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Transfer learning can improve the robustness of deep learning in the case of

small samples. However, when the semantic difference between the source

domain data and the target domain data is large, transfer learning easily

introduces redundant features and leads to negative transfer. According the

mechanism of the human brain focusing on effective features while ignoring

redundant features in recognition tasks, a brain-like classification method

based on adaptive feature matching dual-source domain heterogeneous

transfer learning is proposed for the preoperative aided diagnosis of lung

granuloma and lung adenocarcinoma for patients with solitary pulmonary

solid nodule in the case of small samples. The method includes two parts:

(1) feature extraction and (2) feature classification. In the feature extraction

part, first, By simulating the feature selection mechanism of the human brain

in the process of drawing inferences about other cases from one instance,

an adaptive selected-based dual-source domain feature matching network

is proposed to determine the matching weight of each pair of feature maps

and each pair of convolution layers between the two source networks and

the target network, respectively. These two weights can, respectively, adaptive

select the features in the source network that are conducive to the learning

of the target task, and the destination of feature transfer to improve the

robustness of the target network. Meanwhile, a target network based on

diverse branch block is proposed, which made the target network have

different receptive fields and complex paths to further improve the feature

expression ability of the target network. Second, the convolution kernel

of the target network is used as the feature extractor to extract features.

In the feature classification part, an ensemble classifier based on sparse

Bayesian extreme learning machine is proposed that can automatically decide
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how to combine the output of base classifiers to improve the classification

performance. Finally, the experimental results (the AUCs were 0.9542 and

0.9356, respectively) on the data of two center data show that this method

can provide a better diagnostic reference for doctors.

KEYWORDS

solitary pulmonary solid nodule, heterogeneous transfer learning, adaptive feature
matching, extreme learning machine, sparse Bayesian, ensemble learning

Introduction

With the development of computed tomography (CT)
technology, the detection rate of solitary pulmonary solid
nodule (SPSN) has greatly increased (Henschke et al.,
2018). Lung granuloma (LG) is a typical histopathological
manifestation of benign SPSN. Lung adenocarcinoma (LA) is
the most common histological subtype of primary lung cancer
(Travis et al., 2011). In clinical practice, the malignancy risk
degree must be assessed to determine the appropriate treatment
plan when an SPSN is found. More aggressive treatment
options are recommended to improve prognosis for LA patients.
Conversely, LG patients should avoid unnecessary treatment
procedures (such as surgery and chemotherapy). However, LG
is similar to LA in SPSN patients in terms of CT images,
which creates a diagnostic dilemma for clinicians (Starnes et al.,
2011; Boskovic et al., 2014; Sollini et al., 2017). Therefore,
it is necessary to develop an accurate and efficient method
for the preoperative differentiation of LG and LA in SPSN
patients.

Convolutional neural network (CNN) is widely used in
medical image research. It simulates the mechanism of human
brain to interpret data, that is, by building a hierarchical model
structure similar to human brain to step by step extracts effective
features directly related to tasks the bottom to the top level
of from input data (Shin et al., 2016; Interian et al., 2018;
Tan et al., 2018). However, the size of datasets in the medical
field is often small, and CNN is prone to over-fitting under
the condition of small samples. To improve the effect of CNN
under small samples, scholars have introduced transfer learning
into CNN (Tan et al., 2018; Feng et al., 2021). By imitating
the mechanism of drawing inferences about other cases from
one instance of the human brain, transfer learning uses the
knowledge learned from a large source domain data to help
the learning of the target task. In medical imaging studies of
pulmonary nodules, model-based fine-tuning is a commonly
used transfer learning strategy. First, a source network is trained
on a large dataset (such as ImageNet). Then, the learned weights
are used as the initial weight of the target network. Finally,
the target network is fine-tuned by using the target data (Zhao
et al., 2018; Harsono et al., 2020). However, when there is a
large semantic difference between source domain data and target

domain data, the transfer learning based on fine-tuning will still
overfit (Romero et al., 2020; Liu et al., 2021).

To this end, heterogeneous transfer learning is proposed
by scholars. In heterogeneous transfer learning, features can
be transferred between different domains by feature matching.
Romero et al. proposed a teacher-student training model to
transfer knowledge from the deeper teacher network to the
shallower student network by calculating the matching loss
between teacher features and student features (Romero et al.,
2014). (Zagoruyko and Komodakis, 2018) and (Srinivas and
Fleuret, 2018) proposed attention transfer and Jacobian matrix
matching methods, and realized knowledge transfer by using a
feature map or Jacobian matrix to generate attention attempts,
respectively. Although the above methods make the model have
certain effects in the case of heterogeneous data sources, there
are still two problems: (1) they cannot adaptive determine
the importance of the features of the source network relative
to the target task, and negative transfer may occur when
redundant features in the source network are transferred to
the target network (Zeiler and Fergus, 2014). (2) They only
empirically determine how the features in the source network
are transferred to the target network, which will consume many
human and material resources, and the results may not be
optimal.

In addition, most of the existing transfer learning research
works were based on the knowledge transfer of a single source
domain, namely, single-source transfer learning. In the field
of medical imaging, ImageNet is generally used as the source
domain data of transfer learning because the network trained
by ImageNet has rich basic texture information. For example,
Nobrega et al. used Imagenet dataset to train ResNet 50 as a
feature extractor, then used LIDC dataset to extract features, and
finally used SVM-RBF to classify them (Nóbrega et al., 2018).
Buty et al. used Imagenet data set to pre-train ResNet 50, and
LIDC data set to fine tune the pre training model and serve
as a feature extractor. Finally, combined with shape features,
random forest classifier was used to estimate the malignant
degree of pulmonary nodules (Buty et al., 2016). Wang et al.
used Imagenet datasetto pre train the Alexnet network, then
extracted the deep learning features of the region of interest
through transfer learning, combined with manual features to
form combined features, and used random forest to classify
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them, which improved the classification accuracy of pulmonary
nodules to a certain extent (Wang et al., 2016). However, for
the target domain, the single source domain cannot provide
rich and multiview knowledge; that is, single-source domain
transfer learning has the problem of insufficient information
(Zhang et al., 2016; Luo et al., 2018). Transfer learning using
multiple source domain data is a solution. It can provide various
knowledge to help the learning of the target task. In medical
imaging, medical images of the same tissue (e.g., whole slide
images (WSIs) and CT images of the lung) can be related.
WSIs of the lung can provide a large amount of microscopic
information about the tumor under the microscope. In contrast,
lung CT images can reflect tumor imaging information at a
macro scale. Therefore, knowledge transfer using ImageNet
and lung WSI construction source networks at the same time
will be more conducive to the training of lung CT image-
based target networks. At the same time, in the face of transfer
learning of multiple source domains, how to fully exploit the
multi-view knowledge provided by these source domains and
effectively transfer this knowledge to the target domain is
the key to improving the learning performance of the target
domain.

