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Introduction: Improved understanding of the relationship between post-

stroke rehabilitation interventions and functional motor outcomes could result

in improvements in the e�cacy of post-stroke physical rehabilitation. The

laterality of motor cortex activity (M1-LAT) during paretic upper-extremity

movement has been documented as a useful biomarker of post-stroke

motor recovery. However, the expensive, labor intensive, and laboratory-based

equipment required to take measurements of M1-LAT limit its potential clinical

utility in improving post-stroke physical rehabilitation. The present study tested

the ability of a mobile functional near-infrared spectroscopy (fNIRS) system

(designed to enable independentmeasurement by stroke survivors) tomeasure

cerebral hemodynamics at the motor cortex in the homes of chronic stroke

survivors.

Methods: Eleven chronic stroke survivors, ranging widely in their level of

upper-extremity motor deficit, used their stroke-a�ected upper-extremity to

perform a simple unilateral movement protocol in their homes while a wireless

prototype fNIRS headband took measurements at the motor cortex. Measures

of participants’ upper-extremity impairment and function were taken.

Results: Participants demonstrated either a typically lateralized response,

with an increase in contralateral relative oxyhemoglobin (1HbO), or response

showing a bilateral pattern of increase in 1HbO during the motor task. During

the simple unilateral task, M1-LAT correlated significantly with measures of

both upper-extremity impairment and function, indicating that participants

withmore severemotor deficits hadmore amore atypical (i.e., bilateral) pattern

of lateralization.

Discussion: These results indicate it is feasible to gain M1-LAT measures

from stroke survivors in their homes using fNIRS. These findings represent a

preliminary step toward the goals of using ergonomic functional neuroimaging

to improve post-stroke rehabilitative care, via the capture of neural biomarkers

of post-stroke motor recovery, and/or via use as part of an accessible

rehabilitation brain-computer-interface.

KEYWORDS

functional near-infrared spectroscopy, motor cortex, neuroimaging, rehabilitation,

stroke
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Introduction

It has become part of the consensus in clinical research

that the investigation of post-stroke motor recovery must

include and make use of neural biomarkers of recovery (Boyd

et al., 2017; Bernhardt et al., 2019; Cramer, 2020). This call

for the use of biomarkers in post-stroke motor recovery is

an acknowledgment that our imperfect understanding of its

mechanisms hold back our ability to optimize the delivery of

post-stroke physical rehabilitation, as well as to develop new

rehabilitation interventions. And indeed, our imperfect grasp

on the causal mechanisms at play is particularly frustrating and

troubling in the face of studies showing, for example, that nearly

50% of patients fail to significantly benefit from upper-extremity

inpatient rehabilitation (Houwink et al., 2013); or to help us

better understand why only 12% of stroke survivors with upper-

extremity deficits fully regain its functional capacity (Kwakkel

and Kollen, 2013). Moreover, given the fact that clinical trials

with a biological rationale have been shown to outperform

those without one (Borschmann et al., 2018), the clamoring of

the clinical and research community for more measures from

the nervous system during rehabilitation, which might in time

enable a better understanding of the impact of our interventions,

is completely understandable.

The persisting uncertainty around the mechanisms of post-

stroke motor recovery is especially concerning when considered

alongside the high cost of rehabilitation to the health care

system (in the U.S. alone over $41 billion is spent on post-

stroke rehabilitation; Ovbiagele et al., 2013). And indeed,

unfortunately the high cost of rehabilitation itself also limits

our ability to take advantage of what we do understand

about post-stroke recovery—for example, our inability to meet

established standards on the amount of rehabilitation volume

stroke survivors should receive (Hayward and Brauer, 2015;

SSNAP, 2015), in light of pre-clinical literature which suggests

that the amount of volume prescribed by these standards is

itself insufficient to drive maximal cortical re-organization in

the motor system (Nudo and Milliken, 1996). And while the

Queen Square programme—which produced uniquely strong

positive results with very large volumes of rehabilitation in

chronic stroke survivors (Ward et al., 2019)—is an encouraging

counterpoint to this trend, it is unlikely that scaling this model

alone will bring about the type of transformative change needed

to how we approach post-stroke recovery, given the high costs

and inconsistent effectiveness of rehabilitation interventions.

Given this, it seems that improving our understanding of stroke

survivors’ likelihood of responding to a given intervention

(considering aspects such as stroke type, chronicity, modality,

and overall volume), is required to significantly improve the

standard of care in post-stroke rehabilitation.

Seen another way, the attempt to increase the volume

of rehabilitation patients receive, as demonstrated in the

Queen Square programme, as well as the integration of neural

biomarkers into stroke recovery research, might both be viewed

as an attempt to overcome the proportional recovery rule of

post-stroke motor recovery—which controversially posits that

survivors of stroke can be expected to gain back ∼70% of

the difference between their acute post-stroke function (for a

given measure) and typical function, regardless of rehabilitation

interventions. This model and its implicit implications (i.e.,

that stroke survivor’s recovery potential operates by some “rule”

