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One hypothesis for why humans enjoy musical rhythms relates to their

prediction of when each beat should occur. The ability to predict the timing

of an event is important from an evolutionary perspective. Therefore, our

brains have evolved internal mechanisms for processing the progression of

time. However, due to inherent noise in neural signals, this prediction is not

always accurate. Theoretical considerations of optimal estimates suggest the

occurrence of certain systematic errors made by the brain when estimating

the timing of beats in rhythms. Here, we tested psychophysically whether

these systematic errors exist and if so, how they depend on stimulus

parameters. Our experimental data revealed two main types of systematic

errors. First, observers perceived the time of the last beat of a rhythmic

pattern as happening earlier than actual when the inter-beat interval was

short. Second, the perceived time of the last beat was later than the actual

when the inter-beat interval was long. The magnitude of these systematic

errors fell as the number of beats increased. However, with many beats, the

errors due to long inter-beat intervals became more apparent. We propose a

Bayesian model for these systematic errors. The model fits these data well,

allowing us to offer possible explanations for how these errors occurred.

For instance, neural processes possibly contributing to the errors include

noisy and temporally asymmetric impulse responses, priors preferring certain

time intervals, and better-early-than-late loss functions. We finish this article

with brief discussions of both the implications of systematic errors for the

appreciation of rhythm and the possible compensation by the brain’s motor

system during a musical performance.

KEYWORDS

loss function, Bayesian theory, systematic error, neural noise, temporal prediction,
rhythm

Introduction

Rhythm is a key component of music, possibly preceding melody in
its origins (Montagu, 2017). Across the globe, rhythm is used in spiritual
rituals and cultural celebrations, increasing social cohesion through group
synchronization (Konvalinka et al., 2011; Mogan et al., 2017; Jackson et al., 2018).
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Furthermore, rhythm is necessary for understanding and
producing language (Nazzi et al., 1998; Ramus et al., 1999;
Kohler, 2009). Another hypothesis for why our brains like
musical rhythm relates to the prediction of time. In the
natural world, such prediction may be crucial for survival.
For example, animals must predict when to initiate movement
to evade a predatory attack, using the so-called margin of
error (Kramer and Bonenfant, 1997; Choi and Kim, 2010).
This prediction can be aided by observing natural rhythms
in movement (Cooper and Blumstein, 2015). Natural selection
thus developed dedicated neural circuitry for the prediction
of time events and thus, processing temporal regularities such
as rhythm.

The cortical and subcortical circuitries of temporal
prediction and rhythm processing are fairly distributed in
the brain (Karmarkar and Buonomano, 2007; Bengtsson
et al., 2009; Grahn, 2012; Sadibolova et al., 2021). These
circuitries include areas such as the supplementary motor area,
cerebellum, inferior parietal cortex, thalamus, and the basal
ganglia (Hardy and Buonomano, 2016; Kotz et al., 2018). These
areas allow the processing of rhythm in the brain to be fast
and spontaneous (Nozaradan, 2014; Wilson and Cook, 2016).
Consequently, our brains are naturally predisposed to process
rhythm and this processing is efficient, or fluent. According
to the Processing Fluency Theory, such fluent processing
should lead to hedonic value attached to rhythm, making it
enjoyable (Reber et al., 2004; Aleem et al., 2017, 2019). Further
research is needed to understand whether certain properties
of rhythms, such as predictability, or complexity, make it less
or more enjoyable. Understanding how our brains process
rhythms and make temporal predictions may help us answer
this question.

Although the brain has evolved relatively accurate
mechanisms for processing the progression of time, making
predictions about event timing is not easy. The brain only has
information about the timing of an event in the ensuing spike
trains. Because of neural noise (Ferster, 1996; Miller and Troyer,
2002), the brain must consider an inherently imprecise neuronal
spike train triggered after the stimulus (Teich and Khanna,
1985; Teich, 1989; Rokem et al., 2006). Moreover, the prediction
must account for the asymmetry inherent in the probability
distribution of post-stimulus spike-train timings (De Boer and
De Jongh, 1978; Recio-Spinoso et al., 2005; Smith and Lewicki,
2006). After a delay following the stimulus, the probability of
a spike rises rapidly and decays slowly. Hence, the time of the
stimulus is an estimation processed under complex spiking
conditions.

Despite knowing that making predictions about event
timing is difficult, we still do not know in detail what
type of errors the brain makes. The work of Di Luca
and Rhodes (2016) has provided evidence that the brain
makes systematic (time-order) errors (Hellström, 1985). Under
some conditions, stimuli presented earlier than expected are

perceptually delayed, but those appearing on time and later
are perceptually accelerated. Di Luca and Rhodes have also
proposed a dynamic Bayesian inferential process to explain
these results, using the temporal asymmetry described above.
In these authors’ proposed process, timing expectations are
dynamically updated and thus, the brain’s inference effectively
becomes a Bayesian Kalman filter (Barraza and Grzywacz,
2008). However, Di Luca and Rhodes’s range of stimulus
parameters was relatively limited. Furthermore, the authors
did not explore some important features of Bayesian models.
For example, such models often rely on loss functions,
which measure the weighted cost of errors. Within the
family of these functions, the Better-Early-than-Late losses
(BELL) can be employed as a safety margin for predatory
evasion (Kramer and Bonenfant, 1997; Choi and Kim, 2010;
Cooper and Blumstein, 2015). Simply put, the brain is
better off erring towards early predictions of timing onset to
escape danger.

The current study proposes and tests a theoretical
framework through which the brain predicts beat times
in the patterned stimuli underlying musical rhythm. This
framework uses Bayesian estimation. Hence, it considers
the inherent asymmetric probability distributions of the
post-stimulus spike trains, BELL functions, and realistic prior
distributions. The framework also attempts to predict different
types of systematic errors when estimating the timing of
beats in rhythms. We test these predictions psychophysically,
probing how the number of beats and interstimulus intervals
in rhythmic stimuli modulate these systematic errors. Finally,
we develop a computational model based on the Bayesian
framework and determine its qualitative and quantitative fits to
our data.

Theory part 1: concepts and predictions

In this section, we outline a theoretical framework for
how the brain predicts beat times. We have two purposes
here: first, we explain the theoretical concepts and derive
experimental predictions. We wait to develop the equations until
after the experimental testing because it helps us prune out a
variety of possibilities. Second, this section can help the reader
understand the theoretical material even if the mathematical
developments may be difficult to understand. We thus postpone
these developments until Section “Theory part 2: computational
modeling” below.