Based on this, according the mechanism of the human brain
focusing on effective knowledges while ignoring redundant
knowledges in recognition tasks, this paper proposes a brain-
like classification method for CT images based on adaptive
feature matching dual-source domain heterogeneous transfer
learning to preoperatively aid in the diagnosis of LG and
LA for SPSN patients. This method consists of two parts:
feature extraction of adaptive feature matching-based dual-
source domain heterogeneous transfer learning and feature
classification of an ensemble classifier based on sparse Bayesian
extreme learning machine (ELM). First, By simulating the
feature selection mechanism of the human brain in the
process of drawing inferences about other cases from one
instance, an adaptive selection-based dual-source domain
feature matching network was proposed to determine the
matching weight of each pair of feature maps and each pair
of convolution layers between the source network (ImageNet-
based source network 1 and lung WSI-based source network
2) and the target network, respectively. These two weights
can, respectively, automatically select the features of the
source network conducive to target task learning and the
destination of feature transfer to restrict the training of the target
network and improve the robustness of the target network.
Meanwhile, a target network based on diverse branch block
was proposed that made the target network have different
receptive fields and complexity paths to further improve the
feature expression ability of the target network. After training
the target network, the diverse branch block was equivalently
converted into a convolution kernel, which will make the
target network not only have rich feature expression ability but
also reduces the inference time cost. Then, the Convolution
kernel after reparameterization of the target network was used

as the feature extractor to extract the features. In addition,
the clinical features and CT findings were included in the
analysis to carry out a comprehensive analysis of the patients.
Finally, an ensemble classifier based on sparse Bayes ELM was
proposed. Ensemble learning can automatically bias how to
combine the output of different base classifiers to improve
classification performance.

Materials and methods

Research data

The data of 684 SPSN patients from two medical centers
were collected. These patients were diagnosed with LA or LG
by surgical histopathology. CT images within 4 weeks before
surgery, clinical features and CT findings of the SPSN patients
were obtained. Details of the SPSN patients are shown in
Table 1. The training cohort included 260 patients (105 LG
and 155 LA) from medical center 1. Test cohort 1 included
216 patients (79 LG and 137 LA) from medical center 1. Test
cohort 2 included 208 patients (57 LG and 151 LA) from
medical center 2. The clinical features included gender and
age. The CT findings, such as lesion size, spiculation sign,
lobulated sign, and shape sign, were obtained by radiologists
based on the CT images. The effects of the above clinical
features and CT findings for LA and LG diagnosis of SPSN
patients were confirmed by clinical studies (El-Baz et al.,
2010; Dhara et al., 2016; MacMahon et al., 2017; Feng et al.,
2019).

The CT images were obtained from a dual-energy Somatom
Flash and 64-detector-row Aquilion One CT scanner. The CT
scanning scheme was as follows: tube voltage of 120 kVp; the
tube current was automatically adjusted by the patient’s body
weight; spiral mode with collimation of 16 × 0.75 mm or
64 × 0.5 mm and pitch of 0.875-1.5; slice thickness 1.0-3.0 mm;
and slice interval 0.8-3.0 mm. The patients were positioned
supine and scanned in the caudocranial direction. The scanning
included imaging from the thoracic inlet to the bilateral adrenal
glands with deep inspiration breath-hold. The CT images were
analyzed in the lung window (window width: 1,500 Hounsfield
Unit (HU) and window level:−600 HU).

In addition, the WSIs of lung cancer from the Cancer
Genome Atlas (TCGA) and nature images from ImageNet were
collected as the source domain data of transfer learning.

Data preprocessing

To meet the input of the network, the lung WSIs from
TCGA and CT images of SPSN were preprocessed into
224× 224× 3 three-channel images on the basis that the lesions
were completely surrounded. For CT images: as showed in
Figure 1A, firstly, the CT images were cropped by finding
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TABLE 1 Information of SPSN patients in this study.

Clinical features and
CT findings

Training cohort
(N = 260)

Test cohort 1
(N = 216)

Test cohort 2
(N = 208)

LG
(N = 105)

LA
(N = 155)

LG
(N = 79)

LA
(N = 137)

LG
(N = 57)

LA
(N = 151)

Gender

Male 69 65 50 75 33 61

Female 36 90 29 62 24 90

Age (mean± SD, year) 51.87± 12.32 60.87± 10.04 51.03± 12.85 61.01± 9.96 56.74± 13.08 59.99± 10.48

Lesion size (mean± SD, mm) 12.10± 7.10 17.56± 7.73 12.43± 6.55 17.57± 7.43 12.93± 7.33 21.03± 8.45

Shape sign

Regular 50 20 31 6 23 10

Irregular 55 135 48 131 34 141

Lobulated sign

Absence 59 26 43 11 37 14

Presence 46 129 36 126 20 137

Spiculation sign

Absence 67 75 54 80 49 66

Presence 38 80 25 57 8 85

a rectangular region of interest that enclosed the outline of
SPSN. Secondly, the region of interest was resized to 224 by
224 square. Thirdly, a series of three channel images which
were composed of three consecutive slices. For WSIs: as showed
in Figure 1B, firstly, each WSI is divided into a plurality of
small images with a size of 224 by 224. At this time, some of
the small images were blank. Secondly, the blank images were
discarded to eliminate its influence on the model training. After
preprocessing, 285, 994 lung squamous cell carcinoma WSIs and
290,554 lung adenocarcinoma WSIs were obtained. And that, 2,
135 CT images of LA and 630 CT images of LG were obtained in
the training cohort.

Proposed approach

To solve the problem of aided diagnosis of SPSN in
the case of small samples, a brain-like classification method

FIGURE 1

Image preprocessing. (A) CT image preprocessing of SPSN.
(B) WSIs preprocessing. Notice: K=[X/224] × [Y/224].

based on adaptive feature matching dual-source domain
heterogeneous transfer learning was introduced. The proposed
method was divided into two components: feature extraction
and classification. For a given input image, first, the features
were extracted by an adaptive feature matching-based dual-
source domain heterogeneous transfer learning model, and then
they were classified into one of the classes by an ensemble
classifier based on sparse Bayesian ELM.