independent of rehabilitation) challenge the utility of deploying

more public health system resources on rehabilitation as an

“investment,” given rehabilitation’s highly variable return on

investment over-and-above the progress that can be expected

regardless of intervention. Despite challenges to this model’s

particular formulation [due to statistical coupling (Hawe et al.,

2019; Hope et al., 2019) and its dependence on the types of

assessment measures used (Senesh and Reinkensmeyer, 2019)],

if nothing else it persists as a more general skepticism—a belief

that post-stroke physical rehabilitation can only marginally

improve stroke survivor’s motor recovery. However, several

recent studies suggest that by utilizing central nervous system-

based biomarkers the proportional recovery model can not

only be broken down but overcome. Firstly, there is pre-

clinical work (Jeffers et al., 2018b; van der Vliet et al., 2020)

showing that an individual animal’s rehabilitation needs can be

better characterized by using neural biomarkers (in this case

information on the nature of an animal’s lesion). And recent

retrospective analyses in humans suggest these limitations to the

proportional recovery rule may generalize across species, finding

that sophisticated modeling of stroke survivor’s upper-extremity

recovery reveals a reality more complex than the proportional

recovery rule’s simple heuristic (Senesh and Reinkensmeyer,

2019; van der Vliet et al., 2020). Moreover, the authors of one

of these studies suggested it may be possible to target patients

who are more likely to make outsized gains in motor recovery,

over and above that which they may make by being provided

with the standard of care, by identifying participants with latent

corticospinal tract capacity (Senesh and Reinkensmeyer, 2019).

Indeed, the improvement in our ability tomodel and understand

the nuances of post-stroke recovery, together with our ability to

better capture information from the nervous system, is surely the

future of stroke rehabilitation. One impressive early example of

this being the PREP algorithm’s ability to increase the efficiency

of rehabilitation (in this case leading to decreased length of

stay at an inpatient rehabilitation facility with no decrease in

functional outcomes; Stinear et al., 2007, 2012).

One candidate biomarker of motor recovery in stroke is

the ratio of activity between the primary motor cortices during

movement of one’s paretic limb (i.e., motor cortex laterality;

M1-LAT). Using functional magnetic resonance imaging (fMRI)

(Marshall et al., 2000; Tombari et al., 2004; Daly et al., 2014),

functional near-infrared spectroscopy (fNIRS) (Takeda et al.,

2007; Delorme et al., 2017), or electroencephalography (EEG)

(Kaiser et al., 2012), it has been shown that deviation from
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a typical contralateralized pattern of M1-LAT corresponds to

worse upper-extremity movement deficits. Moreover, fNIRS

studies have also found that the inverse pattern (i.e., a departure

from the typically symmetrical pattern of M1-LAT) corresponds

to worse gait abilities (Miyai et al., 2006). Studies have also

shown thatM1-LAT is not only associated with, but predictive of

future function as well as one’s response to rehabilitation: it has

been found to outperform functional status in predicting motor

deficits 3 months (Nhan et al., 2004), 6 months (Rehme et al.,

2015), and 1 year (Loubinoux et al., 2007) following incidence of

stroke, as well as being predictive of a stroke survivor’s response

to 1 month of rehabilitation (Quinlan et al., 2015).

The mechanistic story underlying the origin of M1-LAT’s

relevance in post-stroke recovery is still an active area of

investigation. There is empirical support for several mechanistic

accounts—which, while not being mutually exclusive, have not

to date cohered into a single unified framework. For instance,

there are empirically supported accounts that place the emphasis

on functional cortical changes. Specifically, that reduced

ipsilesional M1 activity is due to maladaptive interhemispheric

inhibition, whereby a disinhibited contralesional M1 inhibits

ipsilesional M1 (Rehme and Grefkes, 2013; Volz et al.,

2015). Conversely another hypothesis holds that altered

intrahemispheric inhibition, whereby reduced excitatory input

from the ipsilesional supplementary motor area to ipsilesional

M1 is responsible for reduced ipsilesional M1 output (Grefkes

et al., 2008; Rehme et al., 2011). There are also mechanistic

explanations focusing on the status of the descending tracts

of the motor system. In particular, findings that show a

synergy between the structural and functional status of the

ipsilesional corticospinal tract correlate with upper-extremity

motor recovery (Stinear et al., 2007; Guder et al., 2021) comport

with the finding that typical M1-LAT is associated with better

post-stroke motor recovery (Schulz et al., 2021).

Despite the lack of clarity as to which of these mechanistic

accounts may be causing or be caused by the others, one

might imagine how widespread, longitudinal collection of a

predictive biomarker like M1-LAT could aid in optimizing

how rehabilitation resources are deployed. A major barrier in

realizing this potential is that at present it is expensive and

labor-intensive to take any relevant biomarkers of post-stroke

motor recovery. All the studies mentioned above that utilized

M1-LAT to characterize and/or predict recovery used either

fMRI or laboratory-based fNIRS/EEG equipment to take their

M1-LAT measurements. This is why leaders of the research

community have acknowledged the inability of laboratory-based

systems to be deployed at the scale required for widespread

collection of biomarkers in rehabilitation as a central challenge

to overcome in the use of any potential biomarkers of stroke

recovery (Boyd et al., 2017). Thus, there is a need to develop

technology that makes the collection of relevant biomarkers

easier. While most of the literature on the relationship between

M1-LAT and post-stroke motor recovery has been based on

fMRI measurements, the high cost, specialized staff, and lengthy

set-up time required to take these measurements limits its

clinical utility in this domain. Moreover, the fact that wet, head-

cap-based EEG systems require a lengthy set-up process by a

trained experimenter, as well as the difficulty in gaining spatially

specific measurements with dry and/or non-full-headcap based

EEG (due to the smearing of electrical activity at the scalp;

Müller-Gerking et al., 1999) limit its clinical utility for this

purpose as well.