We begin with our definition of beat because our use of
the term may be slightly different from how other people
use it. We define beat as an individual pulse of sound. This
definition is useful for us because such a pulse is what
results in a neuronal impulse response in the auditory nerve
(De Boer and De Jongh, 1978; Teich and Khanna, 1985;
Heil and Peterson, 2015). However, the underlying pulse may
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FIGURE 1

Theoretical considerations, predictions, and test. (A) Relationship
between beats and spikes. The beats are represented by vertical
black lines, while the spikes following each beat are represented
by vertical red lines. The problem is to predict the next beat
(curved arrow). Each beat produces a different train of spikes
and so, the timing of beats must be determined probabilistically
from the spikes (blue ellipse and curved arrow). (B) Reduction
of uncertainty. In an optimal probabilistic estimation, the
uncertainty in the timing of the beats decreases as the rhythm
progresses (horizontal arrows and vertical gray rectangles). (C)
Systematic error. Various factors described in the text contribute
to systematic errors in the determination of the times of the
beats. Thus, the estimated time may be too early or too late
(horizontal arrows and vertical gray rectangles). (D) Test of the
Predictions. To test these predictions, we delivered to subjects
isochronic stimuli with varying number of beats and inter-beat
intervals. However, the last beat was delivered too early or too
late and the task of the subject was to guess which was the case.

extend over a single beat in music. In our experiments,
such extension does not occur, so beats and pulses are
the same.

The main challenge in determining the time of a beat is
that it produces noisy activity in the brain (Figure 1A). Two
identical beats do not typically produce the same patterns of
spikes in neurons. The brain must use these noisy spike patterns
to estimate the time and thus, cannot know for sure when
the beat has occurred. The best that the brain can aim for is
an optimal probabilistic estimation of the time. We take this
optimal approach in our modeling here. Because the estimation
is probabilistic, the optimum is Bayesian (Koop, 2003; Knill
and Pouget, 2004; Doya et al., 2007; Robert, 2007). In our
case, because a rhythm is a repetitive pattern, the optimal
process uses the repetitions of the patterns to improve the
estimations of the times of the beats (Figure 1B). We can
then predict that if the brain uses this optimal approach,
the estimation of times of beats improves the longer the
rhythm lasts.

However, we have reasons to believe that the errors that the
brain makes in the determination of time may be systematic
not just random. Thus, people may perceive beats systematically
before or after they occur (Figure 1C). One reason to believe
in systematic errors is that impulses (for example, beats) tend
to produce responses that are temporally asymmetric. They
rise fast and fall slowly (De Boer and De Jongh, 1978; Recio-

Spinoso et al., 2005; Smith and Lewicki, 2006). Therefore,
the majority spikes happen after the peak of this rise-and-
fall process. What is the time of the beat given these spikes?
To simplify the answer, let us imagine that the beat produces
just one spike with a given asymmetric probability distribution.
What is the best interval to subtract from the time of this
spike to calculate an accurate estimate for the time of the
beat? The answer depends on the types of errors that we
are willing to make, something characterized by the so-called
loss function. For example, if we want to minimize the
square of the error (a quadratic loss), then one can prove
that this estimation should subtract the average time of the
probability distribution. However, because the spike happens
after this average most of the time, the correction will tend
to lead to a systematic error, predicting a time later than
in reality.

Another reason to think that the errors the brain makes
may be systematic is that prior beliefs about a rhythmic
pattern may have a bias towards certain values (De Jong
et al., 2021). As mentioned in the Introduction, in the English
spoken language, people tend to articulate approximately three
to five syllables per second (London, 2012; Patel and Iversen,
2014). Hence, humans are often exposed to rhythms with time
intervals of roughly 200 or 300 ms. Consequently, imagine
that one is hearing a rhythm whose intervals are shorter than
200 ms. Thus, if one is doing optimal estimation, one would
tend to predict the time interval as longer than it really is.
Hence, one would estimate the time of the next beat as later
than it occurs. The opposite would happen if the rhythm
were slow.

A final reason to believe that the brain may make systematic
errors is what we call the Better-Early-than-Late loss (BELL).
In nature, animals are better off underestimating time than
overestimating it to have a margin of error (Kramer and
Bonenfant, 1997; Choi and Kim, 2010; Cooper and Blumstein,
2015). More specifically, they will be unable to escape their
predators by overestimating their arrival time. With BELL, an
optimal estimator would tend to estimate the next beat earlier
than it occurs.

In summary, these theoretical considerations lead to two
predictions: first, the estimation of times of beats improves
the longer the rhythm lasts. Second, the estimation errors
may well be systematic, being positive or negative depending
on both the duration and frequency of the rhythm. To
test these predictions, we ran the following psychophysical
experiment (Figure 1D). Subjects heard isochronic rhythms
whose variables were the number of beats and the inter-beat
interval. The last beat was either later or earlier than
expected. The observer’s task was to choose whether the
last beat was too late or too early in a two-alternative
forced choice. A systematic error would be observed by
the subject choosing early or late more than 50% of
the time.
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Experimental methods

Participants

Seven neurologically healthy participants with normal
hearing took part in the experiment (three females, four males,
ages 16–64). Each participant took part in eight sessions of
approximately 1 h to complete the experiment. Each session
was on a different day, with participants completing all sessions
in at most 10 days. Two of the participants (Subjects 1 and
2) performed the experiment in situ in the lab. The other five
participants performed the experiment after downloading the
computer code to their own computers. A concern with having
five participants use their own computer was that this could add
variability to the data, swamping the effects of interest. However,
these effects were still evident in the experiment, easing the
concern.

Having a large enough number of participants is important
for group-statistical inference (Button et al., 2013; Stanley et al.,
2018). We thus determined the size of the participant cohort
with a power analysis of pilot experiments. Cohen’s h is an
appropriate measure of effect size between proportions (Cohen,
2013). The smallest effect was the difference between the
percentage of correct responses for a large number of beats and
slow rhythms. In this condition, there were 108 observations
per participant. To ensure the appropriateness of our sample
size, we calculated the smallest possible h value that we could
obtain assuming α = 0.05 and at 0.9 power. With a sample size
of seven participants, the smallest possible h value was 0.09,
which was smaller than what was considered a “small” effect
size (though see Correll et al., 2020). Therefore, we believed
that seven participants was a proper sample size to detect an
effect. This sample was smaller than that used by Di Luca and
Rhodes (2016), who had 15 participants for a similar experiment.
However, we did not need as many participants because we used
experimental parameters that were more extreme, magnifying
the effects.

Five of the seven participants were naïve as to the purpose
of the experiment. However, knowledge of this purpose had no
influence on experimental results for the other two participants
given that they could not know a priori whether their responses
were correct.

This experiment was approved by the Georgetown
University Institutional Review Board, with all participants

giving their consent to participate before engaging in
the trials.

Apparatus and stimuli

We programmed the experiment using the Builder view
of PsychoPy3 version 2020.1.0 (Peirce et al., 2019). The
experimental stimuli followed the protocol described in
Figure 1D. Beat-pattern stimuli were prepared using a
standalone version of MATLAB_R2019b (MathWorks Inc.,
Natick, MA). As is standard in auditory beat experiments, a
kickdrum was sampled as the individual beat to be used for
each pattern (Treder et al., 2014). We held the duration of
the kickdrum waveform constant at 22 ms. Similarly, output
volume was maximized at 100% and a constant sampling rate of
44,100 Hz was used as a standard to produce individual beats and
beat patterns. We synthesized beat patterns with varying values
for the parameters: number of beats in a pattern (N), inter-beat
interval before the last beat (Delta), and the relative deviation of
the last interval (rho), defined as a fraction change from Delta.
Table 1 shows the values tested of N, Delta, and rho for each
subject.