Feature extraction
In the case of small samples, to extract features that can

accurately reflect the intrinsic properties of SPSN and have high
robustness, by simulating the feature selection mechanism of the
human brain in the process of drawing inferences about other
cases from one instance, a feature extraction model based on
adaptive feature matching dual-source domain heterogeneous
transfer learning was proposed. As shown in Figure 2, the
adaptive selection-based dual-source domain feature matching
network in the feature extraction model can select features
from the source network that are helpful for the training of
the target task. It can constrain the training of the target
network to avoid the influence of redundant features in the
source network on the target network. In addition, a diverse
branch block was introduced into the target network to further
enhance the feature expression ability of the convolution
kernels.

Adaptive selection-based dual-source domain feature
matching network

The goal of the adaptive selection-based dual-source domain
feature matching network was to select features in the source
network that were beneficial to the target task to constrain the
training of the target network without manual association to
select features. As shown in Figure 3, given the source network
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FIGURE 2

The overall architecture of the feature extraction model. (A) Training of the source network. (B) Training of the target network based on diverse
branch block and feature extraction.

and target network, the adaptive selection-based dual-source
domain feature matching network determines (1) what features
in the source network should be transferred and the weight of
the transfer and (2) how the valuable features of the source
network should be transferred to the target network.

To achieve the above goals, a feature match item should
be defined. Let x be the input of the network, Sm

k (x) be the
feature map of the mth layer of the kth source network, where
k ∈ 1, 2. . ., and Tn

θ (x) be the feature map of the nth layer of
the target network with parameterθ. To achieve the goals of the
adaptive selection-based dual-source domain feature matching
network, a l2 norm distance between Sm

k (x) and Tn
θ (x) was

designed. The features that were beneficial for learning the target
task were selected by minimizing the l2 norm distance. This l2
norm distance was defined as

l2 norm distance =
∑2

k=1
‖rυk(Tn

θ (x))− Sm
k (x)‖2

2 (1)

For each source network, a linear transformation rυk was
set for the target network, such as a pointwise convolution,
to ensure that Tn

θ (x) had the same number of channels as
Sm

k (x). rυk was necessary for target network training but
not for testing. υk represented the parameter of the linear
transformation of the kth source network with respect to the
target network. To minimize Equation 1, we had to obtain two
matching losses.

First, in transfer learning, redundant features in the source
network may cause negative transfer of the target network.
To give more attention to the feature maps that are beneficial

to target task learning, a weighted feature matching loss was
designed for each feature map in the source network. For the
kth source network, this loss was defined as

Lm,n
wfmk

(
θ, υk|x, wm,n

k
)
=

1
HW

∑
ck

wm,n
ck

∑
i,j

(rυk

(
Tn

θ (x)
)

ck,i,j

−Sm
k (x)ck,i,j)

2 (2)

where H ×W is the feature map size of Sm
k (x) and rυk

(
Tn

θ (x)
)
.

The value range of i was 1 to H, and the value range of j was
1 to W. ck indicates the cth channel of the kth source network.
wm,n

ck is a learnable weight, which reflects the transferability of
the feature map of channel c of Sm

k (x) relative to rυk

(
Tn

θ (x)
)
,

and
∑
ck

wm,n
ck = 1, wm,n

ck > 0. The single-layer fully connected

neural network f m,n
∅k

is designed to learn wm,n
ck . ∅k represented

parameter of the f m,n the kth source network with respect to the
target network. The input of f m,n

∅k
is the global mean pooling of

each feature map in Sm
k (x), and the output of f m,n

∅k
is the softmax

form. That is,
wm,n

ck
= f m,n
∅k

(Sm
k (x)) (3)

where ∅k is the parameter of f m,n
∅k

. As shown in Figure 3A, for
a given Sm

k (x) and rυk

(
Tn

θ (x)
)
, in each input image, different

weights were given to different feature maps in Sm
k (x), and the

more important feature maps correspond to the larger weights,
which makes the loss corresponding to the feature map receive
more attention.

Second, after we know which features in the source network
should be transferred to the target network, we also need to
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FIGURE 3

The adaptive selection-based dual-source domain feature matching network for selective knowledge transfer. (A) Matching of the feature map
between the source networks and the target network. (B) Matching of the feature map of the convolution layer between the source networks
and the target network.

know where these features should be transferred to the target
network. As shown in Figure 3B, the output of each convolution
layer of Sm

k (x) or rυk

(
Tn

θ (x)
)

was used as a unit. For each pair of
convolution layers (m, n), a learnable parameter λ

m,n
k > 0 was

introduced to express the degree of transferability of features
between Sm

k (x) and rυk

(
Tn

θ (x)
)
. A larger λ

m,n
k indicated that the

features of the pair of convolution layers were more beneficial
to the learning of the target task. Similarly, a single-layer fully
connected neural network gm,n

8k
was designed to learn the value

of λ
m,n
k to adaptive select the matching pair of the convolution

layer of the source network to the convolution layer of the target
network. 8k represented parameter of the gm,n the kth source
network with respect to the target network. The global mean
pooling of each convolution layer of Sm

k (x) was used as the input
of gm,n

8k
. The output of Sm

k (x) was given in the form of ReLU6 to
ensure nonnegativity of λ

m,n
k and prevent λ

m,n
k from becoming

too large. That is,

λ
m,n
k = gm,n

8k
(Sm

k (x)) (4)

After the weight wm,n
ck of each pair of feature maps of Sm

k (x)

relative to rυk

(
Tn

θ (x)
)

and the weight λ
m,n
k of each convolution

layer pair were obtained, the loss of the adaptive selection-
based dual-source domain feature matching network can be
defined as

Lwfm (θ, υ|x, φ, 8) =
∑2

k=1

∑
(m,n∈Pk)

λ
m,n
k Lm,n

wfmk(
θ, υk|x, wm,n

k
)

(5)

where Pk is the set of candidate convolution layer pairs
of Sm

k (x) and rυk

(
Tn

θ (x)
)
. φ ∈ (φ1, φ2), 8 ∈ (81, 82)

and υ ∈ (υ1, υ2). Then, the final loss function of
the adaptive feature matching-based dual-source

domain heterogeneous transfer learning model was
defined as

Ltotal
(
θ, υ|x, y, φ, 8

)
= Lorg

(
θ|x, y

)
+ ςLwfm (θ, υ|x, φ, 8)

(6)
where Lorg

(
θ|x, y

)
is the original loss of

the target network and ς is a hyper-
parameter.

Target network based on diverse branch block

To further improve the feature expression ability of the
target network, a convolution neural network based on diverse
branch block was proposed as the target network. As shown
in Figure 4, the network replaces a convolution kernel with
a diverse branch block. The target network based on diverse
branch block had different receptive fields and paths of different
complexities by combining branch structures of different scales
and complexities (including multi-scale convolution sequences,
concatenated convolutions and average pooling) and improved
the feature expression ability of the network. The target
network based on diverse branch block was used during target
network training. After the target network was trained, the
diverse branch block was equivalently converted into a single
convolution kernel according to the homogeneity and additivity
of convolution. At this time, the equivalent transformed
network structure is used during verification/inference, which
will make the target network not only have rich feature
expression ability but also reduces the inference time cost (Ding
et al., 2021).

Let the data of the input of the convolution kernel be
I ∈ RC×H×W . C is the number of inputs of feature maps. H ×W
is the size of the feature map. The parameters of the convolution
kernel are F ∈ RD×C×K×K , where D is the number of output
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FIGURE 4

The diverse branch block structure.

channels and K × K is the size of the convolution kernel. The
output of the convolution kernel is O ∈ RD×H

′
×W

′

. H
′

×W
′

is the size of the output feature map, which is determined by
the settings of K, padding, and stride. We use ⊗ to denote
the convolution operator and formulate the bias addition by
replicating the bias b into REP(b) ∈ RD×H

′
×W

′

and adding it
to the results of the convolution. According to the homogeneity
and additivity of convolution, the equivalent transformation of
the diverse branch block into a single convolution kernel is
shown below.

F
′

d,c,k,k



γ(1)

σ(1) F(1) +
γ(3)

σ(3) F(3) ⊗ TRANS
(
F(2)

)
+

γ(5)

σ(5) F(5)⊗

TRANS
(
F(4)

)
+

γ(6)

σ(6) F(6)

, if k = K+1
2 and d = c

γ(3)

σ(3) F(3) ⊗ TRANS
(
F(2)

)
+

γ(5)

K2σ(5) ⊗ TRANS
(
F(4)

)
+

γ(6)

σ(6) F(6)

, if k 6= K+1
2 and d = c

γ(1)

σ(1) F(1) +
γ(3)

σ(3) F(3) ⊗ TRANS
(
F(2)

)
+

γ(6)

σ(6) F(6)

, if k = K+1
2 and d 6= c

γ(3)

σ(3) F(3) ⊗ TRANS
(
F(2)

)
+

γ(6)

σ(6) F(6)

, if k 6= K+1
2 and d 6= c

(7)

REP
(

b
′
)
= REP

(
β(1)
−

µ(1)γ(1)

σ(1)

)
+ REP

(
β(2)
−

µ(2)γ(2)

σ(2)

)

⊗F(3)
+ REP

(
β(3)
−

µ(3)γ(3)

σ(3)

)
+ REP

(
β(4)
−

µ(4)γ(4)

σ(4)

)

⊗F(5)
+ REP

(
β(5)
−

µ(5)γ(5)

σ(5)

)
+ REP

(
β(6)
−

µ(6)γ(6)

σ(6)

)
(8)

where µ(h)
∈ RD and σ(h)

∈ RD are the mean and variance
of the batch data of the hth dashed box in Figure 4,
respectively. γ(h)

∈ RD and β(h)
∈ RD are the batch-normalized

scale factor and bias term of the hth dashed box in Figure 4,
respectively. TRANS(F) is defined as the transpose operation of
the convolution, such as TRANS

(
FD×C×1×1)

= FC×D×1×1.

Model training strategy

The goal of adaptive feature matching-based dual-
source domain heterogeneous transfer learning was to use
Ltotal

(
θ, v|x, y, φ, 8

)
to train the target network to achieve

high performance of the target network. To maximize the
performance, the feature matching term Lwfm (θ, v|x, φ, 8)

should select features that were beneficial to the learning of
the target task. Therefore, a four-stage training method (Jang
et al., 2019) was used to jointly train the target network and the
feature matching network, thereby alternately updating
the target network parameter θ, linear transformation
parameter υ, and feature matching network parameter ∅
and 8.

In the first stage, Ltotal
(
θ, υ|x, y, φ, 8

)
was used to update

the target network and linear transformation parameters
once. In the second stage, the target network and linear
transformation parameters were updated T times by minimizing
Lwfm (θ, υ|x, φ, 8). The target network can be trained by
selectively imitating features in the source network that
are beneficial to the learning of the target task. More
importantly, this increases the influence of the feature
matching term Lwfm (θ, υ|x, φ, 8) on the learning of the target
network because the training at this stage only utilizes the
knowledge of the source network. In the third stage, the
target network and linear transformation parameters were
updated one time by minimizing Lorg

(
θ|x, y

)
. In the fourth
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stage, under the samples used in the first three stages, the
speed at which the target network adapts to the target
task was measured according to the change in Lorg

(
θ|x, y

)
from the third stage. Finally, the parameter ∅ and 8 of
the feature matching network was updated by minimizing
Lorg

(
θ|x, y

)
. The training process iteratively repeats the second

to fourth stages until the convergence conditions of the target
network are met.

Feature extraction of adaptive feature matching-based
dual-source domain heterogeneous transfer learning

The output of each convolution kernel in the target network
can represent different abstract features of the SPSN. As
shown in Figure 5, to make better use of the target network,
this paper used the convolution kernel of the reconstructed
target network as a feature extractor to extract features. Since
each patient has n images with lesions and the features are
calculated on a patient basis, after n pictures are processed
by a reparameterized convolution kernel and global mean
pooling, it is necessary to find an average of n outputs
of global mean pooling. The average value is the feature
of the reparameterized convolution kernel corresponding to
the patient. When the target network has L reparameterized
convolution kernels, each patient can extract L features. Then,
the Mann-Whitney U test (Ken, 2009) was used to screen
out the features of significance in the diagnosis of LG and
LA. The Mann-Whitney U test is a nonparametric rank-sum
hypothesis test designed to test whether the means of two
samples are significantly different. When the p value of the
Mann-Whitney U test is less than 0.05, it indicates that the
feature has a significant effect in the diagnosis of LG and
LA.

Ensemble classifier based on sparse bayes
extreme learning machine

Compared with a single classifier, ensemble learning
combining multiple weak classifiers is expected to be a
better and more comprehensive strong classifier model
(Khellal et al., 2018). Additionally, ELM is a single-
hidden layer feedforward neural network, which has the
characteristics of a simple structure, fast training speed
and high generalization ability (Huang et al., 2006).
However, the traditional ELM only considers the training
error, which is prone to overfitting in the case of small
datasets. In this paper, to prevent overfitting, the l1 norm
was introduced into the ELM to constrain the model
so that the model has a sparse solution. However, after
introducing the l1 norm, hyperparameters were inevitably
introduced. Therefore, an ensemble classifier based on
sparse Bayesian ELM was proposed that can automatically
combine the output of the base classifier to improve the
performance of the ensemble classifier. The sparse Bayesian
not only avoids using time-consuming cross-validation to

solve hyperparameters but also has good generalization
performance.

As shown in Figure 6, the sparse Bayesian ELM was used as
the base classifier and ensemble classifier for ensemble learning.
First, the bagging method was used to select the M sample
subsets from the training cohort samples. Then, the M base
classifiers were trained separately according to these M sample
subsets. Finally, the output of the M base classifiers was used
as the output of the hidden layer of the ensemble classifier,
and the final classification result was calculated. The connection
weights between the input layer and the hidden layer of the M
base classifiers and the bias of the hidden layer were randomly
generated according to the normal distribution. The parameters
between the hidden layer and the output layer of the base
classifier and the ensemble classifier were solved by sparse Bayes,
and the final classification result was obtained.

The objective function of the sparse Bayes ELM was

ŵ = argmin||t − Xw− ε||2 + ρ

L∑
i=1

||wi||1 (9)

where t represents the true label of the sample. w and ε represent
the weight and bias between the hidden layer and the output
layer, respectively. wi is the weight between the ith hidden
layer nodes and the output node. L is the number of neurons
in the hidden layer. ρ > 0 represents the coefficient of the
constraint term. X represents the output of the hidden layer.
When the connection weight between the input layer and the
hidden layer and the bias of the hidden layer were determined,
X was determined.

For the solution of parameters in Formula (9), this
paper proposes a solution method based on sparse Bayesian
learning and automatic correlation determination. The
Gaussian conjugate sparse prior was introduced into the
classical empirical Bayesian linear model to obtain the sparse
Bayesian model. That is, it was assumed that bias ε was a
zero-mean Gaussian random variable with inverse variance
β. Label t was modeled as a linear combination with additive
Gaussian noise. For the output (X, t) of the hidden layer,
X ∈ RN×D

= (x1, · · · xN)T , where N represents the number of
samples. The likelihood of the weight vector w can be written as
a multivariate Gaussian distribution:

p (t|X, w, β) = N
(

t|XT, w, β−1
)

(10)

To obtain the posterior probability of w, a sparse prior with a
multivariate Gaussian distribution with zero mean and diagonal
covariance matrix for the weight vector w was introduced
(Hoffmann et al., 2008). This sparse prior can be expressed as

p (w|α) =

D∏
i=1

N
(
wi|0, α−1

i
)

(11)

Formula (11) shows that the sparse prior sets a separate
hyperparameter αi for each weight vector wi, thereby generating
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FIGURE 5

Feature extraction process of a patient.

FIGURE 6

Ensemble classifier based on Sparse Bayes ELM.

a hyperparameter vector α = (αi, · · · αD)T , which is the
diagonal element of the w covariance matrix. Due to the
conjugation of the Gaussian prior to the Gaussian likelihood
(relative to the mean), the posterior probability is known to be

a closed-form Gaussian solution (Hoffmann et al., 2008). The
posterior probability of w can be expressed as

p (w|t, X, α, β) = N (w|m, 6) (12)
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The mean m and covariance 6 of the posterior probability
distribution of w were defined as

m = β6XT t (13)

6−1
= A+ βXTX (14)

where= diag(α). The hyperparameters α and β can be calculated
by the maximum marginal likelihood method. The marginal
likelihood p (t|α, β) was obtained by integrating the output
weight w:

p (t|α, β) = ∫ p (t|w, β) p (w|α) dw (15)

Then, the log-likelihood can be obtained by squaring the
exponent and using the standard form of the normalized
coefficient of the Gaussian function:

lnp (t|α, β) =

∑D
i=1 lnαi + Nlnβ+ ln |6| −

β||t-Xm||2 −mTAm− Nln(2π)

2
(16)

By setting the partial derivatives of the log-likelihood with
respect to the hyperparameters α and β to zero, a maximum
likelihood estimate of the hyperparameters can be obtained,
which is

αnew
i =

γi

mT
i Ami

(17)

(βnew)−1
=
||t − Xm||2

N −
∑D

i=1 γi
(18)

where mi is the ith component of the posterior mean m, and γi

is defined as

γi = 1− αi6ii, i ∈ {1, 2, · · · , D} (19)

where 6ii is the ith diagonal component of the posterior
distribution covariance 6. In autocorrelation determination,
some elements in α tend to infinity when maximizing the
marginal likelihood with respect to α, and the corresponding
weights have a posterior distribution centered on zero.
Therefore, the features associated with these weights do not play
a role in the prediction of the model, resulting in a sparse model
(Yu et al., 2015).

To maximize the log-likelihood, an iterative training scheme
was used: À initialize the hyperparameters α and β; Á then
calculate the hyperparameters m and 6 of the posterior
distribution according to Equations (13) and (14); Â check
the log likelihood or the convergence of the weight w; if the
convergence criterion is not met, update the hyperparameters
α and β according to Equations (17), (18) and (19), and then
return to the second step; if the convergence criterion is met,
then ŵ = m.

Results and discussion

Model parameter setting

In this study, two ResNet34 models were trained as the
source network. In ImageNet-based source network 1, the torch
version of the pretrained model was used. In lung cancer WSI-
based source network 2, a stochastic gradient descent algorithm
with momentum as the optimizer (initial learning rate of 0.01,
momentum of 0.9, and weight decay of 10−5) was selected
for training, the loss function was cross entropy, the batch
size was 200, and the training round was set to 200 epochs.
ResNet18 based on diverse branch blocks was used as the target
network. In the training of the target network, a stochastic
gradient descent algorithm with momentum was selected as
the optimizer (the initial learning rate was set to 10−4, the
momentum was set to 0.9, and the weight decay was set to
10−5), the batch size was set to 200, and the training round was
set to 200 epochs. The hyperparameter ς for feature matching
was set to 0.5, and f∅ and g∅ were trained using the Adam
optimizer (initial learning rate of 10−4 and weight decay of
10−4). In this paper, the proposed method was implemented
using the PyTorch framework and trained on an RTX 3090. For
fairness, the training parameters of the comparison algorithm
were consistent with the training parameters of the method
in this paper. Since the target network of this study has 3,904
reparameterized convolution kernels, a total of 3,904 image
features were extracted for each patient.

Evaluation index

This study drew the receiver operating characteristic (ROC)
curve and calculated the area under the curve (AUC), F1 score,
precision, accuracy, sensitivity, and specificity to evaluate the
performance of the model.

Comparison with traditional methods

The method of this paper was compared with the clinical
model (CM) (Feng et al., 2019) based on clinical features
and CT findings, ResNet18 model without transfer learning
strategy (ResNet18_nTL), ResNet34 model without transfer
learning strategy (ResNet34_ nTL), fine-tuning ResNet18
model based on lung WSIs (FT_ResNet18_LW), fine-tuning
ResNet18 model based on ImageNet (FT_ResNet18_ImageNet),
fine-tuning ResNet34 model based on lung WSIs (FT_
ResNet34_LW), and fine-tuning ResNet34 model based on
ImageNet (FT_ResNet34_ImageNet).

As shown in Figure 7, in test cohorts 1 and 2, the ROC of
the proposed method was closest to the upper left corner of the
image, which shows that the classification effect of the proposed
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FIGURE 7

The ROC curves of the proposed method and traditional
methods. (A) ROC of test cohort 1; (B) ROC of test cohort 2.

method was more effective than the seven traditional methods.
Table 2 presents the classification performance indicators of
each model. The results of the proposed method (AUC: 0.9542
and 0.9356, F1 score: 0.9219 and 0.9356, and accuracy: 0.9028

and 0.9087) in the two test cohorts were higher than those
of the seven traditional methods. The reason may be that the
clinical model (AUC: 0.8485 and 0.8169) only uses the clinical
features and CT findings for modeling and does not mine deep
learning features. The proposed method conducted multifaceted
mining of patient features, not only using deep learning features
based on CT images but also using clinical features and CT
findings for modeling. ResNet18_nTL and ResNet34_nTL were
trained using only CT images of the training set, and the
AUCs in the two test cohorts were only 0.7141 and 0.7066,
0.6981, and 0.6547, respectively. Due to the small number of
CT images in the training set, the model was not adequately
trained to the effect of the model in the two test sets was
poor. FT_ResNet18_ImageNet and FT_ResNet34_ImageNet
were obtained by using ImageNet as the source domain data
to fine-tune ResNet18 and ResNet34, respectively. The AUCs
of test cohort 1 were 0.7835 and 0.8303, respectively. The
AUCs of test cohort 2 were 0.6901 and 0.7330, respectively.
FT_ResNet18_LW and FT_ResNet34_LW were obtained by

TABLE 2 The performance indices of the proposed method and seven traditional models.

Model AUC
(95 CI%)

F1 score Precision Sensitivity Specificity Accuracy

Test
Cohort 1

Proposed method 0.9542
(0.9265-0.9818)

0.9219 0.9394
(124/132)

0.9051
(124/137)

0.8987
(71/79)

0.9028
(195/216)

Clinical model 0.8485
(0.7932-0.9038)

0.8720 0.8289
(126/152)

0.9197
(126/137)

0.6709
(53/79)

0.8287
(179/216)

ResNet18_nTL 0.7141
(0.6420-0.7863)

0.7073 0.7982
(87/109)

0.6350
(87/137)

0.7215
(57/79)

0.6667
(144/216)

ResNet34_nTL 0.6981
(0.6243-0.7720)

0.6581 0.7938
(77/97)

0.5620
(77/137)

0.7468
(59/79)

0.6296
(136/216)

FT_ResNet18 _LW 0.7771
(0.7118-0.8425)

0.7296 0.8854
(85/96)

0.6204
(85/137)

0.8608
(68/79)

0.7083
(153/216)

FT_ResNet18 _ImageNet 0.7835
(0.7211-0.8460)

0.7149 0.8571
(84/98)

0.6131
(84/137)

0.8228
(65/79)

0.6898
(149/216)

FT_ResNet34 _LW 0.7567
(0.6890-0.8245)

0.6949 0.8283
(82/99)

0.5985
(82/137)

0.7848
(62/79)

0.6667
(144/216)

FT_ResNet34 _ImageNet 0.8303
(0.7735-0.8870)

0.8591 0.8117
(125/154)

0.9124
(125/137)

0.6329
(50/79)

0.8102
(175/216)

Test
Cohort 2

Proposed method 0.9356
(0.8973-0.9740)

0.9356 0.9583
(138/144)

0.9139
(138/151)

0.8947
(51/57)

0.9087
(189/208)

Clinical model 0.8169
(0.7476-0.8861)

0.8380 0.8947
(119/133)

0.7881
(119/151)

0.7544
(43/57)

0.7788
(162/208)

ResNet18_nTL 0.7066
(0.6306-0.7827)

0.6383 0.8929
(75/84)

0.4967
(75/151)

0.8421
(48/57)

0.5913
(123/208)

ResNet34_nTL 0.6547
(0.5733-0.7361)

0.6186 0.8588
(73/85)

0.4834
(73/151)

0.7895
(45/57)

0.5673
(118/208)

FT_ResNet18 _LW 0.6913
(0.6159-0.7667)

0.6383 0.8929
(75/84)

0.4967
(75/151)

0.8421
(48/57)

0.5913
(123/208)

FT_ResNet18 _ImageNet 0.6901
(0.6101-0.7702)

0.6529 0.8681
(79/91)

0.5232
(79/151)

0.7895
(45/57)

0.5962
(124/208)

FT_ResNet34 _LW 0.7006
(0.6244-0.7768)

0.6855 0.8763
(85/97)

0.5629
(85/151)

0.7895
(45/57)

0.6250
(130/208)

FT_ResNet34 _ImageNet 0.7330
(0.6568-0.8092)

0.8163 0.8392
(120/143)

0.7947
(120/151)

0.5965
(34/57)

0.7440
(154/208)

Bold parts in the table represent the best performance. CI: confidence interval.
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using lung WSIs as the source domain data to fine-tune
ResNet18 and ResNet34, respectively. The AUCs of test cohort 1
were 0.7771 and 0.7567, respectively. The AUCs of test cohort
2 were 0.6913 and 0.7006, respectively. The results of the
proposed method were all better than those of methods based
on fine-tuning transfer learning. The reasons may be as follows:
À Compared with the method based on fine-tuning transfer
learning, the proposed method had richer reference knowledge
for training the target network. Á In this paper, the transfer
weights were set for the features of the source network, in which
the features of the two source networks that were beneficial
to the learning of the target task were selectively restricted
to the training of the target network. Figure 8 shows the
matching weights λm,n of the convolution layer pairs between
the target network and source networks 1 and 2. It can be seen
that different layer pairs of the source network and the target
network had different matching weights. More weight was given
to the source domain features with a positive effect on target
network training. A smaller or even zero weight was given to the
source domain features with a negative effect on target network
training.

Comparison with transfer learning
models based on different source
domains

To analyze the influence of the source domain data
on transfer learning, the proposed method was compared
with adaptive feature matching-based heterogeneous transfer
learning based on lung WSIs (AFM_HTL_LW) and adaptive
feature matching-based heterogeneous transfer learning based
on ImageNet (AFM_HTL_ImageNet). The results are shown

in Figure 9 and Table 3. In the two test cohorts, the AUCs
of AFM_HTL_LW were 0.8103 and 0.6647, respectively; the
F1 scores were 0.8061 and 0.6417, respectively; and the
accuracies were 0.7639 and 0.5865, respectively. The AUCs
of AFM_HTL_ImageNet were 0.8182 and 0.6983, respectively;
the F1 scores were 0.8108 and 0.8427, respectively; and the
accuracies were 0.7731 and 0.7404, respectively. It can be seen
that the proposed method combined with the dual source
domain outperforms the model based on a single source
domain. This shows that the feature based on single source
domain transfer learning was less robust than the features
of transfer learning based on the dual-source domain. The
proposed method used the effective knowledge of the two
transfer sources to constrain the training of the target network
so that the trained features were more relevant to the task and
had better robustness.

Ablation experiments

To further demonstrate the performance of the proposed
method, we conduct ablation experiments. As shown in Table 4,
the dual-source domain heterogeneous transfer learning of
the no-feature matching network (DHTL_nFMN) in which
all source domain features are transferred to the target
network, the adaptive feature matching-based dual-source
domain heterogeneous transfer learning model based on f∅
(AFM_DHTL_f∅) that uses only f∅ for source domain feature
selection, and the adaptive feature matching-based dual-
source domain heterogeneous transfer learning based on g8

(AFM_DHTL_g8) that uses only g8 for source domain feature
selection are compared with the proposed method. The results
are shown in Figure 10 and Table 5. In the two test cohorts,

FIGURE 8

The matching weights λm,n of convolutional layer pairs. (A) The matching weights λm,n of convolutional layer pairs of the source network based
on ImageNet. (B) The matching weights λm,n of convolutional layer pairs of the source network based on lung WSIs.
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TABLE 3 The performance indices of the proposed method and transfer learning models based on different source domains.

Model AUC
(95 CI%)

F1 score Precision Sensitivity Specificity Accuracy

Test
Cohort 1

Proposed method 0.9542
(0.9265-0.9818)

0.9219 0.9394
(124/132)

0.9051
(124/137)

0.8987
(71/79)

0.9028
(195/216)

AFM_HTL_LW 0.8103
(0.7508-0.8699)

0.8061 0.8413
(106/126)

0.7737
(106/137)

0.7468
(59/79)

0.7639
(165/216)

AFM_HTL_ ImageNet 0.8182
(0.7569-0.8795)

0.8108 0.8607
(105/122)

0.7664
(105/137)

0.7848
(62/79)

0.7731
(167/216)

Test
Cohort 2

Proposed method 0.9356
(0.8973-0.9740)

0.9356 0.9583
(138/144)

0.9139
(138/151)

0.8947
(51/57)

0.9087
(189/208)

AFM_HTL_LW 0.6647
(0.5848-0.7446)

0.6417 0.8652
(77/89)

0.5099
(77/151)

0.7895
(45/57)

0.5865
(122/208)

AFM_HTL_ ImageNet 0.6983
(0.6184-0.7781)

0.8427 0.8089
(127/157)

0.8411
(127/151)

0.4737
(27/57)

0.7404
(154/208)

Bold parts in the table represent the best performance. CI: confidence interval.

TABLE 4 Ablation experiment of the structure of the model.

Model Diverse branch block f∅ g∅ ELM Sparse Bayes Ensemble learning

Proposed method
√ √ √ √ √ √

DHTL_nFMN
√

× ×
√ √ √

AFM_DHTL_f∅
√ √

×
√ √ √

AFM_DHTL_g8
√

×
√ √ √ √

TAFM_DHTL
√ √ √

× × ×

AFM_DHTL_nBayes
√ √ √ √

×
√

AFM_DHTL_nEC
√ √ √ √ √

×

AFM_DHTL_nDBB ×
√ √ √ √ √

√
means that the model has this structure;×means that the model does not have this structure.

FIGURE 9

The ROC curves of the proposed method and transfer learning
models based on different source domains. (A) ROC of test
cohort 1; (B) ROC of test cohort 2.

the AUCs of DHTL_nFMN were 0.5371 and 0.5095, the AUCs
of AFM_DHTL_f∅ were 0.5660 and 0.5257, and the AUCs
of AFM_DHTL_g8 were 0.5902 and 0.6225, respectively. The
results of the proposed method were better than the results
of the three comparison models mentioned above. The results
showed that when using transfer learning to train the target
network, choosing the appropriate transfer configuration has a

greater impact on the performance of the model. The results also
showed that the proposed method can automatically determine
useful feature pairs from many possible candidate transfer pairs
to constrain the training of the target network and improve the
robustness of the characteristics of the target network.

Compared with the proposed method, the results of
the traditional adaptive feature matching-based dual-source
domain heterogeneous transfer learning (TAFM_DHTL) were
directly given by the fully connected layer of the target
network ResNet18. The adaptive feature matching based
dual-source domain heterogeneous transfer learning of non-
Bayes (AFM_DHTL_nBayes) with the ensemble classifier
of traditional ELM as the final classifier was constructed.
The adaptive feature matching-based dual-source domain
heterogeneous transfer learning with a non-ensemble classifier
(AFM_DHTL_nEC) that used sparse Bayesian ELM as the
final classifier was constructed. In the two test cohorts, the
AUCs of TAFM_DHTLM were 0.6164 and 0.6681, the AUCs
of AFM_DHTL_nBayes were 0.8354 and 0.7130, and the AUCs
of AFM_DHTL_nEC were 0.8165 and 0.6490, respectively. The
results of the above three comparison models were all worse
than the results of the proposed method. The reasons may be
that TAFM_HTL was directly given by the fully connected layer
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FIGURE 10

The ROC curves of the proposed method and ablation experiments. (A) ROC of test cohort 1; (B) ROC of test cohort 2.

TABLE 5 The performance indices of the proposed method and seven contrast models.

Model AUC
(95 CI%)

F1 score Precision Sensitivity Specificity Accuracy

Test
Cohort 1

Proposed method 0.9542
(0.9265-0.9818)

0.9219 0.9394
(124/132)

0.9051
(124/137)

0.8987
(71/79)

0.9028
(195/216)

DHTL_nFMN 0.5371
(0.4568-0.6174)

0.6541 0.6744
(87/129)

0.6350
(87/137)

0.4684
(37/79)

0.5741
(124/216)

AFM_DHTL_f∅ 0.5660
(0.4896-0.6424)

0.4796 0.7966
(47/59)

0.3431
(47/137)

0.8481
(67/79)

0.5278
(114/216)

AFM_DHTL_g8 0.5902
(0.5102-0.6703)

0.6846 0.7236
(89/123)

0.6496
(89/137)

0.5696
(45/79)

0.6204
(134/216)

TAFM_DHTL 0.6164
(0.5355-0.6972)

0.7792 0.7018
(120/171)

0.8759
(120/137)

0.3544
(28/79)

0.6852
(148/216)

AFM_DHTL_nBayes 0.8354
(0.7781-0.8928)

0.8425 0.8456
(115/136)

0.8394
(115/137)

0.7342
(58/79)

0.8009
(173/216)

AFM_DHTL_nEC 0.8165
(0.7556-0.8775)

0.6440 0.8207
(119/145)

0.8686
(119/137)

0.6709
(53/79)

0.7963
(172/216)

AFM_DHTL_nDBB 0.8261
(0.7651-0.8871)

0.8284 0.8473
(111/131)

0.8102
(111/137)

0.7468
(59/79)

0.7870
(170/216)

Test
Cohort 2

Proposed method 0.9356
(0.8973-0.9740)

0.9356 0.9583
(138/144)

0.9139
(138/151)

0.8947
(51/57)

0.9087
(189/208)

DHTL_nFMN 0.5095
(0.4226-0.5963)

0.6592 0.7586
(88/116)

0.5828
(88/151)

0.5088
(29/57)

0.5625
(117/208)

AFM_DHTL_f∅ 0.5257
(0.4340-0.6175)

0.7046 0.7615
(99/130)

0.6556
(99/151)

0.4561
(26/57)

0.6010
(125/208)

AFM_DHTL_g8 0.6225
(0.5354-0.7096)

0.5388 0.8676
(59/68)

0.3907
(59/151)

0.8421
(48/57)

0.5144
(107/208)

TAFM_DHTL 0.6681
(0.5803-0.7559)

0.8464 0.8036
(135/168)

0.8940
(135/151)

0.4211
(24/57)

0.7644
(159/208)

AFM_DHTL_nBayes 0.7130
(0.6339-0.7922)

0.7770 0.8504
(108/127)

0.7152
(108/151)

0.6667
(38/57)

0.7019
(146/208)

AFM_DHTL_nEC 0.6490
(0.5635-0.7345)

0.7429 0.8062
(104/129)

0.6887
(104/151)

0.5614
(32/57)

0.6538
(136/208)

AFM_DHTL_nDBB 0.7235
(0.6452-0.8017)

0.6723 0.9195
(80/87)

0.5298
(80/151)

0.8772
(50/57)

0.6250
(130/208)

Bold parts in the table represent the best performance. CI: confidence interval.
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of the target network ResNet18, and the results may be affected
by redundant features, thus reducing the performance of the
model. AFM_DHTL_nBayes used the ensemble classifier based
on traditional ELM, which does not have the ability of superior
feature selection and base classifier selection. AFM_DHTL_nEC
used the output of a single sparse Bayesian ELM model
as the final output, which does not have the advantages of
ensemble learning to brainstorm. The proposed method not
only comprehensively analyzes the features in the target network
but also uses the sparse Bayes-based ELM ensemble classifier to
screen and classify the features and filter out the base classifiers
that do not work or play a negative role in ensemble learning.

The adaptive feature matching-based dual-source domain
heterogeneous transfer learning with non- diverse branch block
(AFM_DHTL_nDBB) that used the traditional ResNet18 was
constructed and compared with the proposed method. In
the two test cohorts, the AUCs of AFM_DHTL_nDBB were
0.8261 and 0.7235, respectively. Because the proposed method
introduces the diverse branch block structure into the target
network, the target network can train more robust features,
thereby improving the robustness of the classification model.

Conclusion

Aiming at the problem of negative transfer of redundant
features when the features of the source network are transferred
to the target network as a whole in heterogeneous transfer
learning, according the mechanism of the human brain focusing
on effective knowledges while ignoring redundant knowledges
in recognition tasks, a brain-like classification method for
CT images based on adaptive feature matching dual-source
domain heterogeneous transfer learning was proposed for the
preoperative differentiation of LG and LA appearing as SPSN.
The method can adaptively select the features in the source
network that are conducive to the learning of the target task
and the destination of the feature transfer by designing an
adaptively selected feature matching network. Thus, the training
of the target network was constrained, and the robustness of the
target network was improved in the case of small samples. At
the same time, a target network based on diverse branch block
was proposed, which makes the target network have different
receptive fields and complex paths and further improves the
feature expression ability of the target network. In addition, the
clinical features and CT findings were included to analyze and
conduct a comprehensive analysis of the patients. After that, an
ensemble classifier based on sparse Bayesian ELM was proposed
to automatically combine the outputs of the base classifiers to
improve the classification performance. Finally, experiments on
the data of two medical centers verify the effectiveness of our
method (test cohort 1 AUC: 0.9542 and test cohort 2 AUC:
0.9356). In future work, we intend to explore how to introduce
Bayesian theory into heterogeneous transfer learning and use

the uncertainty of Bayesian theory to improve the accuracy of
the model in the case of small samples.
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