Functional near-infrared spectroscopy is a non-

invasive functional neuroimaging modality that leverages

the differential absorption coefficients of oxyhemoglobin

(HbO) and deoxyhemoglobin (Hb) to infer neural activity

via the measurement of relative oxy- and deoxyhemoglobin.

Specifically, fNIRS measures changes in HbO (1HbO)

and Hb (1Hb) via the emission and detection of multiple

wavelengths of light. The light weight and robust nature of

the components required for fNIRS (which has been and

will likely continue to increase, given the ubiquity of LEDs

and photo diodes in many common electronic devices)

make it well-suited to neuroergonomic use cases where

spatially-specific cortical information is of interest (Ferrari

and Quaresima, 2012; Ayaz and Dehais, 2021). Indeed, the

use of fNIRS in the field of neuroergonomics has and by

all measures will continue to grow in popularity (Naseer

and Hong, 2015; Thomas and Nam, 2020). The suitability

of fNIRS to such tasks is best considered in reference to all

other options (Pinti et al., 2020): compared with fMRI and

wet EEG, fNIRS offers a measurement method and form factor

that are quicker to deploy; while compared with dry EEG,

fNIRS’ ability to take spatially-specific cortical measurements

(given its use of the hemodynamic response as opposed

to the measurement of electrical potentials at the scalp—

which sufferings a smearing effect rendering spatially-specific

information challenging to obtain in the absence of many

low-impedance measurement locations), make it well-suited

where spatially-specific cortical signals are to be captured

in a scenario requiring an easy to deploy and ergonomic

measurement method.

Given that fNIRS has also been shown to be capable of

characterizing the cortical signatures of variousmotor tasks (Leff

et al., 2011), of takingmeasurements of post-strokemotor cortex

laterality (Takeda et al., 2007; Delorme et al., 2017), and can

be made portable (Pinti et al., 2018), fNIRS may be a viable

modality to increase the clinical utility of M1-LAT in post-

stroke physical rehabilitation. Specifically, the use of ergonomic

fNIRS devices to capture neural biomarkers of post-stroke

motor recovery, and/or to be used as a part of more accessible

rehabilitation brain-computer-interfaces has the potential to

help clinicians better understand and thereby optimize post-

stroke rehabilitation. And furthermore, such fNIRS devices

could also be used in the development of brain-computer-

interface systems designed to enhance post-stroke rehabilitation.
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The present study tests the ability of a prototype fNIRS

headband to take measurements of M1-LAT (during upper-

extremity movements) from chronic stroke survivors in their

homes, and moreover examines the relationship between

these measures of M1-LAT and measures of upper-extremity

impairment and function. Specifically, the study hypothesizes

that measures of M1-LAT taken via fNIRS will correlate with

measures of upper-extremity impairment and function. The

prototype fNIRS headband was designed to measure cerebral

hemodynamics from the sensorimotor cortices, and to enable

independent placement by a stroke survivor; the headband

is synchronized to a tablet-based app which guides stroke

survivors through upper-extremity rehabilitation exercises while

fNIRS measurements are taken. This work contributes to

the ultimate goal of demonstrating that neural biomarkers

of post-stroke motor recovery can be taken outside the

laboratory, with easy-to-use equipment that might one day

enable an improvement of the standard of care for post-stroke

physical rehabilitation.

Materials and methods

Participants

Twelve chronic stroke survivors (three women; age: M

= 62.2, SD = 11.8; months since most recent stroke: M

= 63.3, SD = 41.5) were recruited from the community

(see Supplementary Table 1 for full participant characteristics

including stroke side, handedness, and history of past stroke).

The study received ethical approval from Veritas IRB. Inclusion

criteria required participants to self-report that they had

previously experienced at least one stroke and were currently

experiencing some level of hemiparesis as a result; it also

required them to score ≥16 on the Mini-Mental State

Examination (MMSE) (Folstein et al., 1975) or (if they failed

to do so) ≥19 on the Cognitive Assessment for Stroke Patients

(CASP) (Barnay et al., 2014; Benaim et al., 2015; Park et al.,

2017).

Cognitive testing

Participants were first asked to complete the MMSE. The

MMSE contains 30 questions designed to identify whether

individuals are experiencing serious cognitive impairment. The

cut off for participation used in the present study was the level

set for administration of the Stroke Impact Scale (SIS) (Sullivan,

2014) [see Section Hand Domain of the Stroke Impact Scale

(SIS-Hand)] to ensure participants are capable of following

instructions and providing valid feedback. While the MMSE

was utilized due to its clinical ubiquity (particularly in the

United States), a low score on the MMSE may be due to aphasia

rather than cognitive impairment; thus if a participant scored

<17 on the MMSE, they were asked to complete the CASP, a

cognitive assessment designed for stroke survivors with language

impairments (Barnay et al., 2014; Benaim et al., 2015). The

cut off of 19 chosen for the CASP (as discussed in Section

Participants) was meant to harmonize to the MMSE cut off of

16 chosen for the present study (Park et al., 2017; Crivelli et al.,

2018).

Fugl-Meyer short form upper extremity
section

Participants had their hemiparetic upper-extremity function

characterized using the 12-item upper-extremity Fugl-Meyer

(FM-12)—a series of six standardized tasks designed to span a

wide range of difficulty levels for stroke survivors with upper

extremity hemiparesis—as it has been shown to adequately

assess motor function of stroke patients while subjecting patients

to minimal assessment time (<10min; Hsieh et al., 2007; Chen

et al., 2014). Assessment of FM-12 items was administered using

previously established standardized procedures (Murphy et al.,

2011; Sullivan et al., 2011).

Hand domain of the Stroke Impact Scale
(SIS-Hand)

Participants were asked to complete the SIS-Hand, which

comprises five questions pertaining to their perception of their

stroke-affected hand function. The SIS is a well-established

stroke specific health status measure that is appropriate for self-

report and does not require training to administer (Sullivan,

2014).

Motor task

Experimental sessions took place in the homes of the

recruited stroke survivors. All participants performed a fist

squeezing task on the side they reported experiencing upper-

extremity hemiplegia. Participants were instructed to follow

along with a first-person video displayed on a tablet on the table

in front of them—the video showed a fist squeezing task being

performed with an exercise ball, with the ball being squeezed at

∼1Hz. Participants were also provided an exercise ball, which

some chose to use but some were not able to make use of

because of their deficit in hand function. Participants performed

10 trials where they were instructed to squeeze along with the

video in this manner for 10 s after which they were asked to rest

for 40 s (see Figure 1). Participants were asked to perform this

task as best they could, and to utilize motor imagery (i.e., the

mental rehearsal of movement) if they are unable to complete
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FIGURE 1

Behavioral task design. Stroke survivors performed 10 trials of 1Hz fist squeezing. Fist squeezing trials were 10 s, while rest periods were 40 s.

FIGURE 2

Illustration of the experimental set up for the present study.

Participants wore the prototype fNIRS headband while a

first-person video of a fist squeezing task was played on a tablet.

Participants were asked to follow along with the movements in

the video as best they were able.

themovement physically.While the fist squeezing task was being

performed, measurements at the lateral motor cortex were taken

with a prototype fNIRS headband (see Figure 2).

Prototype fNIRS headband

The prototype fNIRS headband used in the present study

was powered by a lithium-ion battery attached to a headband

of optical components (see Friesen et al., 2022 in which the

device used here was directly compared to an established,

research-grade fNIRS system during amotor task); the headband

utilized Bluetooth low energy and supports a 8 × 2 grid of

16 unique cerebral hemodynamic measurement locations (see

Figure 3B)—thus the fNIRS headband was entirely wireless, with

no fiber optic cable, data transmission wires, or the need to

clip the power supply to the body (as other fNIRS devices

that measure through hair have employed; Piper et al., 2014)

increasing the ease of set-up in uncontrolled environments (in

this case in the homes of stroke survivors). The headband is

meant to be worn at the apex of the head (i.e., approximately

where over-the-ear headphones sit) to enable measurement of

the brain’s sensorimotor region, with the lateral measurement

locations overlaying C3 and C4 of the international 10–20

system, which have been shown to overlay the portion of

the motor cortex associated with upper-extremity movement

(Homan, 1988). The components and measurement locations

enabled by the prototype fNIRS headband are illustrated in

Figure 3B. The headband contained both long-path (3 cm from

the detector; 745 and 850 nm), as well as short-path (8mm

from the detector; 735 and 850 nm) (Sato et al., 2016) channels.

The LEDs supporting long-path channels were attached to

the headband by individually articulating springs (Figure 3A),

allowing the headband to adjust to the shape of users’ heads

in the sagittal plane, while the use of a flexible central band

(which contained the detectors and short-path LEDs) allowed

for adjustment in the coronal plane. Importantly, all optical

components (i.e., LEDs and silicon photodiodes) were butt

coupled to light pipes which enabled light transmission to

and from the scalp. These light pipes were of a relatively low

durometer (i.e., are softer) compared to traditional fiber optic

cable, which allows them to be “worked through hair” by simply

shuffling the headband back and forth on the head, whilst

remaining comfortable despite making secure contact with the

scalp. All these design features (a flexible, one-size-fits all band,

which can be manipulated through hair by the person donning

the device) in concert allow for a quick and simple device set

up—in the present study it allowed the experimenter to set up

the device in∼1 min.

While the headband was designed with independent use in

mind, in the present study the headband was placed by the

experimenter, with its center detector (i.e., item S1 in Figure 3B)

positioned at CZ according to the international 10–20 system.

fNIRS acquisition and pre-processing

The prototype fNIRS headband used in the present study

had a system-wide sample rate of 5.4Hz. Pre-processing

procedures were applied as described previously (Friesen et al.,

2022; see Supplementary Figure 1 for an overview). Briefly,

temporal derivative distribution repair (Fishburn et al., 2019)

was applied to all signals. Three sets of inter-channel delays

were calculated from 850 nm data which had been band passed

to the cardiac pulse (0.5–1.5Hz), respiration (0.15–0.3Hz),

and Mayer Wave (0.05–0.15Hz) bands. All data were then
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FIGURE 3

(A) Prototype fNIRS headband used in the present study. As pictured, the headband’s battery was housed on the back of the head, connected by

a strap to the main headband unit; a controller PCB sat above the flexible measurement components (which interfaced with the hair/scalp); and

the device was held in place by a chin strap. (B) Array of optical components included in the prototype fNIRS headband. Blue circles (D14–D18)

represent detectors; green circles (D1–D9) represent long-path LEDs (positioned 3cm from adjacent detectors); red circles represent

short-path (positioned 8mm from its adjacent detector). The three medial detectors (D15, D16, and D17), being 3 cm from four long-path LEDs