For the experiment to work, the persons performing the
experiment on their own devices had to use a computer, not a
smartphone or tablet.

Procedure

Beat pattern stimuli were grouped such that on each day,
the effect of varied Delta and rho parameters were tested while
N was held constant. We tested each value of N over 2 days,
allowing for at least 18 repetitions of each stimulus, a unique
beat pattern combination of N, Delta, and rho. Although the
duration of experimental sessions varied based on subjects’
response times, we optimized the experiment to decrease the
average session to 60 min or less. With shorter times, we
hoped to minimize the effects of subject fatigue. Similarly,
we held N constant for each session to decrease difficulty
without influencing the subjects’ perceptual capacity. Finally,
we ordered session days such that the number of beats tested
would descend in each consecutive series of sessions. This
order allowed subjects to progress from easier perceptual tasks

TABLE 1 Experimental parameters for each subject.

Subject # N Delta (s) rho

1 (3,4,6,9) (0.15,0.3,0.6,0.9,1.2) (−0.15,−0.125,−0.1,−0.075,−0.05,0,0.05,0.075,0.1,0.125,0.15)
2 (3,4,6,9) (0.15,0.3,0.6,0.9,1.2) (−0.15,−0.1,−0.05,0,0.05,0.1,0.15)
3 (3,4,6,9) (0.15,0.3,0.6,1.2) (−0.15,−0.1,−0.05,0,0.05,0.1,0.15)
4 (3,4,6,9) (0.15,0.3,0.6,1.2) (−0.15,−0.1,−0.05,0,0.05,0.1,0.15)
5 (3,4,6,9) (0.15,0.3,0.6,1.2) (−0.15,−0.1,−0.05,0,0.05,0.1,0.15)
6 (3,4,6,9) (0.15,0.3,0.6,1.2) (−0.15,−0.1,−0.05,0,0.05,0.1,0.15)
7 (3,4,6,9) (0.15,0.3,0.6,1.2) (−0.15,−0.1,−0.05,0,0.05,0.1,0.15)

Frontiers in Human Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1009219
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org


Mansuri et al. 10.3389/fnhum.2022.1009219

to harder ones. In pilot experiments, we noticed that more
beats led to a clearer representation of the tempo, making the
task easier. Hence, going from larger to smaller number of
beats would facilitate learning, a phenomenon called “Transfer
Along a Continuum” or “Easy-to-Hard Effect” (Ahissar and
Hochstein, 2004; Liu et al., 2008; Mackintosh, 2009). Therefore,
this order of the number of beats made later sessions clearer.
However, a concern was whether the descending order of N
would confound the behavioral data. Nevertheless, if anything,
the order was compatible with the tested hypothesis. If we
found an improvement in performance with increasing N,
that would be despite the tests making the task with a
small N easier.

Beat patterns appeared in random order for each session of
N. We tested each pattern in three-part blocks corresponding to
a preparatory “ready?” screen, the presentation of the auditory
stimulus, and a feedback prompt. After listening to a beat
pattern, subjects were prompted by the feedback screen to
indicate whether the final beat was heard before or after it was
expected to occur (Figure 1D). Before starting the test sessions,
subjects heard an exaggerated example of a beat pattern with
a rho value increasing or decreasing the final interval by 20%.
With this exaggerated trial, we ensured an understanding of the
timing differences tested by each trial. The same exaggerated
stimuli with N = 5 and Delta = 0.2 s and 1.5 s were used for each
trial day throughout the experiment. Subjects, then, underwent
a three-part practice session, to understand the given stimuli
and task. Successive levels of the practice session increased in
difficulty up to that of the trial values of rho used in the test
trial. For each test session of N, the practice utilized the same
parameters for Delta. We increased or decreased rhos by 30%,
20%, and 15% of the practiced Deltas in the first, second, and
third practice levels respectively. Practice trials were not meant
to exceed 15 min of the anticipated 60-min average session
time.

Data analysis

We determined the probability of a subject’s ability to
predict the occurrence of an early or late final beat in an
experimental condition from the responses. Error bars for the
probabilities were calculated based on the standard error of
the binomial distribution (Krishnamoorthy, 2006). To probe
whether two sets of parameters yielded different probabilities,
we used two-sided exact binomial tests (Krishnamoorthy,
2006), reporting effect size with Cohen’s h (Cohen, 2013).
We interpreted h with Cohen’s rule-of-thumb descriptions.
According to him, we had small, medium, and large effect sizes
if 0.2 ≤ h < 0.5, 0.5 ≤ h < 0.8, and h > 0.8 respectively.
The same two-sided exact binomial tests and Cohen’s h
were also helpful when probing trends as a function of
a variable like N or Delta. Next, we tested for trends by

grouping separately the responses in the lower and larger
values of the variable. Finally, for beat patterns for which
rho = 0, we calculated the difference between the numbers
of “Late” and “Early” responses parametric on N and Delta.
Consequently, we could test for trends as described above in
this paragraph.

The article also provides statistical evaluations of the group
result, by presenting both statistically robust median results
and individual data. Such a separation is possible because
the results do not come from an overly large number of
subjects. Moreover, we use the population-prevalence approach
to quantify how common each effect is (Ince et al., 2022).
However, we avoided the maximum-a-posteriori estimate of
prevalence because our number of subjects was too small
for such a technique. We used instead the frequentist
approach (Allefeld et al., 2016; Donhauser et al., 2018). To
apply it, the prevalence is computed as a percentage, with
the standard error estimated from the binomial distribution
(Krishnamoorthy, 2006).

Experimental results

Full results for a single subject

In our theoretical considerations, we predicted the
occurrence of systematic errors in the perception of beat
timing in patterned stimuli. One reason for these predictions
was the asymmetrical probability distribution of impulse
responses to one beat. Given this asymmetry, subjects would
perceive last beats as occurring earlier than the actual stimuli
more often. In contrast, if the brain used a Better-Early-than-
Late loss (BELL) function, we would tend to predict beats as
earlier than the actual stimuli and thus perceive them as late.
Similarly, the incidence of perceived early and late responses
could be influenced by the brain’s priors about the world. Finally,
we predicted that subjects’ estimates of beat timing should
become more accurate with more information about the pattern.
This would happen, for example, with a large number of beats.
We tested these predictions as a function of the number of
beats, inter-beat interval, and the relative deviation of the final
interval. Figure 2 provides the complete results of this test for
one subject.

