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We receive information about the world around us from multiple senses

which combine in a process known as multisensory integration. Multisensory

integration has been shown to be dependent on attention; however, the

neural mechanisms underlying this effect are poorly understood. The current

study investigates whether changes in sensory noise explain the effect of

attention on multisensory integration and whether attentional modulations

to multisensory integration occur via modality-specific mechanisms. A task

based on the McGurk Illusion was used to measure multisensory integration

while attention was manipulated via a concurrent auditory or visual task.

Sensory noise was measured within modality based on variability in unisensory

performance and was used to predict attentional changes to McGurk

perception. Consistent with previous studies, reports of the McGurk illusion

decreased when accompanied with a secondary task; however, this effect was

stronger for the secondary visual (as opposed to auditory) task. While auditory

noise was not influenced by either secondary task, visual noise increased

with the addition of the secondary visual task specifically. Interestingly,

visual noise accounted for significant variability in attentional disruptions

to the McGurk illusion. Overall, these results strongly suggest that sensory

noise may underlie attentional alterations to multisensory integration in a

modality-specific manner. Future studies are needed to determine whether

this finding generalizes to other types of multisensory integration and

attentional manipulations. This line of research may inform future studies of

attentional alterations to sensory processing in neurological disorders, such

as Schizophrenia, Autism, and ADHD.

KEYWORDS

multisensory integration (MSI), attention, dual task, McGurk effect, perceptual load,
audiovisual speech, sensory noise, neural mechanisms

Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.1027335
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.1027335&domain=pdf&date_stamp=2023-01-04
https://doi.org/10.3389/fnhum.2022.1027335
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2022.1027335/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1027335 December 22, 2022 Time: 23:46 # 2

Fisher et al. 10.3389/fnhum.2022.1027335

1. Introduction

The interactions between top-down cognitive processes and
multisensory integration have been heavily investigated and
shown to be intricate and multidirectional (Talsma et al., 2010;
Cascio et al., 2016; Stevenson et al., 2017). Previous research
using different methods to manipulate attention and measure
multisensory integration has demonstrated that multisensory
integration is lessened under high attentional demand and
relies on the distribution of attention to all stimuli being
integrated (Alsius et al., 2005, 2007; Talsma et al., 2007; Mozolic
et al., 2008; Koelewijn et al., 2010; Tang et al., 2016; Gibney
et al., 2017). Studies investigating the time point(s) during
which attentional alterations influence multisensory processing
have identified both early and late attentional effects (Talsma
and Woldorff, 2005; Talsma et al., 2007; Mishra et al., 2010).
Additionally, multiple areas such as the Superior Temporal
Sulcus (STS), Superior Temporal Gyrus (STG), and extrastriate
cortex have been identified as cortical loci of attentional changes
to multisensory processing (Mishra and Gazzaley, 2012; Morís
Fernández et al., 2015). Collectively, these studies suggest that
attention alters multisensory processing at multiple time points
and cortical sites throughout the sensory processing hierarchy.

The precise mechanisms by which attention alters
multisensory integration remain unknown. Multisensory
percepts are built through hierarchical processing within
sensory systems, coherent activity across multiple cortical sites,
and convergence onto heteromodal areas (for an extensive
review see Engel et al., 2012). Alterations in attention may
primarily disrupt multisensory integration by interfering with
integrative processes such as synchronous oscillatory activity
across cortical areas or processing of multisensory information
within heteromodal areas (Senkowski et al., 2005; Schroeder
et al., 2008; Koelewijn et al., 2010; Al-Aidroos et al., 2012;
Friese et al., 2016). Attention and oscillatory synchrony have
been shown to interact in a number of studies (Lakatos et al.,
2008; Gomez-Ramirez et al., 2011; Keil et al., 2016), thus
strengthening the possibility of this potential mechanism.
Although there is convincing evidence for attentional changes
to integrative processes, there is a strong likelihood that
disruptions in unisensory processing may explain, in part,
attentional alterations in multisensory integration. An extensive
research literature clearly demonstrates that attention influences
unisensory processing within each sensory modality (Woldorff
et al., 1993; Mangun, 1995; Driver, 2001; Pessoa et al., 2003;
Mitchell et al., 2007; Okamoto et al., 2007; Ling et al., 2009).
Additionally, attention has been shown to improve the neural
encoding of auditory speech in lower-order areas and to
selectively encode attended speech in higher-order areas
(Zion Golumbic E. et al., 2013; Zion Golumbic E. M. et al.,
2013). Alterations in the reliability of unisensory components
of multisensory stimuli have been clearly demonstrated to
alter patterns of multisensory integration such that the brain

more heavily weighs input from the modality providing the
clearest information (Deneve and Pouget, 2004; Bobrowski
et al., 2009; Burns and Blohm, 2010; Magnotti et al., 2013,
2020; Magnotti and Beauchamp, 2015, 2017; Noel et al.,
2018a). Thus, disruptions in attention may result in increased
neural variability during stimulus encoding (sensory noise)
causing degraded unisensory representations to be integrated
into altered multisensory perceptions. Few studies have
directly assessed the impact of attention on sensory noise and
multisensory integration (Schwartz et al., 2010; Odegaard et al.,
2016); thus, more exploration is needed to determine whether
attentional influences on multisensory integration may be
explained by increases in sensory noise.

Psychophysical tasks utilizing multisensory illusions may
be able to determine whether attentional alterations in
multisensory integration are mediated by disruptions in
modality-specific processing. Multisensory illusions which
result from discrepancies in information across modalities are
ideally suited for this type of experimental design because the
strength of the illusion can be altered by changing the reliability
of the component unisensory stimuli and these effects can be
modeled by measuring the ratio of visual and auditory sensory
noise (Körding et al., 2007; Magnotti and Beauchamp, 2017).
The McGurk effect is a well-known illusion that has been
used to study multisensory speech perception (Mcgurk and
Macdonald, 1976) and the effects of attention on audiovisual
speech integration. The strength of the McGurk effect has
consistently been shown to decrease with increasing perceptual
load in dual-task studies (Paré et al., 2003; Alsius et al., 2005,
2007, 2014; Soto-Faraco and Alsius, 2009; Gibney et al., 2017).
Because audiovisual speech can be understood through its
unisensory components and requires extensive processing of the
speech signal prior to integration (Zion Golumbic E. et al., 2013;
Zion Golumbic E. M. et al., 2013), there is a strong likelihood
that attentional alterations in audiovisual speech integration
may be explained by disruptions to the unisensory processing
of speech information. Specifically, disruptions in the encoding
of visual speech components would be expected to weaken the
McGurk Effect while disruptions in the encoding of auditory
speech components would strengthen the McGurk Effect.

In this study, we investigate attentional influences on
early auditory and visual processing by examining modality-
specific attentional changes to sensory noise. In two separate
experiments, participants completed a McGurk task that
included unisensory and congruent multisensory trials while
concurrently completing a secondary auditory or visual task.
Sensory noise was calculated from the variability in participants’
unisensory responses separately for the auditory and visual
modalities. Multiple regression analysis (MRA) was then used
to determine the impact of visual noise, auditory noise,
and distractor modality on McGurk reports at baseline and
changes in McGurk reports with increasing perceptual load.
We predicted that increases in perceptual load would lead to
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decreases in the McGurk effect and increases in sensory noise
within the same modality as the distractor. Additionally, we
predicted that changes in McGurk reports with increasing load
would be best predicted by changes in visual noise (as compared
to changes in auditory noise).

2. Materials and methods

2.1. Participants

A total of 172 (120 Females, 18–44 years of age, mean
age of 22) typically developing adults completed this study. 57
(38 Females, 18–36 years of age, mean age of 22) participants
completed trials with auditory distractors and 138 (82 Females,
18–44 years of age, mean age of 22) participants completed trials
with visual distractors. Data from some participants overlaps
with data previously published in Gibney et al. (2017). Twenty-
three (23) participants completed both experiments in separate
sessions. Participants were excluded from final analysis if they
did not complete at least four repetitions of every trial type (45)
or did not have a total accuracy of at least 60% on the distractor
task for the high load condition (12). Thus, 115 participants were
included in the final analysis. Participants reported normal or
corrected-to-normal hearing and vision and no prior history of
seizures. Participants gave written informed consent and were
compensated for their time. Study procedures were conducted
under the guidelines of Helsinki and approved by the Oberlin
College Institutional Review Board.

2.2. Experimental design overview

We employed a dual-task design to determine the effects
of attention within a specific sensory modality on McGurk
perceptions and on sensory noise within each modality. Similar
dual task designs have been shown to reduce attentional capacity
(Lavie et al., 2003; Stolte et al., 2014; Bonato et al., 2015).
Participants completed a primary McGurk task concurrently
with a secondary visual or auditory distractor task for which
the level of visual or auditory perceptual load was modulated.
Full methodology for both the primary McGurk task as well as
the secondary distractor tasks has been previously published in
Dean et al. (2017) and Gibney et al. (2017); however, we provide
a brief overview of all tasks here. All study procedures were
completed in a dimly lit, sound-attenuated room. Participants
were monitored via closed-circuit cameras for safety and to
ensure on-task behavior. All visual stimuli were presented on
a 24” Asus VG 248 LCD monitor at a screen resolution of
1,920◦×◦1,080 with a refresh rate of 144 Hz at a viewing
distance of 50 cm from the participant. All auditory stimuli were
presented from Dual LU43PB speakers which were powered
by a Lepas LP-2020AC 2-Ch digital amplifier and were located

to the right and left of the participant. SuperLab 4.5 software
was used for stimulus presentation and participant response
collection. Participants indicated their responses on a Cedrus
RB-834 response box, and responses were saved to a txt file.

2.3. McGurk task

Participants were presented with videos of a woman
speaking one of four syllables “ba” (/ba/), “ga” (/ga/), “da”
(/da/), or “tha” (/tha/, voiceless) (Figure 1A). Trials were
either unisensory (visual-only; auditory-only) or multisensory
(congruent; incongruent illusory; incongruent non-illusory). In
unisensory trials, participants were presented with either the
visual (visual-only) or auditory (auditory-only) components of
the video for each syllable. Multisensory videos had both an
auditory and a visual component and were either congruent
(e.g., visual “ba” auditory “ba”), incongruent non-illusory (visual
“ba” auditory “ga”), or incongruent illusory (visual “ga” auditory
“ba”). Participants responded to the prompt, “What did she
say?” by pushing one of four buttons labeled “ba,” “ga,”
“da,” or “tha.” Although eye movements were not monitored,
participants were explicitly instructed to maintain their gaze on
the speaker’s mouth throughout the duration of the study. Each
unisensory syllable was repeated 8 times for a total of 32 visual-
only and 32 auditory-only trials. Each congruent multisensory
syllable was repeated 8 times for a total of 32 total congruent
multisensory trials. Lastly, there were 16 illusory incongruent
and 16 non-illusory incongruent trials.

2.4. Secondary visual distractor task

Rapid serial visual presentation (RSVP) stimuli of
white letters, yellow letters, and white numbers presented
continuously below the McGurk videos (Figure 1A). Each
letter and number in the RSVP stream was presented for
100 ms with 20 ms between letters and numbers. The visual
distractor task included four condition types: distractor free
(DF), no perceptual load (NL), low perceptual load (LL), and
high perceptual load (HL). During distractor-free blocks, no
visual or auditory distractors were presented; thus, participants
completed the McGurk task in isolation. When the RSVP stream
was presented concurrently with the McGurk task, participants
were asked to either ignore it (NL), detect infrequent yellow
letters (LL), or detect infrequent white numbers (HL). There
was a 50% chance that the target would be present in each trial.
After each presentation, participants were asked to respond
first to the McGurk task then report whether they observed a
target within the RSVP stream with a “yes” or “no” button press.
Each load condition was completed in a separate block, and the
order of blocks was randomized and counterbalanced across
participants. Participants completed all perceptual load blocks
in one session.
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FIGURE 1

Psychophysics tasks and sensory noise calculations. (A) Participants watched videos of a woman speaking one of four syllables, after which they
reported if she said: “ba,” “ga,” “da,” or “tha.” Rapid serial visual presentation (RSVP) or rapid serial auditory presentation (RSAP) stimuli
accompanied speech videos during no load (NL), low load (LL), and high load (HL) blocks. For the visual distractor task, participants detected a
yellow letter (LL) or a white number (HL). For the auditory distractor task, participants detected a high-pitched tone (LL) or a long-duration tone
(HL). Identifiable human image used with permission. (B) Mapping of possible responses in representative audio-visual space. Panel (C) shows
sensory noise calculations for an example participant. Sensory noise was calculated for each participant using responses from visual (top) and
auditory (bottom) only trials. Gaussian distributions of these responses were determined via bootstrapping (middle), and the standard deviation
of this distribution was calculated for each syllable. The overall visual (top, last panel) and auditory (bottom, last panel) noise for each participant
was calculated as the average standard deviation of all syllabi within each modality.

2.5. Secondary auditory distractor task

Stimuli consisted of rapid serial auditory presentation
(RSAP) of musical notes at frequencies between 262 and 523 Hz.
Each note was presented for 100 ms with 20 ms between
notes (Figure 1A). As in the visual distractor task, there
were four auditory perceptual load conditions: no distractors
presented alongside McGurk stimuli (DF); distractor stimuli
were present but not attended (NL), participants were asked to
detect a tone significantly higher pitch (1,046–2,093 Hz) than
the standard tones (LL); participants were asked to detect notes
that were twice the duration of the standard tones (HL). For
LL and HL trials, there was a 50% probability that the target
would be present in the RSAP stream. After each presentation,
participants first responded to the McGurk task, then selected
“Yes” or “No” to indicate if they observed the target. Participants
completed all perceptual load blocks in one session.

2.6. Data analysis

2.6.1. Psychophysical analyses
Responses for incongruent illusory trials on the McGurk

task were divided into “visual” (“ga”), “auditory” (“ba”), and
“fused” (“da” or “tha”). Percent fused reports were calculated

for each participant for each perceptual load condition and
distractor modality. We conducted a repeated-measures analysis
of variance (RMANOVA) on percent fused reports with load
(NL or HL) as a within-subject factor and distractor task
modality (visual or auditory) as a between-subjects factor
to determine whether increasing perceptual load affected the
perception of the McGurk Illusion and whether this effect was
modulated by distractor modality.

2.6.2. Sensory noise calculations
Previous models have been developed to determine

sensory noise (Magnotti and Beauchamp, 2015, 2017).
However, these models do not account for visual and auditory
noise independently. Including visual and auditory noise
independently permits investigations into how distractors
impact precision of information available when forming
McGurk percepts, which may be important for understanding
attentional influences on multisensory integration. We assessed
sensory noise in both modalities using variability in responses to
unisensory visual and auditory presentations. Previous studies
determined that the encoding of auditory and visual cues follow
separate Gaussian distributions and that the variance of that
distribution reflects sensory noise (Ma et al., 2009; Magnotti
and Beauchamp, 2017). Responses to visual and auditory-only
trials were used to estimate sensory noise separately for each
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experimental condition: syllable presented (“ba,” “tha,” “da,”
“ga”), distractor modality (auditory or visual), and perceptual
load (DF, NL, or HL). Each response was assigned a value
reflecting the reported syllable’s relative location in audiovisual
perceptual space (Figure 1B; Ma et al., 2009; Olasagasti et al.,
2015; Magnotti and Beauchamp, 2017; Lalonde and Werner,
2019). In line with previous work, fused reports were placed in
the middle of “ba” and “ga” (Magnotti and Beauchamp, 2017).
However, our study design permitted two options “da” and
“tha” for fused responses. To account for differences in between
the two syllables we adapted a 10-point scale. This would permit
us to separate “tha” and “da,” to accommodate previous findings
that “tha” is more similar to “ba,” while “da” is more similar to
“ga” (Lalonde and Werner, 2019). Further, Lalonde and Werner
identified multiple consonant-groups separating each syllable,
thus a 10-point scale would reflect distance in audiovisual space
between each syllable.

We bootstrapped 10,000 samples for each participant’s
response to each syllable presented during auditory- and
visual-only trials (Figure 1C, Stein et al., 2009). We averaged
each syllable’s overall visual (σVis) and auditory (σAud) noise
for each condition by taking the average sensory noise for
all syllables presented during visual or auditory-only trials.
Finally, we calculated combined sensory noise to account
for both visual and auditory noise. We used the equation:
σCombined =

σVis−σAud
σVis+σAud

, which is based on calculations from
maximum likelihood estimate models (Ernst and Banks, 2002)
and comparable to models using auditory/visual noise ratio
(Magnotti and Beauchamp, 2017; Magnotti et al., 2018). This
produces a distribution of combined sensory noise values
between 1 and −1, with values >0 indicating that visual noise
is greater.

2.6.3. Multiple regression modeling
We developed two multiple linear regression models to

determine the effect of sensory noise on McGurk perceptions.
We chose to use linear regression because to investigate the
roles of attention and sensory noise on the likelihood of
perceiving the McGurk effect. Additionally, relevant factors
used in the analyses showed significant linear relationships
with our dependent factors. The first model investigated factors
contributing to McGurk responses at baseline, and the second
investigated changes in McGurk responses with increasing
perceptual load. All testing and model assessments were carried
out in SPSS. First, preliminary model fitting was conducted
on data from individuals excluded (n = 57) due to poor
distractor task performance and lack of unisensory data to
explore the relationship between baseline McGurk values and
multiple possible predictor variables. These variables included
visual noise, auditory noise, distractor modality, accuracy on
auditory and visual distractor tasks, and interaction terms.
Preliminary results suggested that visual noise, auditory noise,
and the combination of the two could be predictive of McGurk

responses. After determining potential predictors from excluded
data, we then determined whether McGurk responses at baseline
(distractor-free condition) correlated with each sensory noise
measure (visual, auditory, and combined) to construct the final
multiple regression model. Importantly, this baseline regression
model allowed us to better contextualize our results and our
novel method of estimating sensory noise within modality in
the context of previous studies which also relate sensory noise
to measures of multisensory integration.

Our second multiple regression analysis modeled the change
in McGurk perception from NL to HL (1McGurk = HL
McGurk reports − NL McGurk reports). To determine which
predictive variables to include, we performed an RMANOVA
with visual noise, auditory noise, and combined noise as
dependent variables with load (NL and HL) as a within-
subjects factor and distractor modality as a between-subjects
variable. The variables that were significantly predicted by load
were included in a single-step multiple regression model of
1McGurk: distractor modality, change in visual noise, and
baseline McGurk values. Notably, changes in auditory noise and
combined noise were excluded because neither these variables
nor their interaction with distractor modality were significantly
predicted by load nor did they correlate with changes in McGurk
reports across load.

3. Results

Participants completed a McGurk detection task to assess
their integration of speech stimuli. This task was completed
alone (DF) or in addition to a secondary distractor task
at various perceptual loads (NL and HL). Participants were
separated by which distractor modality (auditory or visual) was
presented during the dual-task conditions.

3.1. Attentional alterations to McGurk
perception

To assess baseline levels of multisensory integration, percent
fused responses (“da” or “tha”) were calculated for illusory trials
(auditory “ba” and visual “ga”) during the distractor-free block
(Figure 2). Independent t-tests revealed significant differences
in mean baseline illusory percepts between the auditory
distractor group (percent fused = 41.05) and visual distractor
group (percent fused = 68.11; t105 = 4.54, p = 1.50 × 10−5,
Cohen’s d = 0.724). These differences were confirmed with
bootstrapped (95% CI: 4.45–32.04, p = 0.015), non-parametric
(UN,AudDist:134; N,VisDist:58 = 2,191, z=−4.85, p= 1.26× 10−6)
and Bayesian (t190 = 4.81, p = 7.4 × 10−6, BF = 0.00) sample
comparisons. Because the distractor-free block was identical for
the visual and auditory distractor studies and was most often
completed after a NL, LL, or HL block, these results may indicate
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FIGURE 2

McGurk fused reports for distractor free blocks. The percent of
fused reports (“da” or “tha”) during distractor free blocks is
shown for each participant for the visual distractor and auditory
distractor groups. Horizontal black bars indicate group averages,
and violin plots display the distribution of percent fused reports
for each task. ∗∗∗Indicates p < 0.001.

that McGurk perception is affected by the modality of distractors
within the context of the entire task.

To assess how McGurk perception changes with increasing
perceptual load, we calculated fused responses during no-load
and high load blocks (Figure 3) for both the auditory distractor
group (NL %fused = 45.90, HL %fused = 37.80) and visual
distractor group (NL %fused = 60.86, HL %fused = 33.68%).
A two-way RMANOVA with fused responses as the dependent
factor, perceptual load as a within-subjects factor, and distractor
modality as a between-subjects factor revealed a main effect
of perceptual load (F1,133 = 48.36, p = 1.45 × 10−10,
partial η2

= 0.267) and an interaction between load and
distractor modality (F1,133 = 14.15, p = 2.52 × 10−4, partial
η2
= 0.096). We confirmed these findings with post hoc

two-sample comparisons. These indicate significant changes
in McGurk responses from No Load to High Load with
visual distractors (t86 = 8.36, p = 9.75 × 10−13, Cohen’s d:
0.90; Bootstrapped 95% CI: 20.76–33.72, p = 2.00 × 10−4;
W = 114.5, z = −6.67, p = 2.59 × 10−11; BF = 0.00).
Parametric assessments illustrated a significant change in
McGurk responses between auditory No Load to High Load
(t47 = 2.35, p = 0.02, Cohen’s d: 0.34; Bootstrapped 95%
CI: 1.62–15.09, p = 0.032; BF = 0.67); however, this effect
only approached significance when using non-parametric
Wilcoxon comparisons (W = 271.50, z = −1.86, p = 0.06).
Further, differences in McGurk reports from No Load to
High Load conditions were dependent on distractor modality

(t117 = −4.03, p = 1.01 × 10−4, Cohen’s d = −0.68;
Bootstrapped 95% CI: −28.35 to −9.86, p = 2.00 × 10−4;
UN,AudDist:48;N,VisDist:87 = 2,918, z = 3.83, p = 1.30 × 10−4;
Bayesian t133 = −3.8, p = 2.532 × 10−4, BF = 0.012).
These results indicate that increasing perceptual load leads
to a decrease in integration; however, visual distractors led
to a greater decrease in integration than auditory distractors.
Supplementary material include figures and statistics for
participant distractor task accuracy (Supplementary Figure 1),
unisensory and multisensory congruent trial-type accuracy
(Supplementary Figure 2), and changes in McGurk reports
across NL, LL, and HL (Supplementary Figure 3) for both
distractor modalities.

3.2. Sensory noise

3.2.1. Baseline sensory noise
Responses on unisensory trials were used to determine

auditory and visual noise values for each participant during
baseline conditions (distractor free block; Figure 4). Both
visual distractor group (σVis 0.50, σAud 0.11) and auditory
distractor group (σVis 0.54, σAud 0.11) had lower auditory
noise than visual noise. A two-way ANOVA with sensory
noise as the dependent variable, noise modality as a within-
subjects factor, and distractor modality as a between-subjects
factor revealed a main effect of noise modality (F1,190 = 450,
p = 4.83 × 10−52, partial η2

= 0.703). There was no effect
of distractor modality (F1,190 = 1.092, p = 0.297, partial
η2
= 0.006) or interaction between noise and distractor modality

(F1,190 = 0.948, p = 0.331, partial η2
= 0.005). Post hoc sample

comparisons using t-tests and non-parametric assessments
corroborated these findings. There were significant differences
between baseline auditory and visual noise for individuals in
both auditory-distractor (t47 = 10.93, p= 1.70× 10−14, Cohen’s
d: 1.58; Bootstrapped 95% CI: 0.34–0.48, p = 2.00 × 10−4;
W = 24, z = −6.44, p = 1.21 × 10−10; t57 = 12.3,
p = 0.000, BF = 0.00) and visual distractor (t86 = 13.78,
p = 1.78 × 10−23, Cohen’s d: 1.48; Bootstrapped 95% CI: 1.62–
15.09, p = 0.03; W = 89.00, z = −9.85, p = 0.000; Bayesian
t134 = 19.2, p= 0.000, BF = 0.00) groups. These results indicate
that auditory noise was significantly lower than visual noise
regardless of the distractor modality for the task.

3.2.2. Change in sensory noise
Next, we investigated whether perceptual load increased

sensory noise and whether this effect was dependent on
distractor or noise modality (Figure 5). For the auditory
distractor group, auditory noise (NL σAud 0.12, HL σAud 0.12)
and visual noise (NL σVis 0.48, HL σVis 0.47) remained stable
across load. For the visual distractor group, auditory noise
remained stable (NL σAud 0.15, HL σAud 0.17); however,
visual noise increased (NL σVis 0.52, HL σVis 0.67). An
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FIGURE 3

McGurk fused reports for no load (NL) and high load (HL) bocks. The percent of fused reports (“da” or “tha”) during NL and HL blocks are shown
for each participant for the auditory distractor (A) and visual distractor (B) tasks. Horizontal black bars indicate group averages. Colored lines
connect individual percent fused reports across each block with a green line indicating an increase in fused reports from NL to HL and a red line
indicating a decrease. The difference in percent fused reports across load for rapid serial visual presentation (RSVP) and rapid serial auditory
presentation (RSAP) tasks is shown in panel (C). ∗∗∗Indicates p < 0.001 and ∗ indicates p < 0.05.

FIGURE 4

Sensory noise for distractor free blocks. Auditory and visual sensory noise is shown separately for the auditory distractor (A) and visual distractor
(B) groups. Horizontal black bars indicate group averages, and violin plots display the distribution of sensory noise in each modality for each task.
Panel (C) shows auditory and visual sensory noise for all participants connected for each participant with straight lines. ∗∗∗Indicates p < 0.001.

RMANOVA of sensory noise with noise modality and load (NL
or HL) as within-subjects factors and distractor modality as
a between-subjects factor revealed significant main effects of
noise modality (F1,133 = 414.836, p = 1.03 × 10−42, partial
η2
= 0.757), load (F1,133 = 5.702, p = 0.02, partial η2

= 0.041),
and distractor modality (F 1,133 = 11.816, p = 0.001, partial
η2
= 0.082). There were also significant interactions between

load and distractor modality (F1,133 = 8.06, p = 0.005, partial
η2
= 0.057) and a three-way interaction between noise modality,

load, and distractor modality (F1,133 = 7.612, p = 0.007,
partial η2

= 0.054). The interaction between distractor modality
and noise modality approached significance (F1,133 = 3.890,
p = 0.051, partial η2

= 0.028). Post-hoc analyses using t-tests
and non-parametric assessments corroborated these findings.

Visual noise increased from no load to high load in visual
modality only (t86 = −4.78, p = 7.28 × 10−6, Cohen’s d:
−0.51; Bootstrapped 95% CI: −0.22 to −0.09, p = 2.00 × 10−4;
W = 2,928, z = 4.29, p = 1.77 × 10−5; BF = 0.01). However,
visual noise did not significantly change from no load to
high load with auditory distractors (t47 = 0.53, p = 0.60,
Cohen’s d: 0.08; Bootstrapped 95% CI: −0.04 to 0.07, p = 0.60;
W = 541.5, z = −0.238, p = 0.81; BF = 7.71). As follows,
change in visual noise was higher with visual distractors than
auditory distractors (t131 = 4.0, p = 1.04 × 10−4, Cohen’s
d = 0.63, Bootstrapped 95% CI: 0.09–0.26; p = 2.00 × 10−4;
UN,AudDist:48;N,VisDist:87 = 1,329, z = −3.49, p = 4.85 × 10−4;
Bayesian t133 = 3.52, p = 1.0 × 10−3, BF = 0.025). Further,
auditory noise did not significantly change from no load to high
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FIGURE 5

Changes in sensory noise across perceptual load. Auditory noise does not change with increasing auditory (A) or visual (B) perceptual load.
Visual noise increases with increasing visual (E) but not auditory (D) noise. HL-NL differences in auditory noise (C) and visual noise (F) confirm
that visual load selectively increases visual noise. Horizontal black bars indicate group averages, and violin plots display the distribution of HL-NL
sensory noise differences for each distractor and noise modality. ∗∗∗Indicates p < 0.001.

load with either visual (t86 =−0.74, p= 0.46, Cohen’s d:−0.08;
Bootstrapped 95% CI: −0.06 to 0.03, p = 0.47; W = 1,236,
z = 0.606, p = 0.545; BF = 9.05) or auditory distractors
(t47 = 0.01, p = 1.00, Cohen’s d: 1.0 × 10−3; Bootstrapped
95% CI: −0.07 to 0.07, p = 1.00; W = 331.500, z = −0.024,
p = 0.98; BF = 8.86). The difference in auditory noise from no
load to high load did not significantly differ between distractor
modality (t84 = 0.40, p = 0.69, Cohen’s d = 0.08; Bootstrapped
95% CI:−0.06 to 0.09, p= 0.70; UN,AudDist:48;N,VisDist:87= 2,025,
z = −0.29, p = 0.77; t133 = 0.42, p = 0.68, BF = 6.17)
Collectively, these findings indicate that attentional increases in
sensory noise are specific to visual noise with increasing visual
load only.

3.3. Multiple linear regressions analysis
models

3.3.1. Baseline McGurk reports
We constructed a multiple linear regression model to

determine which sensory noise measures (auditory noise,

visual noise, or a combination of both) best predicted
baseline McGurk reports. Distractor Modality was included
in the model because our RMANOVA analyses (described
above) identified it as a significant factor. While neither
visual noise (r134 = 0.028, p = 0.701) nor auditory noise
(r134 = 0.118, p = 0.104) correlated with baseline McGurk
reports, combined noise did significantly correlate with baseline
McGurk reports (r134 = −0.172, p = 0.017). Thus, we
constructed a multiple regression model to predict baseline
McGurk reports with distractor modality and combined noise
as factors (Table 1). A significant relationship was found
(F2,189 = 13.24, p = 4.16 × 10−6) with an R2 of 0.123. Baseline
McGurk reports were significantly predicted by distractor
modality (β = −0.306, t = −4.49, p = 1.26 × 10−5; bootstrap
p = 0.0002) and combined noise (β = −0.150, t = −2.20,
p = 0.029; bootstrap p = 0.049; Figure 6A). Neither auditory
noise (1F1,188 = 0.05, p= 0.817; 1R2

= 0.0002) nor visual noise
(1F1,187 = 3.25, p= 0.073; 1R2

= 0.015) significantly increased
the predictability of this multiple regression model when added
in stepwise fashion, confirming the relative importance of
combined noise in predicting baseline McGurk perceptions.
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TABLE 1 Multiple linear regression: Baseline McGurk reports showing predictive power of distractor modality and combined noise on baseline
McGurk perception.

Predictor Unstandardized coefficients SE 95% CI (Bootstrapped) β p-value

Lower Upper

Intercept 79.16 5.96 66.93 91.42 0.0002

Distractor modality −26.14 5.83 −37.64 −14.12 −0.306 0.0002

Combined noise −16.12 7.57 −33.26 −0.40 −0.150 0.049

FIGURE 6

Significant predictors of McGurk fused reports. Our first model identified combined sensory noise and distractor modality as significant
predictors of fused reports during baseline conditions (distractor free) (A). Changes in fused reports from NL to HL conditions were related to
both baseline McGurk fused reports (B) and to the change in visual noise (C). Shaded regions reflect the 95% confidence interval for the
regression.

3.3.2. Dual task McGurk reports
We constructed a multiple linear regression model to

determine which factors contributed to changes in McGurk
reports with increasing perceptual load. To determine which
factors to include, we performed separate RMANOVAs with
visual noise, auditory noise, or combined noise as dependent
variables, perceptual load as a within-subjects factor, and
distractor modality as a between-subjects factor. For visual
noise, there was a significant main effect of load (F1,133 = 8.51,
p = 0.004, partial η2

= 0.060) and distractor modality
(F1,133 = 11.079, p = 0.001, partial η2

= 0.077) as well as
a significant interaction between load and distractor modality
(F1,133 = 12.38, p = 0.001, partial η2

= 0.085). There were
no significant effects for auditory noise (load: F1,133 = 0.164,
p= 0.686, partial η2

= 0.001; distractor modality: F1,133= 3.064,
p = 0.082, partial η2

= 0.023; interaction: F1,133 = 0.173,
p = 0.678, partial η2

= 0.001) or combined noise (load:
F1,133= 0.720, p= 0.398, partial η2

= 0.005; distractor modality:
F1,133 = 0.421, p = 0.517, partial η2

= 0.003; interaction:
F1,133 = 0.101, p = 0.751, partial η2

= 0.001). Additionally,
the change in McGurk reports from no load to high load
significantly correlated with the change in Visual Noise from
no load to high load (r134 = −0.235, p = 0.006) and not
change in Auditory (r134 = −0.085, p = 0.330) or change in
Combined Noise (r134 = −0.044, p = 0.615). Collectively, these
results suggest that changes in visual noise across load best
explain changes in McGurk perception with increasing load

as compared to other measures of sensory noise. Thus, we
constructed a multiple linear regression model with change in
McGurk reports from no load to high load as the dependent
variable and the following potential explanatory variables:
baseline McGurk reports, change in visual noise, and distractor
modality (Table 2). A significant relationship was found
(F3,131 = 10.32, p = 3.81 × 10−6) with an R2 of 0.191. Change
in McGurk reports was significantly predicted by baseline
McGurk reports (β = −0.276, t = −3.42, p = 0.001; bootstrap
p = 4.00 × 10−4; Figure 6B), Distractor Modality (β = 0.197,
t = 2.33, p = 0.021; bootstrap p = 0.008), change in Visual
Noise (β = −0.184, t = −2.24, p = 0.027; bootstrap p = 0.022;
Figure 6C). Neither change in auditory noise (1F1,130 = 0.20,
p = 0.654; 1R2

= 0.001) nor change in combined noise
(1F1,129 = 0.18, p = 0.672; 1R2

= 0.001) increased the
predictability of this multiple regression model when added in
stepwise fashion, confirming the relative importance of changes
in visual noise predicting atentional disruptions to McGurk
perceptions.

4. Discussion

The present study investigated whether variations in
sensory noise could explain the impact of attention on
multisensory integration of speech stimuli and to what extent
this mechanism operates in a modality-specific manner. To
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TABLE 2 Multiple linear regression: Dual-task McGurk reports showing predictive power of distractor modality, baseline McGurk, and 1visual
noise on 1McGurk responses from NL to HL.

Predictor Unstandardized coefficients SE 95% CI (Bootstrap) β p-value
(Bootstrap)

Lower Upper

Intercept −11.61 4.95 −19.31 −5.07 0.001

Baseline McGurk −0.20 0.06 −0.30 −0.10 −0.276 0.0004

Distractor modality 12.10 5.20 3.00 20.91 0.197 0.008

1Visual noise −19.13 8.60 −36.43 −3.90 −0.184 0.022

examine within-modality effects, we created a novel method
of measuring sensory noise based on response variability
in unisensory trials. Importantly, this method expands on
previous models, allowing us to investigate the effects of
visual and auditory noise independently from one another.
Consistent with other computational models of multisensory
speech integration, the overwhelming majority of participants
had higher visual noise compared to auditory (Massaro, 1999;
Ma et al., 2009; Magnotti and Beauchamp, 2015, 2017; Magnotti
et al., 2020). Additionally, our combined sensory noise measure,
which is the direct equivalent of the sensory noise ratio in
the CIMS model (Magnotti and Beauchamp, 2017; Magnotti
et al., 2020), was a better predictor of baseline McGurk
reports than visual or auditory noise alone. These findings
are strongly aligned with other computational measures of
sensory noise and lend evidence to the overall importance of
sensory noise for multisensory integration. The novel method of
estimating sensory noise separately for each modality provides
additional functionality to current models of multisensory
speech integration which primarily rely on the relative levels
of visual and auditory noise but do not permit either to vary
independently (Magnotti and Beauchamp, 2017). These within-
modality measures of sensory noise allowed us to identify
that changes in visual noise, specifically, were associated with
attentional modulations to multisensory speech perception.
Increases in visual load led to increased visual noise and
decreased McGurk perception. Correspondingly, changes in
visual noise were predictive of changes to McGurk reports across
load. These findings suggest that attention alters the encoding
of visual speech information and that attention may impact
sensory noise in a modality-specific manner. Unfortunately,
our method of calculating sensory noise resulted in many
participants having an auditory noise value of zero even under
high perceptual load, suggesting that this method may not
be sensitive enough to estimate very low levels of sensory
noise. However, it can accurately determine the individual
contributions of and changes to auditory and visual noise on
multisensory integration.

Our results strongly indicate that modulations of attention
differentially impact multisensory speech perception depending
on the sensory modality of the attentional manipulation. While

we found striking increases in visual noise with increasing visual
load, we did not find corresponding increases in auditory noise
with increasing auditory load suggesting a separate mechanism
by which auditory attention influences multisensory speech
integration. Additionally, while increasing perceptual load led
to decreased McGurk reports for both visual and auditory
secondary tasks, this effect was more pronounced for the
visual task suggesting that alterations to visual attention may
have a heightened impact on multisensory speech integration.
Because the auditory and visual secondary tasks differed in
ways other than their modality, we cannot eliminate the
possibility that these differences account for our observed
modality effects. We hypothesize that our visual secondary task
engages featural attention, and although our secondary auditory
task asked participants to identify auditory features (i.e., pitch
and duration), we suspect that participants listened for melodic
or rhythmic indicators of targets which may have engaged
object-based attention. Future research is needed to investigate
the relative contributions of distractor modality and type of
attentional manipulation on multisensory speech integration.
Another potential explanation for distractor modality effects is
differential patterns of eye movements. Gaze behavior has been
shown to influence the McGurk effect (Paré et al., 2003; Gurler
et al., 2015; Jensen et al., 2018; Wahn et al., 2021). Because
eye movements were not monitored during this study, future
research is needed to investigate whether gaze behavior may
explain modality differences in the impact of the secondary
task on multisensory speech integration. Surprisingly, McGurk
reports differed in the distractor-free condition across auditory
vs. visual secondary task groups even though the tasks were
identical. This suggests that the sensory modality of a secondary
task may influence multisensory speech perception even when
not concurrently presented. Approximately 70% of participants
completed the distractor-free block after a low load or high load
block, suggesting that our secondary task may prime attention
to its corresponding modality and subsequently alter speech
integration. Interestingly, we did not find differences in sensory
noise across distractor modality in the distractor-free condition.
This implies that any task context effects may lead to changes
in participants’ priors or relative weighing of auditory vs. visual
speech information (Shams et al., 2005; Kayser and Shams, 2015;
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Magnotti and Beauchamp, 2017; Magnotti et al., 2020). The
current study was not designed to assess order effects; thus,
future research is needed to fully investigate modality-specific
priming effects and to elucidate the mechanisms by which they
may influence multisensory speech perception.

The results of this study inform our understanding of
the mechanisms by which attention influences multisensory
processing. Multisensory speech integration relies on both
extensive processing of the auditory and visual speech signal and
convergence of auditory and visual pathways onto multisensory
cortical sites such as the Superior Temporal Sulcus (STS)
(Beauchamp et al., 2004, 2010; Callan et al., 2004; Nath
and Beauchamp, 2011, 2012; O’Sullivan et al., 2019, 2021;
Ahmed et al., 2021; Nidiffer et al., 2021). Additionally, the
functional connectivity between STS and unisensory cortices
differs according to the reliability of the corresponding
unisensory information (e.g., increased visual reliability will
lead to increased functional connectivity between visual cortex
and STS) (Nath and Beauchamp, 2011). Our findings suggest
that increasing visual load leads to disrupted encoding of
the visual speech signal which then leads to a deweighting
of visual information potentially through decreased functional
connectivity between the STS and visual cortex. Interestingly,
increasing auditory load does not appear to disrupt multisensory
speech integration through the same mechanism. Ahmed et al.
found that attention favors integration at later stages of speech
processing (Ahmed et al., 2021) suggesting that our secondary
auditory task may disrupt later stages of integrative processing.
Future research utilizing neuroimaging methodology is needed
to link behavioral estimates of sensory noise to specific neural
mechanisms.

Identifying the specific neural mechanisms by which
top-down cognitive factors shape multisensory processing
is important for our understanding of how multisensory
integration functions in realistic contexts and across individual
differences. For example, older adults exhibit either intact,
enhanced, or shifted patterns of multisensory integration
depending on the task utilized in the study (Hugenschmidt
et al., 2009; Freiherr et al., 2013; de Dieuleveult et al., 2017;
Parker and Robinson, 2018). Interestingly, several studies have
shown altered sensory dominance and weighting of unisensory
information in older adults when compared to younger adults
(Murray et al., 2018; Jones and Noppeney, 2021). Within-
modality measures of sensory noise as described in this study
may help to illuminate the reasons why certain multisensory
stimuli and tasks lead to differences in the multisensory
effects observed in the aging population. Cognitive control
mechanisms are also known to decline with healthy aging, and
manipulations of attention (e.g., dual-task designs) consistently
have a larger impact on the elderly (Mahoney et al., 2012;
Carr et al., 2019; Ward et al., 2021). Currently, there is a
gap in knowledge on how attention may alter relative sensory
weighting in older adults that could be addressed by utilizing

the experimental design described in this study. Addressing
this gap in knowledge could improve our understanding of
multisensory speech integration in normal aging and with
sensory loss (Peter et al., 2019; Dias et al., 2021) as well as
current multisensory screening tools for assessing risks for falls
in the elderly (Mahoney et al., 2019; Zhang et al., 2020). In
addition to healthy aging, many developmental disorders are
characterized by disruptions to both multisensory functioning
and attention, and these neurological processes may interact to
worsen the severity of these disorders (Belmonte and Yurgelun-
Todd, 2003; de Jong et al., 2010; Kwakye et al., 2011; Magnée
et al., 2011; Harrar et al., 2014; Krause, 2015; Mayer et al.,
2015; Noel et al., 2018b). Previous research indicates that
deficits in processing both speech (van Laarhoven et al., 2019)
and non-speech (Leekam et al., 2007) stimuli were present
in subjects on the autism spectrum. Sensory noise and its
interactions with attention may contribute to differences in
ASD sensory processing beyond stimulus signal-to-noise ratio
or general neural noise. Investigating these mechanisms may
help us understand and identify disruptions in the relationship
between multisensory integration and attention, inspiring new
strategies for interventions to address altered functioning in
these disorders.
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SUPPLEMENTARY FIGURE 1

Performance on low-load (LL) and high-load (HL) distractor tasks.
Participants scored significantly higher during the LL conditions than the
HL conditions for both auditory (A; LL = 92.6; HL = 78.6; t44 = 10.39,
p = 2.04 × 10−13, Cohen’s d = 1.79) and visual (B; LL = 94.0; HL = 85.4;
t76 = 13.81, p = 2.02 × 10−22, Cohen’s d = 1.48) distractor tasks.

SUPPLEMENTARY FIGURE 2

Performance on unisensory and congruent multisensory trials for no
load (NL), low load (LL), and high load (HL) blocks. Percent correct
syllable identification for visual-only, auditory-only, and multisensory
congruent trials for the auditory distractor (A) and visual distractor (B)
tasks. An RMANOVA revealed that distractor modality (F1,128 = 12.8,
p = 4.91 × 10−4, partial η2

= 0.091), perceptual load (F2,256 = 6.7,
p = 0.001, partial η2

= 0.050), and syllable modality (F2,256 = 1040.5,
p = 1.16 × 10−123, partial η2

= 0.890) significantly altered accuracy.

SUPPLEMENTARY FIGURE 3

McGurk fused reports for no load (NL), low load (LL), and high load (HL).
The percent of fused reports (“da” or “tha”) during each block are shown
for auditory distractor (A) and visual distractor (B) tasks. Horizontal bars
indicate group averages. Colored lines connect individual percent fused
reports across each block. Green lines indicate increased in fused
reports and a red line indicates a decrease in fused reports. An
RMANOVA revealed that both perceptual load (F2,256 = 22.5,
p = 9.90 × 10−10, partial η2

= 0.148) and the interaction between load
and distractor modality (F2,256 = 4.7, p = 0.010, partial η2

= 0.035)
significantly altered percent McGurk reports.
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