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Introduction: Meditation has been shown to enhance a user’s ability to

control a sensorimotor rhythm (SMR)-based brain-computer interface (BCI).

For example, prior work have demonstrated that long-term meditation

practices and an 8-week mindfulness-based stress reduction (MBSR) training

have positive behavioral and neurophysiological effects on SMR-based BCI.

However, the effects of short-term meditation practice on SMR-based BCI

control are still unknown.

Methods: In this study, we investigated the immediate effects of a short,

20-minute meditation on SMR-based BCI control. Thirty-seven subjects

performed several runs of one-dimensional cursor control tasks before and

after two types of 20-minute interventions: a guided mindfulness meditation

exercise and a recording of a narrator reading a journal article.

Results: We found that there is no significant change in BCI performance

and Electroencephalography (EEG) BCI control signal following either 20-

minute intervention. Moreover, the change in BCI performance between the

meditation group and the control group was found to be not significant.

Discussion: The present results suggest that a longer period of meditation is

needed to improve SMR-based BCI control.

KEYWORDS
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Introduction

Brain–computer interfaces (BCI) are powerful tools that allow direct interaction
between a user’s central nervous system (CNS) and the outside world, bypassing the
traditional neuromuscular pathway (Wolpaw et al., 2000; He et al., 2015, 2020). These
systems have the potential to benefit millions, from those living with spinal cord injuries
(SCI) and stroke to those with neurodegenerative diseases, such as amyotrophic lateral
sclerosis (ALS) or multiple sclerosis (MS). One way of classifying BCIs is by their
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invasiveness, or whether they require surgical operations to
import CNS data to a computer. Another way of classifying BCIs
is by the source of the CNS input signal and their applications.
One of the most widely utilized CNS signals is sensorimotor
rhythm (SMR) produced in the primary sensorimotor areas
during motor imagery (MI), or the imagination of movement
(Pfurtscheller and Lopes da Silva, 1999; Yuan and He, 2014).
Many previous studies have used SMR-based BCIs to move a
computer cursor in 2D (Wolpaw and McFarland, 2004) and 3D
(Meng et al., 2018), steer a powered wheelchair (Tanaka et al.,
2005; Carlson and Millan, 2013; Yu et al., 2017), fly a virtual
helicopter (Doud et al., 2011), fly a quadcopter (LaFleur et al.,
2013), and control a robotic arm (Meng et al., 2016; Edelman
et al., 2019), etc.

Despite the abundance and diversity of its applications,
SMR-based BCI still faces many challenges. First of all, it has
been reported that roughly 20% of the general population is
known to be “BCI-inefficient,” meaning that they are unable to
control a BCI system beyond chance level even with extensive
training (Blankertz et al., 2010). The reason this subgroup of
people is less successful at controlling a BCI system is still
unknown. Another challenge with SMR-based BCI is that it
requires a relatively long training time (He et al., 2020). Unlike
exogenous BCIs that do not require a lot of training, such as
those that use P300 (Eidel and Kübler, 2020) or steady-state
visually-evoked potentials (SSVEP) (Chen et al., 2015), SMR-
based BCI, which operates using users’ volitional CNS signals as
input, exhibits a learning curve and requires several sessions of
training before users can achieve good performance (Jiang et al.,
2021b; Stieger et al., 2021b).

To address these challenges, recent efforts have focused on
improving both facets of an SMR-based BCI. On the one hand,
a great deal of research has focused on improving the signal
processing and decoding aspect of SMR-based BCI, i.e., the
computer side of a BCI system (Bashashati et al., 2007). Recent
advancements in machine learning (ML) and deep learning
(DL) have made progress in the field of BCI as well. Previous
works have examined the potential of using convolutional
neural networks (Schirrmeister et al., 2017; Lawhern et al., 2018;
Stieger et al., 2021a; Zhu et al., 2022), deep belief networks
(Ren and Wu, 2014; Lu et al., 2017), and recurrent neural
networks (Luo et al., 2018; Ma et al., 2018; Wang et al., 2018)
to improve MI classification. On the other end of the spectrum
are studies that explore ways to train humans to improve BCI
performance, one of which methods is via meditation. For
example, Mokhtar et al. showed that it is possible to measure the
level of attention and meditation using Electroencephalography
(EEG) (Mokhtar et al., 2017). Further, meditation in varying
forms has been reported to facilitate BCI learning. Cassady
et al. found that those with one or more years of experience
in mind-body awareness training (MBAT), such as yoga and
meditation, not only improved BCI accuracy more quickly,
but also improved to a significantly greater extent compared

to those without prior experience (Cassady et al., 2014). Tan
et al. reported that a 12-week mindfulness meditation training
significantly improved SMR-based BCI accuracy compared to
a music training group and a control group (Tan et al., 2014).
More recently, Stieger et al. showed that taking an 8-week
mindfulness-based stress reduction (MBSR) course results in
faster BCI learning compared to a control group (Stieger et al.,
2021b). While there is no consensus on the exact mechanism
behind how meditation in its various forms positively affects
BCI learning, researchers in these prior works conjecture
that mindfulness meditation helps with regulating emotions,
stress, and attention (Tan et al., 2014), that MBAT helps with
modulating the mu rhythm and thus improves concentration
(Cassady et al., 2014), and that MBSR helps actively up-regulate
the alpha power during volitional rest (Stieger et al., 2021b) and
increases frontolimbic alpha activity (Jiang et al., 2021a).

While mindfulness meditation training, e.g., an 8-week
MBSR course or yoga, is beneficial in expediting BCI learning,
such training is time-consuming and requires guidance from
experienced meditation instructors (Irving et al., 2009); thus,
it is not an ideal option to enhance BCI performance for those
requiring the use of an SMR-based BCI immediately (or within
a very short period). Therefore, it is of interest to investigate the
potential immediate effects of short-term meditation in a form
that can be easily practiced by those that are unable to participate
in active and regular meditation courses, such as taking routine
yoga classes or enrolling in an 8-week MBSR course. As such,
the motivation of the present study is to examine if a brief
mindfulness meditation practice would have an immediate effect
on SMR-BCI performance. A previous study (Stieger et al.,
2021b) found that MBSR training can significantly improve
the ability to modulate alpha rhythm as associated with the
up-down (UD) task. In this study, we examined if a 20-min
mindfulness exercise would affect the level of mindfulness and
thus BCI performance in the UD task. We also examined if the
change in BCI performance following two types of intervention
is different, i.e., a brief meditation exercise induces different
effects on the brain compared to a control exercise.

Materials and methods

Participants

Thirty-seven subjects (13 male, 22 female, 2 non-binary)
were recruited via a mass email and physical fliers across
the Carnegie Mellon University campus in Pittsburgh,
Pennsylvania. All subjects provided written informed consent
to the study, which was approved by the Institutional Review
Board of Carnegie Mellon University. No subject had prior
experience using an SMR-based BCI. In terms of mindfulness
meditation experience, all subjects met the following inclusion
criteria: no mindfulness meditation experience at all, or only
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having non-regular meditation experience that happened more
than 6 months prior to the date of the first session. Mindfulness
is operationally defined as non-judgmental awareness and
acceptance of the present thoughts, feelings, and sensations
(Bishop et al., 2004), and meditation can be defined as a quiet or
audio-guided period of contemplation that can cultivate one’s
capacity for mindfulness. Of the 37 subjects, 10 were assigned
to group MM (meditation-meditation group, age = 21.9 ± 3.1),
12 were assigned to group MC (meditation-control group,
age = 24.7 ± 4.4), and 15 were assigned to group CM (control-
meditation group, age = 21.7± 3.7). Group CC was not included
because the comparisons among MM, MC, and CM are already
sufficient to address the research question in this study. Those
assigned to group MM were asked to listen to and follow along
the guided meditation exercise as the intervention in both
sessions. Those in group MC were asked to listen to and follow
along the guided meditation exercise in the first session but
listen to the control recording—a journal paper—in the second
session. Those in group CM listened to the control recording
in the first session and the guided meditation recording in the
second session. One subject from group MC did not complete
the second session and thus was dropped from behavioral
analysis of session 2. In the EEG neurophysiological analysis,
a total of 6 subjects were excluded: from group MC, 1 subject
was excluded due to equipment issues and 1 other subject for
not completing the study (the same subject as before); and from
group CM, 1 subject was excluded due to equipment issues, 1
subject due to experimental error, and 2 subjects due to their
EEG data containing too many artifacts to perform the offline
analysis.

Experimental design

The experimental design is illustrated in Figure 1. This study
consisted of two sessions on two separate days, anywhere from
2 to 28 days apart depending on subject availability. The two
sessions were separated by a minimum of 2 days to reduce
the possible carryover effect of the 20-min intervention in
session 1. Each session consists of part 1, followed by a 20-
min intervention, and then part 2 (Figure 1D). Session 1 part
1 contains 8 runs: 4 runs of a one-dimensional (1D) left-right
(LR) cursor control task and 4 runs of a 1D up-down (UD)
cursor control task (Figure 1A), of which the first run in both
tasks were practice runs. The purpose of adding these practice
runs was to familiarize the subjects with the BCI tasks. Data
from these two runs were not used for further analysis. Given
that prior work shows BCI learning can occur even after 20–30
runs (Jiang et al., 2021b), discarding the very first run will have a
limited effect on studying the BCI learning in this work, and we
can avoid potentially inaccurate BCI data when the subjects are
just starting to learn the BCI task. Thus, only 6 runs of BCI data
were saved from session 1 part 1.

Based on their performance in these 6 runs—excluding two
practice runs—the subjects were assigned to one of three groups:
group MM, for meditation in both sessions; group MC, for
meditation in session 1 and control exercise in session 2; and
group CM, for control exercise in session 1 and meditation in
session 2. Group assignment was conducted with the intention
of maintaining similar group average performance levels in
session 1 part 1 so that the change in group BCI performance
average would be directly comparable among the groups.

Once the subjects were assigned groups, they were
instructed to practice meditation with a 20-min audio recording
of a guided meditation exercise (meditation) or listen to a
journal paper about mindfulness and its Buddhist origins
(control) (Purser and Milillo, 2015). Immediately following the
intervention, the subjects were instructed to fill out the Toronto
Mindfulness Survey (TMS), a 13-item survey that measures the
transient level of mindfulness (Lau et al., 2006).

Afterward, in session 1 part 2, subjects repeated the same 6
runs of the BCI tasks as before the intervention—3 runs of LR
followed by 3 runs of UD (Figure 1C). Session 2 parts 1 and 2
were identical to session 1 part 2—3 runs each of LR and UD.
As for the interventions in session 2, those in group MM and
group CM performed brief meditation exercises following audio
guidance, whereas those in group MC listened to the recording
of the journal paper (control recording). By creating two cohorts
of subjects that participated in different interventions, we were
able to control for within-person effects of continued use of
an SMR-based BCI, such as learning and fatigue, and only
investigate the effects of meditation.

Brain–computer interface tasks

Figures 1A–C illustrates the standard BCI2000 cursor
control tasks (Schalk et al., 2004) used in this study. In each
experimental session, subjects sat in a chair with armrests in
front of a computer monitor. The monitor initially would
display a black screen with the word “Timeout” at the center.
Once the experimenter started a run, a yellow rectangular bar
would appear either on the left or right (for the LR task), or on
the top or bottom (for the UD task) side of the screen. 2 s after
this “target” appeared, a pink circle, or the “cursor,” appeared at
the center of the monitor (Figure 1B). The purpose of the tasks
was for the subjects to move the cursor toward the target and hit
it. If the cursor hit the correct target on the screen within 6 s,
it would change colors from pink to yellow to visually indicate
that the trial was successful. If the subject was not able to hit the
target with the cursor within the given 6 s, the trial ended and
moved on to the next trial. If the cursor moved in the opposite
direction of the target and hit the invisible target on the other
side, the trial would end and be recorded as a miss.

To move the cursor either to the left or the right, the subjects
were instructed to perform MI with the corresponding hand. For
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FIGURE 1

Schematic diagram of study design. (A) BCI tasks. Left-right (LR) and up-down (UD), the dashed lines are for illustrative purposes only and were
not visible in the actual experiment. Scalp topographies show regions of mu power increase (yellow) and decrease (blue) during each trial type
(i.e., left vs right and up vs down). The colors represent the distribution of mu rhythm power calculated for each electrode during the different
trial types. (B) Each trial: 2 s of intertrial interval, 2 s of target presentation, and up to 6 s of cursor control with visual feedback. (C) Session
design: Each session consists of part 1, intervention, and part 2. Part 1 contains 3 runs of LR and 3 runs of UD, where one run consists of 25 trials
of BCI control. Intervention is either a 20-min meditation or control task, and part 2 contains 3 runs of LR and 3 runs of UD tasks each (practice
runs for the LR and UD tasks in session 1 are not included in the figure). (D) Group assignment: Group MM (N = 10) performed brief meditation
with audial guidance in both sessions; group MC (N = 12) performed meditation with audial guidance in session 1 and listened to control
recording in session 2; group CM (N = 15) listened to control recording in session 1 and performed brief meditation with audial guidance in
session 2.

example, if the target appears on the right side of the screen, the
subjects would perform right-hand MI. In the UD task, subjects
were instructed to perform MI with both hands simultaneously
to move the cursor up and voluntarily rest and not perform MI
to move the cursor down. Each trial would last either until the
cursor hit the correct (“hit”) or incorrect (“miss”) target, or for
6 s, whichever is shorter. Following the end of each trial were 2 s
of inter-trial intervals and each run consisted of 25 trials.

To extract the control signal for online cursor movement,
a small surface Laplacian filter was first applied to the C3
and C4 electrodes, from which the autoregressive (AR) spectral
amplitudes were estimated in a 3 Hz bin (Stieger et al., 2021b)
around 12 Hz (Meng et al., 2016, 2018). The main advantage
of using a surface Laplacian filter is that it improves spatial
resolution (Carvalhaes and de Barros, 2015) by enhancing
local cortical activity while reducing activity from distant
sources, such as muscle or motion artifacts and eye movements
(Mourino et al., 2001). AR estimation of spectral amplitudes,

which is based on the principle of maximum entropy method
(MEM), is preferred over fast Fourier transform (FFT), another
spectral analysis method, due to its support of high-resolution
spectral analysis with short time segments (McFarland et al.,
1997) and computational efficiency (He et al., 2020), allowing
for quick calculations and output signal generation. Then, the
control signal was normalized to a zero mean and unit variance
by subtracting an offset and multiplying a gain value which was
estimated from a buffer of 30 s, which reduces the influence
of abrupt abnormal EEG on the control signal and makes it
relatively smooth during BCI control. The cursor speed was
determined by the normalized AR amplitude difference and
the cursor position was updated every 40 ms. For horizontal
motion (LR tasks), the control signal was produced by taking
the difference in AR amplitude between the two electrodes (C4 -
C3), and for vertical motion (UD tasks), the signal was produced
by taking the sum of the AR amplitudes of the two electrodes
(C4 + C3). Each trial had three possible outcomes: a “hit” when
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the cursor successfully hit the target within 6 s and changed
colors; a “miss” when the cursor hit the invisible target on the
opposite side from where the target appeared; and an “invalid”
when the subject was unable to hit the target with the cursor
within 6 s. BCI performance, or MI accuracy, was quantified
using percent valid correct (PVC) (Doud et al., 2011; Cassady
et al., 2014; Meng et al., 2016; Edelman et al., 2019; Jiang et al.,
2021b), which is the proportion of the number of “hits” within
the total number of “hits” and “misses.”

Electroencephalography acquisition
and preprocessing

EEG data from the subjects were acquired using the
Neuroscan SynAmps system with the 64-channel EEG QuikCap
(Neuroscan Inc., Charlotte, NC) according to the extended
10–20 system. The EEG data were sampled at a frequency of
1,000 Hz and filtered between 0.1 and 100 Hz, with an additional
notch filter at 60 Hz to remove powerline noise. The impedance
of each electrode was kept below 5 k� during preparation.

Each session started by recording 5 min of resting state EEG
data. During these 5 min, subjects were instructed to sit still
with their eyes open and refrain from making large or sudden
motions while EEG was collected. After that, the EEG during
BCI tasks was also collected.

The EEG data were preprocessed according to the following
steps using the MATLAB toolboxes EEGLAB (version 2021.1)
and FieldTrip (version 20220714). First, bad channels were
visually inspected and rejected based on the EEG data variance
using FieldTrip. If a channel was rejected, the data of that
channel were spherically interpolated. The data were also
bandpass filtered between 1 and 100 Hz and downsampled
to 250 Hz. Next, it was re-referenced using common average
reference (CAR), and independent component analysis (ICA)
was used to extract and remove artifacts, including but not
limited to eye blinks and other motion artifacts. Independent
components (IC) were removed if they were deemed to
be motion artifacts. Lastly, the data were corrected for
baseline drift and subsequently linearly detrended. For EEG
analysis of BCI, certain trials with abnormally large variance
were also rejected.

Audio recordings for intervention

The two intervention recordings were both approximately
20 min long and recorded by a yoga instructor. The guided
mindfulness meditation exercise recording aimed to calm the
listener and direct them to focus their attention on their bodies
and their surroundings. In the beginning, there was a short
exercise where the subjects were instructed to count their
breaths. Breath-counting training was included because it is

known to improve mindfulness and decrease mind wandering
(Levinson et al., 2014). Approximately 10 min of the 20 min
were spent imagining parts of the body moving. The control
recording, on the other hand, is simply a voice recording of
the narrator reading out loud the journal article: Mindfulness
Revisited: A Buddhist-Based Conceptualization (Purser and
Milillo, 2015). This manuscript was chosen because while it
is a manuscript on a similar topic—mindfulness—it does not
actually guide the listener through a meditation session. Due
to limited time, however, the reader was only able to read the
first few pages of the article. Throughout the 20 min of both
interventions, the subjects’ EEG data were recorded.

We tried our best to ensure that the subjects were paying
attention and indeed following the instructions. For example,
before starting the audio files, we instructed them to not simply
listen but really engage and follow the instructions, such as
focusing their minds on different parts of their bodies, imagining
moving certain joints, etc. Further, as a way of keeping them
focused, we also reminded subjects of how much time they had
left at 10 and 15 min into the interventions. In our opinion, this
was the best we could do to ensure their engagement with the
mindfulness intervention.

Measure of mindfulness

The Toronto Mindfulness Scale (TMS) was used to measure
the current, transient level of mindfulness of the subjects (Lau
et al., 2006) following the 20-min interventions. The TMS asks
the respondent to look back at “what you just experienced”
to answer a set of 13 statements that “people sometimes
experience” on a 5-point scale from “not at all” to “very much.”
The statements are divided into two subscales–the Curiosity
score and the Decentering score–and for each subscale and TMS
as a whole, a higher score implies a higher level of mindfulness.

In this particular study, the TMS was used in lieu of the
Freiburg Mindfulness Inventory (FMI) and the Mindfulness
Attention Awareness Scale (MAAS), which were used in a
previous study (Jiang et al., 2021b). Unlike the TMS, the FMI
and the MAAS ask the respondent to look back at the past
few days to answer the questions (Brown and Ryan, 2003;
Walach et al., 2006), thus rendering these surveys inappropriate
for this study. Because we wished to investigate the change in
mindfulness following a brief, 20-min intervention, we opted for
the TMS.

Statistical analysis

The statistical tests that were used in this work are the
Wilcoxon signed-rank (WSR) test, the Wilcoxon rank-sum
(WRS) test, and Spearman’s rank correlation. The WSR test is
used to test the statistical difference across two interventions
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in the same subject population. Therefore, this test was used
to compare the TMS scores of those that participated in both
interventions (groups MC and CM) and the change in EEG
data and BCI performance following each intervention in the
two groups. The WRS test is used to compare the effects of
two interventions in two separate groups. Thus, this test was
used to compare the change in BCI performance across groups
that participated in different interventions for each session,
i.e., groups MM and MC compared with group CM in session
1, and group MM compared with group MC in session 2.
Lastly, Spearman’s rank correlation was used to investigate the
association between TMS scores and BCI performance, and
the association between change in BCI performance and the
number of days between the two sessions. Nonparametric tests
were used during statistical analysis because the data collected
did not show a Gaussian distribution, and for certain tests, the
sample size for the groups was not deemed large enough to
warrant the use of a parametric test. All statistical tests were
conducted in RStudio (1.4.1103).

Results

Mindfulness survey scores

The scores of the mindfulness survey taken immediately
after the interventions were compared and are summarized in
Table 1. First, those in group MM (n = 10)–meditation as
the intervention in both sessions–did not show a significant
change in the TMS scores, as was predicted. The group average
total TMS score following the meditation exercise in session
1 is 32.6 ± 10.38, whereas the score following the meditation
exercise in session 2 is 31.6 ± 13.48 (WSR, Z = −0.21,
p = 0.84). Next, we compared the TMS scores among subjects
that participated in both interventions, i.e., those in group MC
(n = 11, meditation in session 1 and control in session 2) and
group CM (n = 15, control in session 1 and meditation in session
2). Overall, we did not find a significant difference in the TMS

scores between the two interventions. In group MC, the average
total TMS score following the meditation exercise in session 1
is 32.91 ± 9.42, whereas the average score following the control
exercise in session 2 is 28.55± 11.47 (WSR, Z =−1.47, p = 0.14).
Those in group CM also did not show a significant change in the
total TMS score. The group average total TMS score following
the control exercise in session 1 is 29.2± 7.12, whereas the score
following the meditation exercise in session 2 is 28.2 ± 12.37
(WSR, Z =−0.07, p = 0.94).

When we separated the TMS statements into the two
subscales, we saw a greater difference in the subscale scores
between the intervention types. Again, the subscale scores from
group MM remain unchanged. The Curiosity subscale score of
the meditation exercise in session 1 is 15.9± 5.47 and that of the
meditation exercise in session 2 is 15 ± 6.46 (WSR, Z = −0.79,
p = 0.43). The Decentering subscale score of the meditation
exercise in session 1 is 16.7 ± 6.48 and that of the meditation
exercise in session 2 is 16.6 ± 7.49 (WSR, Z = −0.18, p = 0.86).
For group MC, the Curiosity subscale score of the meditation
exercise in session 1 is 15.18 ± 6.29 and that of the control
exercise in session 2 is 13± 6.69 (WSR, Z =−1.64, p = 0.10). The
Decentering subscale score of the meditation exercise in session
1 is 17.73± 4.31, whereas that of the control exercise in session 2
is 15.55± 6.09 (WSR, Z =−0.98, p = 0.33). Lastly, for group CM,
the Curiosity subscale score of the control exercise in session
1 is 15.4 ± 6.73 and that of the meditation exercise in session
2 is 12.8 ± 7.78 (WSR, Z = −1.41, p = 0.16). The Decentering
subscale score of the control exercise in session 1 is 13.8 ± 4.41,
whereas that of the meditation exercise in session 2 is 15.4± 6.63
(WSR, Z =−1.45, p = 0.15).

Toronto Mindfulness Survey scores and
brain–computer interface
performance

First, we examined the relationship between the TMS scores,
regardless of intervention type, and overall BCI performance

TABLE 1 Group average Toronto Mindfulness Survey and subscale scores for each session (mean ± stdev).

Group (Sub)score Session 1 Session 2 p

MM Total 32.6± 10.38 31.6± 13.48 0.84

Curiosity 15.9± 5.47 15± 6.46 0.43

Decentering 16.7± 6.48 16.6± 7.49 0.86

MC Total 32.91± 9.42 28.55± 11.47 0.14

Curiosity 15.18± 6.29 13± 6.69 0.10

Decentering 17.73± 4.31 15.55± 6.09 0.33

CM Total 29.2± 7.12 28.2± 12.37 0.94

Curiosity 15.4± 6.73 12.8± 7.78 0.16

Decentering 13.8± 4.41 15.4± 6.63 0.15

P-values compare the group average scores between the two sessions. The meditation exercise was played in session 1 for groups MM and MC and in session 2 for group CM. The control
exercise was played in session 2 for groups MM and MC and in session 1 for group CM.
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in the UD task following the interventions. We investigated
the correlation between the TMS scores and post-intervention
BCI performance only because we believed that the TMS
scores represented the subjects’ level of mindfulness at that
moment when they were just about to start part 2 of each
session. The Spearman correlation coefficients showed no
significant association between the TMS scores and post-
intervention BCI performance. The Spearman correlation
coefficient between the total TMS score and BCI performance
in the UD task following intervention is 0.076 (p = 0.53).
The Spearman correlation coefficient between the Curiosity
subscale score and UD BCI performance is 0.013 (p = 0.92),
and that between the Decentering subscale score and UD BCI
performance is 0.060 (p = 0.62). For comparison, the Spearman
correlation coefficient between the total TMS, the Curiosity
subscale, and the Decentering subscale scores, and the LR task
performance are 0.146 (p = 0.23), 0.151 (p = 0.21), and 0.043
(p = 0.72), respectively.

Then, we wanted to determine whether the level of
mindfulness is related to a change in BCI performance
in the UD task. To do this, we calculated the Spearman
correlation coefficients between the total TMS scores, along
with its two subscales, and the change in UD PVC. For those
that completed the meditation intervention, the Spearman
correlation coefficients between the total TMS score, the
Curiosity subscore, and the Decentering subscore, and the
change in UD PVC are 0.146 (p = 0.34), 0.075 (p = 0.63),
and 0.170 (p = 0.26), respectively. The correlation coefficients
for those that completed the control intervention are 0.155
(p = 0.46), −0.012 (p = 0.96), and 0.251 (p = 0.23), respectively.
For comparison, the correlation coefficients for the LR task are
0.117 (p = 0.44), 0.160 (p = 0.29), and 0.041 (p = 0.79) for
the meditation intervention, and −0.058 (p = 0.78), −0.038
(p = 0.86), and−0.074 (p = 0.73) for the control intervention.

Comparing the EEG power during
meditation, control, and resting state

Next, we compared the EEG power during the meditation
and control interventions and during resting state. Only those
that completed both interventions (meditation and control)
were considered in this analysis, i.e., those in groups MC and
CM. A total of 21 subjects (10 from group MC and 11 from
group CM) were included in this group analysis.

Figure 2 shows the overall group average of EEG power
and EEG power bandpassed to four frequency bands: delta
(1–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz).
Figure 2A shows the average EEG power of each electrode,
calculated by taking the average of the squared difference
between the raw EEG value at each time point and the mean
EEG of that electrode. The group average was calculated by
taking the average EEG power of each electrode for all 21

subjects. We see electrodes with high power in the occipital
region during meditation and control. In contrast, the resting
state EEG presents minimal power compared to meditation and
control. Figures 2B–E shows the group average power of EEG
bandpassed to each frequency band: delta, theta, alpha, and beta.
Again, we see very similar EEG patterns between meditation and
control states, whereas the resting state shows very low power in
all frequency bands.

Comparing the change in
brain–computer interface
performance following each
intervention

To investigate the effect of the two types of intervention on
BCI performance, we compared the change in Percent Valid
Correct (PVC)—the ratio between the number of “hits” and
the sum of “hits” and “misses”—between the group of subjects
that participated in the meditation exercise and those that
participated in the control exercise (Figure 3). In session 1,
we compared the change in PVC following the interventions
between group M (n = 22, group MM and group MC) and
group CM (n = 15). Overall, neither intervention seemed to
have a significant effect on BCI performance. The meditation
subjects (group M) saw a change in LR PVC of 1.30 ± 9.42%
(WSR, Z = −0.69, p = 0.49) and the control subjects (group
CM) saw a change in LR PVC of −1.27 ± 14.40% (WSR, Z =
−0.14, p = 0.89). In the UD task, the meditation subjects (group
M) saw a PVC change of 4.20 ± 11.82% (WSR, Z = −1.48,
p = 0.14) and the control subjects (group CM) saw a PVC change
of 2.84 ± 11.04% (WSR, Z = −0.77, p = 0.44). Here, a positive
change in PVC refers to an improvement in BCI performance
while a negative change in PVC refers to a deterioration in BCI
performance. Although there seems to be a numerical increase
in UD PVC following the meditation exercise–which is in line
with previous report (Stieger et al., 2021b)– this effect disappears
in session 2.

In session 2, we compared the change in PVC between group
MM (n = 10) and group MC (n = 11). One subject in group
MC did not complete session 2 and was dropped from this
part of the analysis. Again, we did not find a significant effect
on BCI performance from either intervention. The subjects
that participated in the meditation exercise (group MM) saw
a change in LR PVC of 6.27 ± 14.24% (WSR, Z = −0.82,
p = 0.41) and the control subjects (group MC) saw a change
in LR PVC of −2.36 ± 9.60% (WSR, Z = −0.67, p = 0.50).
Likewise, the meditation subjects (group MM) saw a UD PVC
change of −1.27 ± 5.60% (WSR, Z = −0.71, p = 0.48) and
the control subjects (group MC) saw a UD PVC change of
3.39 ± 11.38% (WSR, Z = −0.93, p = 0.35). The reason for
only comparing the subjects in these two groups is that it
may be inappropriate to directly compare the subjects across
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FIGURE 2

Scalp topographic maps of group (n = 21) average Electroencephalography (EEG) power of different frequency bands during meditation and
control interventions. (A) Pre-processed average EEG power not filtered to any specific frequency band (1–100 Hz). (B) Average delta band
(1–4 Hz) EEG power. (C) Average theta band (4–7 Hz) EEG power. (D) Average alpha band (8–12 Hz) EEG power. (E) Average beta band
(13–30 Hz) EEG power.

groups M (groups MM and MC) and CM because the subjects
participated in different interventions in session 1. This was also
the reason for splitting the meditation group (group M) into two
smaller groups (group MM and group MC). In contrast, directly
comparing the subjects in groups MM and MC is acceptable
because they come from the same cohort of meditators in
session 1. For comparison, group CM saw a change in LR PVC
of 3.76 ± 16.56% (WSR, Z = −0.19, p = 0.85) and a change in
UD PVC of 0.09± 11.10% (WSR, Z =−0.50, p = 0.62).

Comparing the change in
brain–computer interface
performance across groups

Despite the non-significant change in BCI performance
following the two interventions, we can still examine the
difference in the PVC change between the two groups in both
sessions. In session 1, the meditation subjects (group MM and
group MC) saw a change in LR PVC of 1.30 ± 9.42% and
the control subjects (group CM) saw a change in LR PVC of
−1.27 ± 14.40% (WRS, Z = −0.34, p = 0.73). In the UD task,
the meditation subjects (group MM and group MC) saw a PVC
change of 4.20 ± 11.82% and the control subjects (group CM)

saw a PVC change of 2.84± 11.04% (WRS, Z =−0.34, p = 0.73).
This outcome is repeated in the second session. In session 2,
the subjects that participated in the meditation exercise (group
MM) saw a change in LR PVC of 6.27± 14.24% and the control
subjects (group MC) saw a change in LR PVC of−2.36± 9.60%
(WRS, Z = −1.02, p = 0.31). In the UD task, the meditation
subjects (group MM) saw a UD PVC change of −1.27 ± 5.60%,
and the control subjects (group MC) saw a UD PVC change of
3.39 ± 11.38% (WRS, Z = −1.09, p = 0.28). In short, neither
intervention significantly affected BCI performance in either
BCI task (LR or UD), and the difference in the change in
BCI performance between the interventions was also not found
to be significant.

Association between change in
brain–computer interface
performance and interval between
sessions

While the main purpose of this study was to investigate
the immediate effect of a short, 20-min mindfulness meditation
on SMR-based BCI performance, we also explored whether the
interval between the two sessions (in days) was associated with
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FIGURE 3

Line graphs of each subject’s performance in the LR and UD tasks in both sessions. Black lines represent each subject’s average LR and UD PVC
before and after each intervention and the red lines represent the group average PVC. (A) Change in LR PVC for meditation group (group MM
and group MC) and control group (group CM) from session 1. (B) Change in UD PVC for meditation group and control group from session 1.
(C) Change in LR PVC for meditation group and control group from session 2. (D) Change in UD PVC for meditation group (group MM) and
control group (group MC) from session 2.

a change in BCI performance (PVC, %) following meditation
for group MM (n = 10). Only group MM was considered for
this analysis because they performed the same intervention
(mindfulness meditation) in both sessions, and it made sense
to compare whether the change in BCI performance across the
two sessions was significantly different. The plots (Figure 4)
seem to show a general increase in performance improvement
as the interval between sessions increases, with the Spearman
correlation coefficients being 0.634 for the LR (p = 0.049) and
0.276 for the UD task (p = 0.440), respectively. However, given
the small number of subjects and large variability in the data, it

is not rigorous to conclude that the interval between sessions is
strongly correlated with BCI performance.

EEG during brain–computer interface

We calculated the offline control signal that was as close to
the real control signal used for the online BCI2000 task. First,
we calculated the small Laplacian filtered C4 and C3 mu rhythm
power. Then, for the LR task, the offline control signal was
defined as C4 power minus C3 power (C4 - C3), and for the
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FIGURE 4

Scatter plots of difference in change in BCI performance with respect to the interval between sessions in number of days. (A) Difference in the
change in LR PVC across the two sessions with respect to the interval between sessions. (B) Difference in the change in UD PVC across the two
sessions with respect to the interval between sessions.

UD task, the offline control signal was defined as C4 power plus
C3 power (C4 + C3). After that, this offline control signal was
normalized to zero mean and unit variance. Finally, we defined
and computed the quantity 4control signal as the difference
in offline control signal between the left and right trials in the
LR task, and between the up and down trials in the UD task
(Jiang et al., 2021b).

Theoretically, the larger the 4control signal, the better
the performance should be, since the greater the EEG power
difference between C4 and C3, the easier it is to classify between
left and right, and up and down. We indeed observed a strong
and positive correlation between the PVC and the trial-averaged
4control signal for LR and UD tasks (p <0.001), as shown in
Figure 5. Session 1 compares group MC (n = 10) to group CM
(n = 11), and session 2 compares group MM (n = 10) to group
MC (n = 10).

Next, we looked at how the 4control signal changed
from pre- to post-intervention and compared between the two
intervention types. Figure 6 summarizes the results. Statistical
analysis was performed using the Wilcoxon signed-rank test
to compare within-session changes (pre- vs post-intervention)
and the Wilcoxon rank-sum test to compare the differences
in change of 4control signal from pre- to post-intervention
between the two groups (meditation vs control). There did not
seem to be a trend with respect to which intervention caused a
greater change in the 4control signal. For example, meditators
seemed to improve in the LR control signal in both sessions,
whereas control subjects seemed to improve in only one of them.
Similarly, control subjects seemed to improve in the UD control
signal in both sessions, whereas meditators seemed to improve
in only one of them. None of the tests (pre- vs post-intervention

or meditators vs controls) in any session or task (LR and UD)
showed a p-value less than 0.10.

Discussion

Previous studies have investigated the effects of long-term
meditation and an 8-week MBSR training course on SMR-based
BCI performance. Results suggest that MBAT, in the forms
of yoga and MBSR, has a positive impact on BCI learning
(Cassady et al., 2014; Stieger et al., 2021b). To further explore
the effects of a quick and easy MBAT exercise, in this study,
we investigated the immediate effects of a 20-min meditation
exercise on SMR-based BCI performance. The results show that
a short mindfulness exercise does not significantly affect BCI
performance in 1D cursor control tasks.

First, we examined the effect of a short, 20-min mindfulness
exercise on the quantitative level of mindfulness as measured
by the TMS. The results show that while there seems to be
a numerical difference in the Decentering subscale within the
TMS between the two intervention types, the effect is not
significant. The creators of the TMS validated the legitimacy of
using the TMS to measure and compare the level of mindfulness
between those with either zero or at least 8 weeks of mindfulness
meditation experience (Lau et al., 2006). In contrast, the subjects
recruited for this study either had no experience in the past
6 months or do not consider themselves regular meditators.
Therefore, the ability to evoke a certain level of mindfulness may
be lacking for the subjects in this study. While it is encouraging
that the 20 min of mindfulness exercise was able to produce
a numerically higher Decentering subscale score compared

Frontiers in Human Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1019279
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1019279 December 14, 2022 Time: 14:58 # 11

Kim et al. 10.3389/fnhum.2022.1019279

FIGURE 5

The relationship between 4control signal and BCI performance (PVC, %) from both sessions using Spearman’s correlation. Session 1 contains
subjects from group MC (n = 10) and group CM (n = 11) and session 2 contains subjects from group MM (n = 10) and group MC (n = 10). Blue
dots represent each subject and orange lines represent the linear regression models of the individual points. (A) BCI performance correlates
significantly with the 4control signal between the left and right trials (p < 0.001). (B) BCI performance correlates significantly with the 4control
signal between the up and down trials (p < 0.001).

to the control exercise, whether a longer or more frequent
meditation will lead to a statistically significant difference needs
to be studied. Another possible explanation is that the specific
meditation intervention used in this study was not able to
sufficiently impact the subjects to the degree where it would
improve BCI performance. Future work investigating whether
different types of meditation interventions, and whether a
longer duration (between 20 min and 8 weeks) of meditation
affects BCI performance would help clarify this ambiguity.

Further, it is interesting to note that there was a larger
difference in the Decentering subscale than the Curiosity
subscale between the two interventions. According to the
creators of the TMS, the Curiosity subscale contains statements
that reflect the awareness of the present experience, whereas
the Decentering subscale focuses on the ability to distance from
one’s thoughts and feelings and openness to experience (Lau
et al., 2006). Hence, we predicted that because meditation is the
awareness of the present moment (Schmidt and Walach, 2014),
if there were to be a difference in the subscale scores, it would be
in the Curiosity subscale. We believe that the control exercise,
where the narrator reads aloud parts of a journal paper, was able
to actively engage the listener—the subject—and thus induce
awareness of the present moment, or what they were listening
to. However, only the mindfulness exercise is able to evoke a new
experience, because there are parts in the recording where the
subjects are instructed to “take a mental trip around your body”
and imagine new movements and sensations.

Moreover, the level of mindfulness was shown not to
have an association with BCI performance in the UD task.
Previous works have shown that the level of mindfulness is
significantly correlated with SMR-based BCI performance in
the UD task (Jiang et al., 2021b). Stieger et al. demonstrated

that those that went through an 8-week MBSR training were
better able to up-regulate the alpha power during intentional
rest (Stieger et al., 2021b). Because intentional rest is the control
signal to move the cursor downward within the UD task,
a stronger alpha power would aid in classifying the up and
down trials. Thus, we had initially surmised that the 20-min
mindfulness intervention would have similarly positive effects.
However, in this study, Spearman’s correlation analysis revealed
no correlation between the total TMS Score (or either subscale
within the TMS) and LR PVC, UD PVC, or the change in PVC
for either task.

We also looked into whether the subjects were indeed
meditating when they were instructed to do so. While there
are known EEG patterns that may indicate whether or not
a person is engaging in meditation, such as having increased
theta and alpha bands (Takahashi et al., 2005; Lagopoulos et al.,
2009; Ahani et al., 2013), it is extremely difficult to spot these
patterns by eye, especially in real-time (online). Therefore, many
attempts at classifying meditation versus non-meditation using
various ML techniques also occur offline (Ren and Wu, 2014;
Lu et al., 2017; Schirrmeister et al., 2017; Lawhern et al., 2018;
Luo et al., 2018; Ma et al., 2018; Wang et al., 2018; Stieger et al.,
2021a). Likewise, we also attempted to analyze the differences
in EEG power during interventions and resting state offline.
As shown in Figure 2, we see strong alpha band activities in
the occipital region of the brain during meditation and control,
likely because the subjects were asked to keep their eyes closed
throughout the interventions (Teplan, 2002; Bazanova and
Vernon, 2014). Conversely, the resting state EEG shows minimal
alpha power in the same region, likely due to the subjects having
been asked to keep their eyes open (Bazanova and Vernon,
2014). We believe that the relatively higher delta power in the
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FIGURE 6

Changes in the 4control signal for the LR and UD tasks in both sessions. Session 1 meditators are from group MC (n = 10) and control subjects
are from group CM (n = 11). Session 2 meditators are from group MM (n = 10) and control subjects are from group MC (n = 10). Within-session
changes and inter-group differences were analyzed using the Wilcoxon signed-rank and Wilcoxon rank-sum test, respectively. None of the
comparisons (pre- vs. post-intervention, meditators vs. controls) showed statistically significant difference. (A) Changes in the 4control signal
for the LR task in session 1. (B) Changes in the 4control signal for the UD task in session 1. (C) Changes in the 4control signal for the LR task in
session 2. (D) Changes in the 4control signal for the UD task in session 2.

frontal region during rest compared to meditation and control
stems from the incomplete removal of artifacts related to eye
blinks, despite IC removal during data pre-processing.

The second part of the study was to determine whether
this short mindfulness exercise affects BCI performance. We
found that neither intervention type showed any significant
effect on both BCI tasks, LR or UD. Although there was a small
numerical increase in the average LR and UD PVC in the post-
intervention BCI runs compared to the pre-intervention runs
for the meditators in session 1, the effect is not significant.
Additionally, the control subjects also saw an increase in UD
PVC following their intervention. Hence, the increase in UD
PVC for the meditators could be due to partially attributable
to learning, as it has been shown that BCI learning is possible
not only between sessions but within one session as well (Meng
et al., 2017; Jiang et al., 2021b). Considering within-session
learning—as presented by the control group—the improvement
in BCI performance following mindfulness exercise intervention
is diminished. One possible explanation is that there is an
element of fatigue. Prolonged execution of MI is known to
induce mental fatigue and thus negatively impact MI EEG
separability (Talukdar et al., 2019). Talukdar et al. reported that
subjects started feeling fatigued during the 4th run, or between

36 and 48 min of MI, and by the 5th run that every subject felt
fatigued. Since our study lasted anywhere from approximately
40 min to sometimes even beyond 50 min of MI per session,
many subjects may have become fatigued. This would have
affected their post-intervention BCI performance, especially the
UD task since it was performed last.

Moreover, this modest performance improvement is not
repeated in session 2. Another possible explanation is that the
influence of meditation is far weaker compared to the variation
in individual performance, or that it impacts certain individuals
selectively. For example, the largest change in PVC in either
direction in session 1 was +29.3 and −32%. Even if there were
a slight improvement in PVC due to the brief meditation,
these large variations in performance or even the potential
selectiveness of the impact of meditation may have masked it.

Interestingly, Figure 4 shows a somewhat increasing trend
between the change in BCI performance (PVC, %) and the
interval between the two sessions (days). However, further
studies need to be conducted to corroborate this finding, since
this result was not based on a rigorously designed study protocol
(the interval between sessions was not evenly distributed among
the subjects), as it is not the main purpose of this study, and the
sample size is relatively small (n = 10).
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Lastly, the 4control signal between the left and right trials
of the LR and up and down trials of the UD tasks calculated
using the EEG data during MI was shown to be significantly
correlated to BCI performance (Figure 5). This demonstrates
a valid offline approach to mimic the control signal in online
BCI tasks. The 4control signal did not significantly differ
between the two tasks (LR or UD) or between the two subject
groups (meditation or control). This agrees with the general
EEG pattern that showed no significant difference between
meditators and control subjects, and also with the behavioral
data that showed no significant difference in BCI performance
between the two groups of subjects.

One limitation of this study is that the experimental
setup may have caused some subjects to become drowsy. The
experimenters orally requested the subjects to stay attentive
during the experiment and again immediately before the
intervention started. However, the subjects were seated in
comfortable positions with their eyes closed in a quiet room
while listening to audio recordings, which may have created
an environment for them to easily become drowsy. Drowsiness
could have caused some subjects to miss out on the meditation
intervention or even perform worse in later trials. Another
limitation of this study is that the order in which the subjects
performed MI was not randomized. Prolonged practice of MI
is known to induce mental fatigue and impact MI EEG class
separability (Talukdar et al., 2019). Therefore, we suspect that
the subjects may have felt more fatigued toward the end of
each session, when they were performing the UD tasks. Thus,
fatigue would potentially compromise the positive effect that
meditation may have had on the UD task. A third limitation
is that the specific meditation intervention used in this study
focused on imagery of movement. For example, the narrator
tells the listener to imagine what it would feel like to move
certain parts of the body. Since this recording of mindfulness
meditation was not able to elicit a meditative state—as verified
by the lack of difference in the mindfulness survey scores
and EEG patterns—whether a recording of a different type
of meditation can improve the level of mindfulness, improve
SMR-based BCI performance, or both, warrants further study.

Conclusion

In this study, we investigated the immediate effects of
a short, 20-min meditation exercise on a user’s ability to
control an SMR-based BCI system. Results show that the brief
meditation exercise did not manifest significantly different EEG
patterns compared to a control scheme. This is also illustrated
in the behavioral data, with the level of mindfulness and
BCI performance maintaining similar levels between the two
groups of subjects. The lack of significant improvements in BCI
performance after 20 min of meditation suggests that potentially

longer meditation interventions are required to elicit observable
improvements in controlling an SMR-based BCI.
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