The most apparent result in Figure 2 is that as the
magnitude of the relative deviation of the final interval increases,
performance tends to improve. Because our graphs separate
negative and positive deviations, this improvement appears as a
U-shaped trend. This U-shape is not surprising since with larger
deviations, the task gets easier. However, the graphs do reveal
two surprising results. First, for shorter inter-beat intervals,
we see an asymmetry in the probability of correct responses,
wherein predictive performance decreases as the deviation of
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FIGURE 2

Complete experimental results for a typical observer (Subject 3). The experimental condition in each panel is indicated by the number of beats
(N) and the inter-beat interval (Delta). In most panels, the performance exhibits a U-shape behavior as a function of the relative deviation of the
last interval. For low inter-beat intervals, subjects too often responded “Early” even when the last beat came late. This systematic error reversed
direction at long inter-beat intervals.

the final interval shifts from negative to positive values. This
asymmetry is statistically significant and has a Cohen’s large
effect size when the final deviation is 5% for all conditions with
inter-beat intervals of 0.15 and 0.3 s (two-sided exact binomial
test, n = 188, p < 2 × 10−8, Cohen’s h = 1.1). In addition,
the asymmetry is both significant and large effect size for the
inter-beat interval of 0.6 s when we have only three beats (n = 24,
p < 0.007, Cohen’s h = 1.9). Second, we also demonstrate the
reversal in this asymmetry for longer inter-beat intervals. This
reversal is always statistically significant and large effect size
when this interval is 1.2 s (n = 102, p < 2 × 10−5, Cohen’s
h = −1.6). Therefore, the asymmetry depends differentially on
the number of beats and inter-beat interval.

In summary, these results suggest that at least some subjects
make systematic errors when predicting the timing of beats in
patterned stimuli.

Median results over the population

The results presented in Figure 2 are isolated to a single
individual. How typical are the early-vs.-late biases for negative
and positive relative deviations of the final inter-beat interval?
To answer this question, we measured these biases over the
population of tested subjects, utilizing median response data
across trials to avoid outliers. For simplicity, Figure 3 shows
these medians for only the smallest and largest number beats,
and the shortest and longest inter-beat intervals.

We find similar but not identical results to the subject
in Figure 2 in our population estimate (Figure 3). Indeed,
our central estimate confirms the unsurprising U-shaped
behavior, as the deviation from the inter-beat interval increased
in magnitude. Furthermore, we observe asymmetries in the
probability of correct responses. The bias towards perceiving
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FIGURE 3

Examples of the median of the data across subjects parametric on the number of beats and the inter-beat interval. Plot conventions are the same
as in Figure 2. These plots extend the conclusions from the subject in Figure 2 to the population. We observe both the U-shape behavior as a
function of the relative deviations of the last interval and the same systematic errors for low and high inter-beat intervals.

earlier-than-expected beats occurs most when subjects are
presented with fewer beats and shorter inter-beat intervals.
The asymmetry reverses for the population as the number of
beats and inter-beat interval increases. However, some important
differences between Figure 2 and Figure 3 are apparent. For
example, the asymmetries are less pronounced in the population
for a large number of beats. This is indicative of some
individuality in the systematic errors, something that we will
address later in this section.

These results, thereby, suggest that the trends indicative of
systematic error are present in all or most of the population.

Dependence on the number of beats

In our theoretical considerations, we predicted that
increasing the number of beats presented to subjects would

improve their estimation of the beat timing. Our argument for
this improvement was that the larger number of beats would
increase the amount of information. Given the systematic
biases presented in Figure 2 and Figure 3, we identify such
improvements as fewer asymmetric early-vs.-late biases. We test
these predictions with the median across subjects in Figure 4A.

Figure 4A shows that our theoretical prediction for the
dependence on the number of beats holds. As this number
increases, the probability of a subject responding correctly rises.
In the figure, we see this rise by the curves with 0.15 s inter-beat
interval getting closer together. The difference between these
curves is statistically significantly larger and has a Cohen’s small
effect size for the combined 3-and-4-beats data than for the
combined 6-and-9-beats results (two-sided exact binomial test,
n = 680, p < 0.002, Cohen’s h = 0.3). However, despite getting
closer together, the curves do not converge, and a significant
asymmetry remains. This remaining asymmetry is statistically
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FIGURE 4

Dependence of median performance as a function of number of
beats and the inter-beat interval. (A) Dependence on the number
of beats parametric on the inter-beat interval and the relative
deviation of the last interval. (B) Dependence on the inter-beat
interval parametric on the number of beats and the deviation of
the last interval. The performance as a function of the number of
beats is constant except when the inter-beat interval is short and
the deviation of the last interval is positive. Thus, performance
improves with the number of beats. The performance as a
function of the inter-beat interval improves when the deviation of
the last interval is positive. However, the opposite happens when
this deviation is negative.

significant and has a medium effect size with 9 beats (n = 196,
p < 0.004 for 0.15 s, Cohen’s h = 0.6). Although Figure 4A only
illustrates the remaining asymmetry and the improvement with
the number of beats for rho = 0.1, the result is more general. It
also holds for rho = 0.05 and rho = 0.15.

In sum, a larger number of beats helps to improve the
performance, but does not eliminate the systematic errors in the
perception of beat time.

Dependence on the inter-beat interval

Our theoretical considerations also predicted the effects
of the inter-beat interval on the likelihood of correctly

determining the sign of the last-beat deviation. Beat patterns
with short inter-beat intervals should more frequently
lead to longer than true predicted intervals, eliciting early
responses. The opposite would happen for patterns with long
inter-beat intervals. A mechanism for how this dependence
of systematic errors on inter-beat interval would happen is
the prior distribution. A prior peaking in the middle of the
experimental range of inter-beat intervals would lead to a
longer-than-actual interval estimate for short experimental
intervals and the opposite for long intervals. Figure 4B
shows the test of these predictions with the median data
across subjects.

Figure 4B demonstrates the differential effects of early vs.
late deviations on subjects’ probability of responding correctly.
For beats that arrived later than expected, subjects’ performance
improved as the length of the inter-beat interval increased. This
upward trend was statistically significant and had a Cohen’s h
medium size effect when probed by grouping separately the
responses to inter-beat intervals of 0.15 s and 0.3 s, and 0.6 s
and 1.2 s. The probe of the upper trend was the binomial exact
test (n = 333, p < 4 × 10−8, Cohen’s h = 0.76 for 3 beats
and n = 444, p < 2 × 10−5, Cohen’s h = 0.53 for 9 beats).
In contrast, subjects’ probability of correctly determining an
early beat fell as the inter-beat interval rose. This fall was
statistically significant for three beats and had a Cohen’s h small
size effect (n = 355, p < 0.005, Cohen’s h = −0.4). Again,
although Figure 4B only illustrates this fall for rho = −0.1 and
the rise for rho = 0.1, the result is more general. The rise also
holds for rho = 0.05 and rho = 0.15. However, although the
fall is significant for rho = −0.05, the same does not happen
for−0.15.

These results highlight the strong effects of the inter-beat
interval on systematic errors in the estimation of beat timing.

Biases as the roots of the systematic
errors

What is the cause of the systematic errors observed in
the results so far? A simple hypothesis is that the brain
has biases during perceptual processing which manifest as
early or late estimates of true event timing. We observe
these errors as an outcome. To test this hypothesis, we
randomly presented subjects with beat patterns that contained
no intervals with relative deviations. Subjects indicated
whether they perceived the final beat as occurring before
or after it should occur. Figure 5 highlights the outcome
of this measurement in terms of the median across the
population.

Figure 5A utilizes a contour plot to indicate the trends of
the data. Subjects’ bias for each combination of the number
of beats and the inter-beat interval is presented in this figure
as the subtraction of the number of times the subjects chose
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FIGURE 5

Examples of the median of the data across subjects for the case
where the last beat had no deviation. (A) Contour plot of the
excess of “late” responses over “early” ones. (B) Excess of “Late”
responses as a function of the inter-beat interval parametric on
the number of beats. (C) Excess of “Early” responses as a function
of the number of beats parametric on the inter-beat interval.
Subjects show a bias towards “Early” responses for low inter-beat
intervals and the opposite bias for longer ones.

late or early. Figure 5A demonstrates that subjects were
more likely to shift their biases from early to late as the
inter-beat interval increased. This shift is apparent in the
change of color from blue to yellow as we move upward
in the plot. Figure 5B summarizes this shift. The upward

trend in the shift was statistically significant, with Kendall
τ = 0.625, 0.447, 0.408, and 0.404 in order of increasing
number of beats. The probabilities that these coefficients
were zero by chance were p < 0.0002, 0.007, 0.02, and
0.02 respectively. In contrast, these biases were not changed
significantly with the number of beats. None of the Kendall
τ for the corresponding curves (Figure 5C) were significantly
different from zero.

In summary, these results suggest that the early-vs.-late
systematic errors are due to biases depending mostly on the
inter-beat interval.

Individuality in the biases

When comparing Figure 2 with Figure 3, we pointed out
that their differences indicated a degree of individuality in the
systematic errors. The purpose of this section is to inspect this
individuality. We use the results of Figure 5, which suggested
that the systematic errors are due to biases in the estimation
of the beat time. To study the individuality of these perceptual
biases, we present contour plots for each subject participating in
trials without relative deviations. Figure 6 shows these contour
plots.

For most subjects, we observe the general trend that an
increase in the inter-beat interval duration causes a shift from
early to late timing estimates. The results of every individual,
except for Subject 7, demonstrate that the smallest inter-beat
interval tested yields the greatest number of early biases
(population prevalence = 86% ± 13%). In our figures, this
demonstration is delineated by the darkest blue regions being
at the bottom of the plot, where they were always below the
yellow. This relative relationship on the plot is indicative of
a shift in early-vs.-late bias. The greatest difference between
subjects was where in the plot the yellow region laid above the
darkest blue. For some subjects, the peak reversal happened at
high inter-beat intervals and large number of beats (Subjects
2 and 3). For others, the peak was either at low number of beats
(Subjects 4 and 5) or at intermediate inter-beat intervals (Subject
6). Only Subject 7 showed no bias reversal with the inter-beat
interval (population prevalence of bias reversal = 86% ± 13%).
Post-experiment exit interviews revealed a likely cause for the
discrepancy in this subject’s data. Unlike the others, Subject
7 would listen to the pattern, and would try to replicate it
with tapping once it was finished being played. So, this subject
responded to the short-term memory of the stimuli rather than
directly to them.

These results suggested an individuality in terms of the
details of the shift in early-vs.-late biases, but not in its gross
features.

Could we explain this individuality by the instability
of the subjects? Because every data point was measured
over two days, the instability of the results could be
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FIGURE 6

Individuality demonstrated through the non-zero-deviation data for different subjects. Plot conventions are the same as in Figure 5A. As in that
figure, most subjects (2–6) show a bias towards “Early” responses for low inter-beat intervals. Similarly, at larger inter-beat intervals, the bias
reverses. However, whereas for some subjects the peak reversal happens at high inter-beat intervals and a large number of beats (Subjects 2 and
3), for others the peak is either at a low number of beats (Subjects 4 and 5) or at intermediate inter-beat intervals (Subject 6). Only one subject
showed no bias reversal with the inter-beat interval. We discuss possible reasons for this difference between this subject and others in the text.

assessed. We used data like those in Figure 6 for
this assessment. For every subject, the correlation
coefficients of the data in two consecutive days were

always significantly larger than the coefficients across
subjects. Consequently, individuality was not due to the
subjects’ instability.
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Theory part 2: computational modeling

As explained in Section “Theory part 1: concepts and
predictions,” we expect systematic errors in the perception of
the timing of beats. The experimental results have confirmed
these expectations, revealing complex behavior as a function of
the number of beats and the inter-beat interval (Figures 2–6).
We now test whether the ideas in Section “Theory part 1:
concepts and predictions” can account for these complexities.
The goal of this test is not so much to fit the data exactly
but to capture their main qualitative points. We thus develop a
quantitative theory with realistic elements but do not attempt
to optimize all the components. In this section, we present the
general elements of our theory. In the Section “Computational
methods,” we describe the choices of models used in the
computer simulations.

We denote a series with beats by their times

ťN = (tN , ...t1), (1)

where a subindex i indicates the ith beat and N is the
number of beats in a particular experimental trial. Another
notation introduced in Equation 1 is the use of the accented
variables x̌i to indicate the temporal history of the variable
x up to the moment i (Burgi et al., 2000; Grzywacz and
De Juan, 2003). Because we use an isochronic condition in
our experiments (Figure 1D), the times of the beats are
such that

ti − ti−1 = 1, 1 < i < N
tN − tN−1 = 1(1+ ρ),

(2)

where ∆ > 0 and ρ are constants, with the former
and latter indicating the typical inter-beat interval and
the relative deviation of the last interval respectively.
These beats are linked to noisy spike trains in the brain
(Figures 1A–C). To simplify our modeling, we assume
that we can capture the spike train due to the beat at time
ti with a single instant in the train, si > ti. This instant
could represent, for example, the mean or median of the
times of the spikes. These instants are denoted here by
šN = (sN , ..., s1).

Because of the noise in the spike trains, we assume that
the beats are linked to the internal times of the spikes by the
probability density distribution

P (si|ti : Eα) = Ps(si|ti : Eα), (3)

where in this article, we use the symbol “:” to separable
the variables (for example, ti) from the vector of
parameters (Eα in Equation 3). Because of causality, the
function Ps must obey Ps(si|t1 : Eα) = 0 for si < ti.

Moreover, in this article, we postulate that Ps is temporally
asymmetric.

Let us assume for simplicity that the brain knows somehow
that the first N − 1 beats are isochronic (Equation 2).
Thus, if the brain estimates the time of the first beat
(t(e)1 ) and the inter-beat interval (∆(e)), then the brain
automatically has an estimate of the time of any beat up to
the penultimate:

t(e)i = t(e)1 + (i− 1)1(e), 1 ≤ i ≤ N − 1. (4)

From the estimate of t(e)N−1 and Equation 3, the brain can obtain
an optimal prediction for the time of the last spike, s(p)N . The
optimal subject would then compare the time of this prediction
with that of the actual last spike to respond to the question in the
experiment in Figure 1D:

s(p)N

{
< sN subject answers “Late”
> sN subject answers “Early”

(5)

To obtain optimal estimates of t(e)i ,1(e), s(p)N , we need to know
the probability P

(
t(e)1 ,1(e), s(p)N |ŝN−1

)
, that is, the probability of

our desired estimates and prediction given the history of the
spikes. Using Bayes theorem (Koop, 2003; Knill and Pouget,
2004; Doya et al., 2007; Robert, 2007), we get

P
(
t(e)1 ,1(e), s(p)N |ŝN−1

)
= KP

(
ŝN−1, s(p)N |t

(e)
1 ,1(e)

)
P
(
t(e)1 ,1(e)

)
,

where K is a normalization constant independent of
t(e)1 , ∆(e), and s(p)N , the variables that we want to optimize
in our calculations. A simplification of this equation is
possible by noting that we can drop the dependence on
t(e)1 from the second probability function of the right-hand
side. We can drop this dependence because no special time
for the first beat exists. Consequently, we can rewrite this
equation as

P
(
t(e)1 ,1(e), s(p)N |ŝN−1

)
= KP

(
ŝN−1, s(p)N |t

(e)
1 ,1(e)

)
P
(
1(e)

)
, (6)

The interpretation of this equation follows standard
Bayesian concepts. The first probability function is the
likelihood function because is predicts the responses of
the brain given the beat under consideration (Equation
4). In turn, the second probability function encapsulates
the prior assumption about the most common rhythms
heard in the world (information about common inter-beat
intervals as stated in our Introduction). We denote this later
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function by P1(1∗ : Eβ), where its vector of parameters is
Eβ .

To find the optima of Equation 6, we propose for simplicity
approximating t(e)1 , ∆(e), and s(p)N in two stages, as follows:

(
t(e)1 (Eα, Eβ),1(e)(Eα, Eβ)

)
= argmaxt∗ ,1∗ P1(1∗ : Eβ)

N−1∏
i = 1

Ps
(
si|t∗ + (i− 1)1∗ : Eα

)
, (7)

s(p)N

(
Eα, Eβ , Eγ

)
=

argmaxs∗
∞∫

t(e)1 + (N−1)1(e)

ds′Ps
(
s′|t(e)1 + (N − 1)1(e)

)
L(s∗, s′ : Eγ ),

(8)

where the L function is the loss function for s(p)N and Eγ is
the vector of parameters of this function. We use an explicit
loss function for Equation 8 but not for Equation 7 because
the task requires only a decision for s(p)N (Equation 5) but not
for t(e)1 and ∆(e). The loss function measures the cost of error
between s* and s′.

Computational methods

Particular models used in the simulations

In Section “Theory part 2: computational modeling,” we
presented the general elements of our theory. In this section, we
describe the choices of models used in computer simulations.

To perform the computer simulations, we must specify
three models, namely, the functions Ps(si|ti : Eα) (Equation 3),
P1(1∗ : Eβ) (Equation 7), and L (s∗, s′ : Eγ ) (Equation 7). In this
article, we postulate that Ps is temporally asymmetric. To model
this asymmetry, we use the Gamma distribution as commonly
employed in neuroscience in its original form or as a normalized
alpha function (Grzywacz et al., 1988; Destexhe et al., 1994; Van
Vreeswijk et al., 1994):

Ps (si|ti : Eα = (τI , n)) =
(si − ti)n - 1

τIn0(n)
e−

(si−ti)
τI , (9)

where τI is the time constant associated with the Impulse
response from beat to spike, n ≥ 1 is the parameter
controlling the asymmetry of Ps (this function becomes
increasingly symmetric as n increases), and Γ is the
Gamma function.

Next, because ∆ > 0, we model P∆

in this article as a lognormal distribution

(Krishnamoorthy, 2006) instead of the more standard
normal distribution:

P
(
1(e) : Eβ

)
= P1

(
1(e) : Eβ = (τ1, σ)

)
=

1
1(e)

τ1

√
2πσ

e−

(
log
(
1(e)
τ1

))2

2σ2 , (10)

where Eβ is the vector of parameters of the prior distribution.
In the model of Equation 10, the components of Eβ are τ∆, a
time constant making the variable ∆(e)/τ∆ unitless and σ > 0,
a constant controlling the symmetry of the distribution. The
smaller σ is, the more the distribution becomes symmetrical and
normal. Finally, the full lognormal model includes a constant
subtracted from the logarithm inside the square. We did not
include this constant here because we both did not need it to
capture what we wanted to model and did not want to add
parameters to the study.

Finally, the loss function L (s∗, s′ : Eγ ) can be modeled in
different ways and in this article, we explored four types:

LM
(
s∗, s′ : Eγ = (τE, τS)

)
=

(
1−

(s∗ + τE)
τS

s′

τS

)2
, (11)

Lδ(s∗, s′ : Eγ = τE) = δ
(
(s∗ + τE)− s′

)
, (12)

L2(s∗, s′ : Eγ = τE) =
(
(s∗ + τE)− s′

)2, (13)

L1(s∗, s′ : Eγ = τE) = |(s∗ + τE)− s′|. (14)

The loss function in Equation 11 is based on a standard Margin-
based, convex, proper, and classification-calibrated loss function
frequently used in binary classification (Rosasco et al., 2004;
Bartlett et al., 2006). The function of the τ S parameter is to
make the s* and s′ terms unitless, so that their multiplication
can be subtracted from 1 in Equation 11. In turn, the parameter
τ ≥ 0 is the simplest implementation of the Better-Early-than-
Late loss (BELL). The idea is that the s* term becomes similar
to the s’ term if the predicted s* happens earlier than in reality
by τE. A similar principle for the role of applies to the other
loss functions. However, these functions emphasize different
losses. That in Equation 12 uses the δ of Dirac, which forces a
solution optimizing the maximum a posteriori solution (Robert,
2007; Bassett and Deride, 2019). Therefore, the brain would
estimate the time of the last spike as the time of the estimated
last beat (Equation 4) plus the mode of Ps. In turn, Equations
13 and 14 force the minimization of quadratic and absolute-value
errors. These minimizations tend to lead to a predicted time of
the last spike that is the sum of the time of the estimated last
beat, and the mean and the median of Ps respectively (Koop,
2003).
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Parameters of the simulation

In this article, we report on simulations with different
parameter sets of the theoretical models. The models had either
five or six free parameters, namely, τ I and n in Equation 9, τ∆
and σ in Equation 10, and τE and τ S in Equations 11–14. We
optimized the parameters with a coordinate-descent algorithm
(Wright, 2015) by minimizing the χ2 of the goodness of fit.
The initial condition of the optimizations was τ I = 0.1 s, n = 2,
τ∆ = 2 s, σ = 1, τE = 0.01 s and τ S = 0.1 s. These values of initial
conditions were chosen by inspection of neuroscience literature
or for the sake of simplicity. The choice of n = 2 was because
“2” was the smallest integer yielding a rise-and-fall asymmetric
impulse response (Krishnamoorthy, 2006). With this choice, a
selection of τ I = 0.1 s sets the mode of the impulse-response
distribution at 100 ms (Krishnamoorthy, 2006), a reasonable
value for auditory cortical impulse responses (Lü et al., 1992;
Curio et al., 2000; Norman-Haignere et al., 2022). Next, the
choice σ = 1 is the smallest integer compatible with Equation
10 and with this selection, the mode of the distribution happens
approximately when 1(e)/τ1 ≈ 1/3. Thus, to set the mode of
1(e), in the middle of the experimental range, we made τ1 = 2 s.
We then set τE = 0.01 s, thinking that BELL would make a small
correction, namely, only 10 ms. Finally, given that we set the
mode of the impulse response at around 100 ms, we also set τ S
to the same scale.

We then designated the optimal set of parameters as our
standard set because the corresponding results captured the
data reasonably well. We also performed simulations with other
parameters around the test set to study the roles of the different
parameters of the model. The parameters of each simulation are
indicated as appropriate in the Results.

Computer simulations

The optimization simulations for any given loss function
proceeded with the following algorithm:

a. Initialize the optimal theoretical parameter set as indicated
in the Section “Parameters of the simulation.”

b. Initialize χ2
opt = 10300.

c. Make the current theoretical parameter set equal to the
optimal theoretical parameter set.

d. Initialize the parameters of the experiment, namely, N = 3,
∆ = 0.15 s, and ρ =−0.15 (Equations 1 and 2).

e. Obtain the beat times (Equation 2).
f. Repeat the following Steps i-vi 1,000 times.

i. Sample the time of the spikes (Equation 9).
ii. Estimate the time of the first beat and the inter-beat

interval (Equation 7).
iii. Estimate the time of the last spike (Equation 8), using the

different loss functions (Equations 11–14).

iv. Determine if the estimated time of the last spike was
before or after the actual last spike (Equation 5).

v. The response was correct if ρ < 0 and the estimated time
of the last spike was after the actual last spike or vice-versa.

vi. Accumulate the number of correct responses.
g. Calculate the theoretical percentage of correct responses by

dividing the number of correct responses by 1,000.
h. Calculate the predicted number of correct responses

by multiplying the result in Step g by the number of
experimental trials per condition.

i. Calculate the contribution to the χ2 for the current
experimental parameter set.

j. Check if we have run over all sets of experimental
parameters.

i. If yes
A. Sum all χ2 from Steps g.
B. If this sum is smaller than χ2

opt

1. Reset χ2
opt to the sum.

2. Reset the optimal theoretical parameter set to the
current theoretical parameter set.

3. Can we update the current theoretical parameter
set of the simulation according to the coordinate-
descent algorithm?

I. If yes, make the update and go to Step d.
II. Otherwise, end the procedures.

ii. Otherwise, update the experimental parameter set and go
back to Step e.

Quantification of fits

With the χ2 statistic, we used a Goodness of Fit test for
the null hypothesis that the model fits the data by chance
(Krishnamoorthy, 2006). We applied the test to the complete
data set encompassing Figure 3 and Figure 5. The degrees of
freedom for this test varied across loss functions. This is because
they had different numbers of theoretical parameters (Equations
11–14). In general, the number of degrees of freedom was the
number of experimental parameters (4 × 4 × 6 = 96) minus the
number of theoretical parameters (6 and 5 for Equation 11 and
Equations 12–14 respectively) minus 1. Thus, we had 89 degrees
of freedom for the first loss function and 90 for the others.

Computational results

Fits of the data

The experimental results confirmed the expectations of
systematic errors in the perception of the timing of beats.
The results revealed complex behavior as a function of the
number of beats and the inter-beat interval (Figures 2–6). We
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FIGURE 7

Fits of the model to the median of the data across all subjects. The black dots show the experimental data and their standard errors. In turn, the
red lines indicate the behavior of the model with optimal parameters and the absolute-value loss function (Equation 14). With few exceptions,
the fits of the model capture well the behavior of the data both quantitatively and qualitatively.

thus developed a quantitative theory to try to capture these
complexities (Equations 5–14). As a first step, we fitted the
predictions of a model based on the theory to the median data
(Figure 3). The results of this fit appear in Figure 7.

Figure 7 reveals that the model captures the complex
qualitative features of the experimental data. Not surprisingly,
both the data and the model exhibited U-shape behaviors
as a function of the relative deviation of the final interval
(see Discussion after Figure 3). More interestingly, the model
captures the systematic errors observed in the data. When the
inter-beat interval was short (0.15 s), both the data and the model
reveal the same systematic error: subjects and model too often
responded “Early” even when the last beat came late. Thus, the
percentage of correct responses was lower than the chance for
positive but not negative deviations of the last interval. However,

the differential effect of negative vs. positive deviations fell as the
number of beats increased. In addition, this difference inverted
direction in both the data and the model when the inter-beat
interval was longer in duration (for example, 0.6 s). Finally,
the inversion also occurred as the number of beats increased at
intermediate inter-beat intervals (0.3 s).

The model similarly provides good quantitative fits of the
data. This quantitative support can be observed by determining
how close the red lines were to the black dots in Figure 7.
Confirmation of the good quality of fit arose by a χ2 test,
which showed that the model was statistically indistinguishable
from the data. Further confirmation of the success of the model
came from its accountability of the biases of the zero-deviation
measurements. The model-predicted biases have the same
behavior as the experimental one.
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However, the fits were not perfect. For example, in Figure 7,
the model appeared to overestimate performance for positive
deviations of the last interval when N = 4 and ∆ = 0.15 s. In
contrast, when N = 9 and ∆ = 0.15 s, the model underestimated
performance for negative deviations.

Varying parameters and loss functions

In Figure 7, the good fits of the model depended on the
choice of the loss function and the optimization of parameters.
That figure illustrated the model behavior when using the
Absolute-value Loss (L1 – Equation 14). In turn, the optimal
parameters of the model were n = 1, τI = 75 ms, τE = 15
ms, τD = 1.4 s, and σ = 1.1. What were the consequences of
relaxing the assumption of the L1 loss function and making these
parameters less optimal? Figure 8 answers these questions with
illustrations of further outcomes of the computer simulations.

When we varied the loss function, the fits were almost
identically the same for the Margin-based (LM – Equation 11),
Quadratic (L2 – Equation 13), and Absolute-value (L1 – Equation
14) losses. To emphasize this point, the χ2 values of the model
fits were 56.2, 58.5, and 56.2 for LM , L2, and L1 respectively.
However, the Maximum-a-posterior loss (Lδ – Equation 12) did
much more poorly. The χ2 value for the best model fit with Lδ
was 159.0, almost three times worse than with the other loss
functions. An illustration of what went wrong with Lδ appears
in Figure 8. As this figure reveals, the model could not account
for subjects too often responding “Early” even when the last beat
came late for cases of low inter-beat interval.

The variation of the parameters helped determine their roles
in the fits of the model. For example, if we removed the prior
(Equations 7 and 10) from the equations, the model became
incapable of reproducing the too-often-Early bias (compare
Figure 8 with Figure 7). This was not surprising because the
optimal parameters for prior were τD = 1.4 s, and σ = 1.1. The
mean of the prior with these parameters was 2.6 s, which was
longer than the inter-beat intervals in the experiment. Thus, if
anything, the prior caused a bias in the estimations towards late
last beats. In contrast, BELL had the opposite effect. Removing
BELL by setting τE = 0 ms instead of 15 ms caused some of
the too-often-Early bias to disappear (compare Figure 8 with
Figure 7. That was also not surprising because, by design,
BELL biased the estimations towards earlier times. Finally, we
probed the effects of the beat temporally asymmetric impulse
response. We did so by removing simultaneously the effects
of the prior and BELL. Inspection of Figure 8 revealed that
the asymmetric impulse response could by itself produce both
too-often-Early and too-often-Late biases. However, the biases
are smaller than what we get when incorporating the prior
and BELL in the model. In the Discussion, we analyze how
the asymmetric impulse response leads by itself to the biases
observed in Figure 8.

Discussion

The brain does not estimate time
correctly

“Not quite my tempo,” retorts J.K. Simmons in the 2014 film,
Whiplash, to a training drummer before angrily hurling a chair
at the student. Simmons then asks the question, “Were you
rushing, or were you dragging?” In other words, Simmons’
character claims a knack for differentiating the fine timing
differences within rhythms. However, our study demonstrated
that such timing perceptions were not necessarily accurate.
In addition, we found that these perceptual inaccuracies were
systematic and their direction changed based on the tempo or
the individual inter-beat interval durations. Our subjects showed
the least probability for these errors with a standard 100 beats
per minute stimulus (inter-beat interval of 0.6 s). However, as
the rate increased, so too did the probability that the subjects
would perceive a “dragging beat.” Thus, at high rates, the beat
sounded earlier than expected. In contrast, in line with previous
studies, we also demonstrated that when the rate of the stimulus
decreased, the probability of a “perceived rushing” increased (Di
Luca and Rhodes, 2016; Rhodes, 2018).

Although incorrect, the times estimated
by the brain may be optimal

The relative success of our Bayesian model in capturing the
experimental data suggests that the brain has good reasons not
to estimate the tempo correctly. The Bayesian nature of our
model arises because the impulse response in the brain is noisy.
Consequently, under a Bayesian scheme, the best that the brain
can hope for is to estimate timing as well as possible. What does
“well as possible” mean? If the brain is Bayesian when estimating
time, “well as possible” means optimally from a probabilistic
perspective (Koop, 2003; Knill and Pouget, 2004; Doya et al.,
2007; Robert, 2007). And the computation could be optimal
even if the outcome is incorrect. The goal of the brain is not
necessarily to estimate time right but to do it in such a way as
to optimize survival under natural selection.

Our model suggests three fundamentally different reasons
why the brain does not estimate time correctly. First, the
prior distribution in the model reflects properties of the
external world (Yuille et al., 2004; Geisler and Perry, 2009;
Girshick et al., 2011). If the external world has a bias towards
certain time intervals, the brain would be better off guessing
its estimate to match them, making the outcome sometimes
wrong. Second, the temporally asymmetric impulse response
and its related transfer function reflect unavoidable biophysical
constraints internal to the nervous system (Grzywacz et al.,
1992; Destexhe et al., 1994). The optimization achieved by
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FIGURE 8

Consequences of relaxing the assumption of the L 1 loss function and making the parameters less optimal. The panels illustrate what happens
to the fits in Figure 7 when we use the Maximum-a-priori loss function, or when we remove the prior distribution, BELL, or both. With the
Maximum-a-priori loss, the model cannot account for subjects too often responding “Early” even when the last beat comes late. The same
happens when we remove the prior. Without BELL, the effect is more difficult to respond “Late” even when the last beat comes early. Finally,
without prior and BELL, the only source of temporal asymmetry is in the impulse response to the beat. Although the effects are smaller, this
asymmetry can capture some of both the “Early” and “Late” systematic errors.

the brain cannot ignore these constraints even if sometimes
the estimated time turns out to be wrong. Third, the

Better-Early-than-Late Loss function reflects the properties
of the action that the animal must perform. Errors in
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some actions are more costly than others, such as when
escaping danger.

The failures of the various alternatives of the model are also
instructive. The simplest failure is that the models of this kind
that we consider outperform humans if the number of beats is
large. That is not surprising because we did not include decision
noise in our models (Mueller and Weidemann, 2008; Wilson
et al., 2014; Kahneman et al., 2021) and thus, they can improve
unbounded with more data. A more interesting type of failure is
that of the model with maximum-a-posteriori loss function. This
model does not capture the bias towards “Early” responses with
short inter-beat intervals (Figure 8). The only way that a loss
function affects our results is by interacting with the probabilistic
impulse response (Equation 8). The impact of BELL through
such a function is relatively small (Figure 8). Hence, the failure
of the maximum-a-posteriori loss function must have to do with
the temporal asymmetry of the impulse response. This function
estimates the time of the last spike as follows: it adds to the
estimated time of the last beat and the relatively small time-
to-peak of the asymmetric impulse response (see discussion
after Equation 14). Consequently, the true last spike is almost
always after the estimated spike, leading to a “Late” response.
Because the data show a bias towards “Early” responses for short
inter-beat intervals, the maximum-a-posteriori loss function is
unlikely to be what the brain uses.

An alternative beyond those proposed by our model
may explain why the systematic time-prediction errors are
different for short and long inter-beat intervals. Interval-
perception research has suggested that different timescales are
tied to different cognitive functions (Buhusi and Meck, 2005).
Hence, these timescales would be processed by separate neural
networks. If two different networks contribute to short and long
timescales, then the errors for short and long inter-beat intervals
can be distinct. However, this explanation based on different
networks can be compatible with our model. For example, a
network implementing the BELL loss function would tend to
estimate the next beat as earlier than it occurs. Another network
implementing the prior distribution (De Jong et al., 2021) could
estimate the next beat as later than it occurs if the inter-beat
interval is short.

Where in the brain is beat time estimated
and temporal asymmetries produced?

Beat perception studies between humans and non-human
primates indicate that we seem to have evolved uniquely good
mechanisms for perceiving time differences (Merchant et al.,
2015). