows the high values for
channel C6C4deoxy contribute more towards the classification
of Rest state.

The dependence plot shows the marginal effect one or
two features have on a Deep Learning model’s predicted
outcome. Dependence plots display the relationship
between a feature’s value (x-axis) and the prediction of
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FIGURE 15

Panel (A) represents Left active motor task; (B) represents Right active motor task and likewise, (C) represents Rest. The global features’ importance
and local explanations summary are displayed in the results of the explanation module for Dataset A. Note only 10 channels are plotted. On the
right most part, the channels are mapped to the edges of the optode locations.

each sample (each dot) in a dataset (y-axis). In comparison
to conventional partial dependency charts, they offer deeper
information. Figure 17 is a SHAP dependence plot where a

feature that has a positive effect on classification is plotted
against the value of that feature for all examples in the
dataset.
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FIGURE 16

Panel (A) represents Left active motor imagery; (B) represents Right active motor imagery and likewise, (C) represents Rest. The global features’
importance and local explanations summary are displayed in the results of the explanation module for dataset B. Note only 10 channels are
plotted. On the right most part, the channels are mapped to the edges of the optode locations.

Figure 17B right active, SHAP value of FC3C3deoxy is
plotted against its actual value, clear interaction with FC3C3oxy,

which increases the classification impact towards right active
(Motor task). We can also observe that when the FC3C3deoxy
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FIGURE 17

Dataset A’s SHAP dependance plot for: (A) represents Left active motor task; (B) represents Right active motor task and likewise (C) represents
Rest. Dataset B’s SHAP dependance plot for: (D) represents Left motor imagery; (E) represents Right motor imagery and likewise (F) represents
Rest. Here the SHAP dependence plot where the SHAP value of the feature has a positive effect on the classification is plotted against the value of
the feature for all examples over the dataset and it is color coded with the feature it interacts with the most. SHAP, SHapley Additive exPlanations.

value is low it has a negative impact and classifies anything other
than right active, when the FC3C3deoxy value is high it has a
positive impact towards classification of right active. Likewise,
Figure 17D. Left motor imagery (LMI) channel CP4CP6deoxy
shows interaction with channel FC2FC4deoxy, low values
CP4CP6deoxy have negative impact towards classification
of LMI and high values of CP4CP6deoxy contribute more
towards LMI.

Discussion

Deep Learning models like CNN and LSTM enable
automated feature extraction and classification of fNIRS signals.
The previous works on fNIRS used statistical features which were
extracted for machine learning algorithms (Naseer and Hong,
2013; Naseer et al., 2014), e.g., mean, slope, skewness, etc. of
HbO and HbR, which yielded a classification accuracy of 86.19%
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for SVM whereas CNN enhanced the classification accuracy to
93.08% (Trakoolwilaiwan et al., 2018).

The window-based approach (Naseer and Hong, 2013)
restricts attention only to variation in data for contiguous
windowed periods, whereas the proposed sliding window
approach looks at multiple overlapping windows starting with
each input sample.

As data scarcity is one limiting factor of Deep Learning
techniques (Ghonchi et al., 2020; Lu et al., 2020; Nagabushanam
et al., 2020) the sliding window also augments the data by
increasing the data’s sample size, as explained in Section
“Proposed sliding window approach”.

The SupplementaryMaterial shows the number of channels
available channels in Dataset A, which shows that despite fewer
channels, the classification module can classify with an accuracy
over 98% accuracy for both CNN and LSTM shown in Figure 12.
We used Dataset B, an open-access dataset (Abibullaev and An,
2012) that consisted of motor imagery for 29 subjects to bolster
our study. The classification module also gave a classification
accuracy of over 98% for both CNN and LSTM for Dataset B,
shown in Figure 12.

We trained the model with various window sizes from 1 s
to 8 s and 5–6 s (50 frames), which led to the most optimal
results. This shows that the longer the sliding window’s duration,
the greater the amount of historical data in the window, which
contributes to better classification accuracy.

For Dataset A, we could not perform intersubjective group
classification as the number of channels did not remain
constant for all three subjects. As for Dataset B, we performed
intersubjective group classification shown in Supplementary
Material; we observe that the accuracy is low due to a large
outlier or lack of normalization of optode placement across all
subjects.

The spatiotemporal features identified in Figure 14 show
the fNIRS signal variation, from which the model has learned
features for classification. Each of the filters describes temporal
variation for three-time samples and spatial variation along
the 26 channels (subject 3 of dataset A); however, it is not
interpretable.

To introduce interpretability and trackability in neural
networks for BCI purposes so far, few EGG studies have shown
that it is possible to represent using direct pixel-to-channel
mapping (Joshi et al., 2018), projection of sensor locations by
interpolating image of the sensor on the scalp (Bashivan et al.,
2015), and an fNIRS study channels with a frequency greater
than mean were considered to be most contributing channels
another fNIRS study used z-score and t-value methods for
channel selection (Nazeer et al., 2020).

SHAP (SHapley Additive exPlanations) is a novel method
that employs a game-theoretical approach to describe the output
of a Deep Learning model. A recent study used SHAP to explain
which channels contributed the most in classifying EEG data for
the Active touch task (Alsuradi et al., 2020).

In the explanation module of the “xAI-fNIRS” system we
aimed to explain which features contribute to the classification of
a specific task in the CNN model for both Dataset A and Dataset
Busing DeepSHAP which is a module in SHAP.

From Figures 16 and 17, we observe the high-relevance
features (Channels) for Dataset A and Dataset B. We plotted
10 features (channels) that show the highest level of relevance
for classification in descending order. An interesting finding is
that the explanation module showed that Dataset A had all oxy
values of channels that contribute the most to motor task brain
states’ classification, whereas Dataset B had all deoxy values of
channels for the classification of motor imagery brain states.

It is important to note that the xAI-fNIRS system presented
in this study should not be conceived as the one-and-only
multi-outcome model. Instead, it should be viewed as a general
model for building precise and explainable models towards the
development of better BCI systems.

In summary, we have presented the xAI-fNIRS system
to classify brain activity states, which can be used for both
task and imagery tasks in fNIRS. The xAI-fNIRS shows high
classification performance while enabling the possibility of
explaining the classification in terms of pinpointing decisive
input data to provide BCI researchers to understand the
underlying reasons for classification. We hope that our study
will lead to developing a better BCI system that could not only
perform with high accuracy prediction of brain states but also
help in understanding the underlying spatiotemporal activation
patterns.

Conclusion

The xAI-fNIRS system’s classification module showed high
classification accuracy of greater than 98% a sliding window
approach with Deep Learning models like CNN and LSTM.
The sliding window approach keeps a history of signals and,
at the same time, increases the dimension of the dataset. The
classification module performed well, giving a high classification
accuracy of over 98% for two datasets (Motor task and Motor
imagery). Deep learning has gotten so good at classifying brain
data, but it fails to reveal which features contribute the most to
classification. To solve this issue, the explanation module aims
to bring insight into reasons for classification by every channel
given a color-coded relevance score; a positive relevance score
contributes to the true class and vice versa. Hence the xAI-fNIRS
system is a step towards building better BCI systems.
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