(e.g., D15 was 3 cm from D3, D4, D7, and D9), thus enabled four measurement locations each, with the two detectors on either end (D14 and

D18), being 3 cm from two long-path LEDs, enabled two measurement locations; resulting in a total of 16 measurement locations.

transformed to 1HbO and 1Hb using the modified Beer

Lambert equations (Baker et al., 2014). Data from the short-

paths was then submitted to a structural equation model (SEM)

to estimate latent common influences between the short-path

channel in four permutations—once using the unfiltered 1HbO

and 1Hb data, then three more times, using 1HbO and 1Hb

data filtered to the cardiac pulse, respiration, and Mayer Wave

bands, respectively; on these new three filtered versions of the

1HbO and 1Hb data, the previously estimated delays were

removed by interpolation prior to estimation of the latent

common signal. The resulting four latent common signals were

then regressed out of all long-path and short-path 1HbO and

1Hb channels. Next, information from each long-path channel’s

associated local short-path was regressed out of the long-path

data—this again was conducted both using the unfiltered short-

path data, as well as short-path data which had been filtered to

the cardiac pulse, respiration, and Mayer Wave bands (which

again had had their band-specific delays removed by linear

interpolation). And finally, all long-path channels were filtered

to the frequency band containing the BOLD response (0.01–

0.1Hz) and Correlation-Based Signal Improvement used to

subtract any residual noise from the 1HbO data, via its method

of maximizing the negative correlation between 1HbO and

1Hb (meaning the 1HbO data passing through this transform

factors in the corresponding 1Hb data, and thus that only

1HbO data need be considered in subsequent analyses; Cui

et al., 2010). Lastly, the resulting 1HbO data was baseline

corrected (to the moment of task onset).

fNIRS M1-LAT analysis

After pre-processing, for each movement trial, linear slope

was fit to the 1HbO values observed during the 10 s task

window at each measurement location, then the difference

between homotopic locations (contralesional minus ipsilesional)

was computed, resulting in eight unique M1-LAT values (i.e.,

16 locations where each M1-LAT value represents the ratio

between two of the measurement locations). Insofar as the

task timing should (and does, see Supplementary Figure 2) yield

relatively monotonically-increasing BOLD time series during

the task period, this difference-between-linear-slopes measure

serves to quantify the hemispheric asymmetry in task-related

activity, and henceforward we refer to this quantity as “M1-LAT”

(M1 Lateralization).

To evaluate the relationships between M1-LAT and our

measures of post-stroke upper-extremity impairment (FM-12)

and function (SIS-Hand), we constructed a SEM. Structural

equation models are the more powerful successor to standard

regression models, whereby the dependence between outcomes
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can be evaluated in the presence of both measurement noise and

hierarchical structure (Schreiber et al., 2006; Weston and Gore,

2006).

The model’s structure (Figure 4) comprises the

expectation of a latent (i.e., unobserved, but eventually

informed/constrained by the data) trait representing upper-

extremity function and impairment (UE-IF in Figure 4). This

latent trait employs a zero-mean/unit-variance Student-t

distribution, with an additional third parameter representing

the degrees-of-freedom (to model the heavy-tailedness of

the distribution) that varies among participants. Next, the

model expressed that the latent UE-IF trait influences three

additional latent sub-traits (SIS-Hand, FM-12, and M1-LAT in

Figure 4). Each of these sub-traits is modeled with independent

normally-distributed residual variance, where the magnitude

of influence from the latent to the sub-traits was encoded

to enable interpretation as a correlation coefficient between

each sub-trait and latent UE-IF (i.e., by a multiplicative

quantity whose absolute value ranged from 0 to 1, paired with

a magnitude of residual variance ensuring the two combine

to yield an expectation of unit variance for each sub-trait).

The influence of latent UE-IF was constrained to be positive

for both latent SIS-Hand and FM-12 sub-traits (blue arrows

in Figure 4) and allowed the full range from −1 to +1 for

the M1-LAT sub-trait (red arrow in Figure 4); collectively

these constraints ensure that the latent UE-IF trait reflects

the information common to the latent FM-12 and SIS-Hand

sub-traits, while imposing no a-priori beliefs on the magnitude

nor sign of any relationship between latent M1-LAT and

the information common to the latent FM-12 and latent

SIS-Hand sub-traits.

Latent FM-12 and latent SIS-Hand sub-traits were then

connected with their respective item-by-item data for each

participant using an ordinal likelihood with a cumulative normal

propensity model. Under this approach, the same normal (unit

variance and mean determined by that participant’s latent sub-

trait) was used for the propensity parameter for responses to all

items, but items were permitted to vary in the location of the

ordinal cut-points and a given item’s cut-points were the same

for all participants (thereby permitting both differential bias and

sensitivity among items). Latent M1-LAT was connected to the

M1-LAT data through a set of intermediate latent variables, one

for each of the eight fNIRS measurement locations (M1-LAT

Location 1–8 Mean in Figure 4; see Supplementary Figure 4.1

for each location’s posterior), and the relationship between

latent M1-LAT and these intermediary location variables was

positively constrained (reflecting the assumption that individual

locations all contain varying degrees of common information);

these eight latent variables were combined with parameters

associated with the shift and scaling necessary to transform

the zero-mean/unit-variance distribution of participant’s latent

quantities to a mean and across-participant variability reflective

of the data (M1-LAT Location 1–8 Shift/Scale in Figure 4; see

Supplementary Figures 4.2, 4.3 for all priors and posteriors).

Moreover, each combination of participant and location

were furthermore combined with a parameter encoding the

magnitude (standard deviation) of trial-to-trial noise manifest in

the data (M1-LAT Location 1–8 Noise in Figure 4), with partial-

pooling of values across participants and locations through a

hierarchical normal model (implemented on the log-variance

scale) with a latent mean and standard deviation (M1-LAT

Noise Mean/SD in Figure 4). Finally, using a given combination

of participant and location’s mean and noise, the trial-by-trial

data were modeled by a Student-t distributed likelihood with a

single DF parameter common to all participants and locations

(M1-LAT DF in Figure 4; see Supplementary Figures 4.4, 4.5 for

priors and posteriors).

We then sought Bayesian estimation of parameters manifest

in this model structure, to derive the relative credibility of

various values of each given both the data and whatever prior

information we might have about said parameters. While the

model has many parameters (e.g., the value of a given latent

trait for a given participant can be considered a parameter),

the structure described above constrains the vast majority. For

all SEM “influence” parameters, uninformed flat priors were

used. For all cutpoints, we use the “induced Dirichlet” prior

(Betancourt, 2019; Bürkner and Vuorre, 2019). Both Student-

t degrees-of-freedom parameters received a prior equivalent to

a parabola peaked at 15 and ranging from 0 to 30 [achieved

as DF/30 ∼ beta (2, 2)]. A weakly-informed/data-driven prior

was achieved for the remaining fNIRS-related parameters by

pre-scaling the data (subtracting a robust estimator of the

mean then dividing by a robust estimator of the standard

deviation) then using zero-mean/unit-variance normal priors

for all mean-encoding parameters and a zero-avoiding/unit-

scale (shape = 2, scale = 1) Weibull prior for all standard-

deviation-encoding parameters.

The model and priors were expressed in Stan (Gelman

et al., 2015), permitting use of the cmdstan Markov Chain

Monte Carlo sampler to generate posterior samples reflecting

the posterior probability distributions on the model parameters

given the model structure, priors, and observed data.

Diagnostics for all sampling runs were evaluated to ensure

that no samples encountered divergent transitions, all chains

exhibited convergence (rhat < 1.01) for all parameters, and no

parameters exhibited low effective sample size for tail quantities

(for more information on the diagnostic processes used see

Supplementary material A). The datasets generated for this

study can be found in the Open Science Framework (https://osf.

io/qtpg5/files/osfstorage).

Results

Participants

No participants were excluded due to cognitive impairment

(MMSE scores: M = 26.45; SD = 4.54), and participants
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FIGURE 4

Structure of SEM model used in present study to investigate the relationship between M1-LAT and post-stroke upper-extremity movement. Gray

arrows signify deterministic links between constructs, blue arrows signify positively-constrained correlation parameters, and red arrows signify

unconstrained correlation parameters. Critically, pink circles represent the main latent variables representing all functional assessments

performed in the present study (i.e., FM-12 and SIS), as well as the latent UE-IF variable.

varied greatly in both their levels of upper-extremity

impairment (FM-12 scores: M = 8.75; SD = 3.02) and

self-reported upper-extremity function (SIS-Hand scores:

M = 2.57; SD = 1.17). Supplementary Figure 3 provides

a visualization of the distribution for the MMSE, FM-12,

and SIS-Hand.

fNIRS M1-LAT

As shown in Figure 5, the latent SIS sub-trait appeared to

have a stronger correlation with the latent UE-IF trait than did

the latent FM sub-trait, however explicit computation of the

posterior for the difference did not substantially exclude zero as
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FIGURE 5

Posterior distributions for the correlation between the latent function trait and each sub-trait. Violin density functions depict the smoothed

posterior density (with tail-transparency as per, Helske and Vihola, 2021), thin lines covering the CrI95%, thick lines covering the CrI50%, and

medians indicated by the white cross. The SEM model constrained the potential relationship between FM-12 and latent function, as well as

SIS-Hand and latent function, to be positive; while the relationship between M1-LAT and latent function was free to vary from −1 (i.e., a perfect

negative correlation between M1-LAT and latent function) to +1 (i.e., a perfect positive correlation between M1-LAT and latent function).

FIGURE 6

Pairwise bivariate scatter-plots of by-participant sub-traits.

Horizontal and vertical error bars convey the central 50%

credible interval (25%ile to 75%ile) on these constructs, crossing

at the 50%ile.

a credible value (CrI95%: −0.28 to +0.73). Furthermore, while

the correlation between the latent UE-IF trait and latent M1-

LAT sub-trait was not constrained to be positive, the posterior

for this parameter nonetheless credibly excluded zero (CrI95%:

+0.08 to+0.89; median: 0.44), confirming a positive correlation

(see Supplementary Figure 5 for posteriors on the correlations

between the sub-traits). With this model, it is possible to

additionally extract posteriors associated with each sub-trait

for each participant, yielding the bi-variate scatter-plot matrix

shown in Figure 6.

Figure 7 shows the topology of correlations relating each

measurement location to the latent M1-LAT sub-trait, using the

median of each location’s posterior to determine the topological

coloring, yielding a spatial pattern consistent with expectations

whereby the more medial locations contain less information

about the latent UE-IF trait (via the latent M1-LAT sub-trait)

than the more lateral locations.

Discussion

This study tested the ability of an ergonomic, easy-to-set-up

prototype fNIRS headband to take measures of M1-LAT on

stroke survivors in their homes during a simple unilateral

movement; it also examined the relationship between M1-LAT

(as measured during these simple unilateral upper-extremity

movements) and measures of upper-extremity impairment

(FM-12) and function (SIS-Hand). As expected, results

showed that all participants demonstrated some event-related
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FIGURE 7

Topology of the correlations relating each location to the latent M1-LAT sub-trait, with the posterior at each location collapsed to a median.

Squares on the left represent the M1-LAT values calculated between the most medial fNIRS measurement locations; whereas squares on the

right represent the M1-LAT values calculated between the most lateral fNIRS measurement locations.

increases in 1HbO across the prototype fNIRS headband’s

measurement grid (spanning the sensorimotor cortices).

Overall, participants demonstrated either a contralateralized or

bilateral response to paretic upper-extremity movement (see

Supplementary Figure 2)—and moreover, that participant’s level

of motor cortex lateralization during unilateral movement of the

paretic upper-extremity was associated with upper-extremity

impairment and function. Moreover, the results demonstrated

that these correlations were primarily driven by activity at

fNIRS measurement locations at the lateral motor cortex (see

Figure 6); this is an expected pattern given the lateral location

of the hand region of the primary motor cortex (Kaas, 2004).

Thus, the data from this mobile system, collected on stroke

survivors in their homes, replicates several other studies that

have shown cross-sectionally that a deviation from the typical

pattern of M1-LAT (during simple paretic upper-extremity

movement) corresponds with worse motor outcomes. Examples

of such work includes an fNIRS study which used a similar

hand-grasping task during which to measure M1-LAT, and

characterized impairment using Brunnstrom stages (Kato,

2014), as well as studies using other modalities (e.g., fMRI, EEG,

and positron emission tomography) which have shown that

atypical M1-LAT correlates with worse performance on finger

tapping (Calautti et al., 2007) and peg-board tasks (Zemke

et al., 2003; Serrien et al., 2004), as well as worse self-reported

functional abilities (as measured by the Motor Activity Log;

Cunningham et al., 2015).

There are of course several important limitations to the

present study that should be noted. Firstly, as mentioned

above the data collected in the present study was only cross-

sectional. And while there is no reason to suspect that the

device used in the present study wouldn’t be capable of

capturing longitudinal measurements when it is able to capture

these measures cross-sectionally, further work is required to

determine if longitudinally captured M1-LAT data from this

prototype fNIRS headband or one similar would be capable

of seeing the longitudinal changes that have been reported

elsewhere (Delorme et al., 2019). Another notable limitation is

that while the prototype fNIRS headband was designed to enable

independent use, because of the preliminary nature of this

study an experimenter placed the headband on the participants

[although usability data collected in another component of this

study—see Chapter 4 of Friesen (2021)—suggests it may be

possible to have stroke survivors use future iterations of this

prototype fNIRS headband independently]; moreover, while the

prototype fNIRS headband was designed to enable quick set-

up, the time to set-up the device was not recorded (although

this time was ∼1min)—future work on this or subsequent

prototype fNIRS headbands should include this aspect in their

experimental designs, enabling the continual optimization of

device setup ease-of-use over time. Due to the preliminary

nature of this study, only fNIRS data from a simple fist-

squeezing task was presented.While existing research has shown

a similar topographic pattern of increased 1Hbo across an

fNIRS measurement array between movements of the hand and

shoulder (Verstynen et al., 2005), future work with the prototype

fNIRS headband or subsequent fNIRS prototypes ought to

utilize movements involving the shoulder to replicate these

results. Similarly, future work ought to include more complex

upper-extremity tasks, to determine if (as has been shown via

both fNIRS and fMRI) such tasks might result in a more broad

pattern of motor cortex activation. Furthermore, as mentioned
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above, measures of M1-LAT have been shown to be relevant to

lower-extremity rehabilitation as well, and fNIRS signals from

themotor cortex have shown great promise as a viable data input

into a lower-extremity-focused brain-computer-interface system

for neurological rehabilitation (Khan et al., 2018); and while the

prototype fNIRS headband used in the present study has been

shown to be capable of measuring sensorimotor activity during

lower-extremity activity in healthy controls (Holland, 2020), no

lower-extremity tasks were collected in the present study. And

finally, due to the COVID-19 pandemic, the sample size of the

present study was truncated. While this undoubtedly represents

a limitation, in the present context it only serves to attenuate

our estimate and increase our uncertainty of the true correlation

between M1-LAT and post-stroke motor impairment/function

(as opposed to changing any general conclusions that might be

drawn from the data).

Despite these shortcomings, the ability of this prototype

fNIRS headband to measure M1-LAT in the home setting is

notable. While the details of their clinical implementation has

yet to be fully articulated, these measures (i.e., M1-LAT) have

been shown to predict functional gains from a rehabilitation

intervention (Nhan et al., 2004; Loubinoux et al., 2007; Quinlan

et al., 2015; Rehme et al., 2015). Given the relevance of M1-

LAT for post-stroke physical recovery, it is feasible that its

ongoing collection could potentially improve clinicians ability to

personalize the planned rehabilitation intervention to the needs

of individual stroke survivors. For instance, given the observed

association between brain-derived neurotrophic factor, post-

stroke use-dependent plasticity, and motor recovery (Shiner

et al., 2016; Kotlega et al., 2017; Balkaya and Cho, 2019), it is

possible that ubiquitous M1-LAT measurements during post-

stroke movement rehabilitation could be used to achieve a

version of the “dose assignment” study Jeffers et al. performed

with rats (Jeffers et al., 2018a). While it would require more

clear understanding of the underlying mechanisms at play, it is

intriguing to speculate about the possibility of prescribing stroke

survivors a dosage of rehabilitation based on a probabilistic

model of the relationship between rehabilitation dose and

recovery. Such an ability would represent a pathway to scale

and evolve efforts such as the Queen Square programme,

which again found that even chronic stroke patients can make

significant gains in motor impairment and function given a

sufficiently large dose of rehabilitation. Another potential avenue

of utility for ubiquitous M1-LAT measurements during post-

stroke physical rehabilitation could be through their integration

into the rehabilitation itself via a brain-computer-interface

system, as brain-computer-interface systems using M1-LAT as

feedback have been shown to increase the clinical benefits

of post-stroke upper-extremity rehabilitation interventions

(Mihara et al., 2013; Pichiorri et al., 2015; Ono et al., 2018).

Indeed, a recent pre-print even showing that this learned M1-

LAT modulation (compared to sham feedback) was not only

associated with enhanced upper-extremity recovery, but with

changes in structure to the ipsilesional corticospinal tract as well

(Sanders et al., 2021).

Although it is worth dwelling upon the reality that realizing

much of this potential will require a better understanding of

the mechanisms underlying post-stroke M1-LAT presentation.

The most glaring indication of this is the fact that several

studies show the inverse relationship between M1-LAT and

recovery—with highly atypical M1-LAT patterns (i.e., where

activity is lateralized toward contralesionalM1) predicting better

outcomes than more bi-lateral patterns of M1-LAT (Dodd et al.,

2017). This has been addressed through several mechanistic

accounts of why the relationship between M1-LAT and motor

recovery might be a bimodal one. Such theories span from

the potential bimodal effect of interhemispheric inhibition

(Bertolucci et al., 2018; Lin et al., 2020), to varying theories

linking this bimodal role of M1-LAT to ipsilesional corticospinal

tract integrity (Di Pino et al., 2014), to work examining the

roles of alternate descending tracts originating in contralesional

motor regions [such as the reticulospinal (McPherson et al.,

2018; Hammerbeck et al., 2021) or rubrospinal tract (Guo et al.,

2019)], to theories on the ability of neurons originating in the

contralesional motor cortex to “crossover” at the level of the

spinal cord (Wahl et al., 2017), to the relationship between the

roles of the corticospinal with these alternate tracts (Liu et al.,

2020).

However, in a classic Chicken-Egg problem, slowing

down our progress on answering such questions (answering

which would make the clinical utility of ubiquitous M1-LAT

measurement more apparent and urgent), is the fact that to

date this literature continues to rely primarily on studies using

fMRI.While fMRI is surely the premier way to gain non-invasive

functional measurements on cerebral activity, the use of MRI

comes with significant cost (both upfront and maintenance),

a large footprint (meaning stroke survivors must be brought

from their site of care for these measurements to be gained),

and specialized staff required to support data acquisition and

analysis; these realities therefore represent a significant barrier

to utilizing fMRI for any use case related to post-stroke physical

rehabilitation. In addition to the substantial fMRI literature,

there are also studies using headcap-based EEG (Gandolfi et al.,

2018; Sebastián-Romagosa et al., 2020) and fNIRS (Kato, 2014;

Delorme et al., 2019) systems to measure M1-LAT in stroke

survivors. While cheaper and more user-friendly (smaller and

less maintenance required) than fMRI, these systems are all

laboratory-based, and require the use of a full headcap—they

therefore are difficult to utilize in a variety of locations, and time-

consuming to set-up. Thus, the present study is novel in that it

demonstrates that it is possible to measure M1-LAT outside the

laboratory with a non-headcap-based fNIRS system, potentially

making it feasible for frequent, serial biomarker measurements

to be taken in real-world rehabilitation settings—including the

home—without overly disrupting clinician workflow or cutting

into patient therapy time.
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Conclusion

The present study demonstrated that measures of M1-

LAT could be taken using a mobile fNIRS system in

the homes of stroke survivors, and moreover that these

measurements replicate the previously described relationship

between M1-LAT during paretic arm movement, and levels of

impairment/function in stroke survivors. This suggests it may

be possible for M1-LAT measurements to be taken on stroke

survivors in more convenient and cost-effective ways than the

literature to date (primarily fMRI and laboratory-based EEG and

fNIRS studies) would suggest. Moreover, given previous studies

that have shown that the provision of M1-LAT neurofeedback

during various rehabilitation interventions can enhance the

efficacy of rehabilitation (Mihara et al., 2013; Tsuchimoto et al.,

2019), the present study’s findings that a mobile, easy-to-use

fNIRS system can take these measurements might also be built

on through future development of more accessible rehabilitation

brain-computer-interface systems. These findings portend the

possibility of using ergonomic fNIRS devices to capture neural

biomarkers of post-stroke motor recovery, and/or to be used

as a part of more accessible rehabilitation brain-computer-

interfaces.
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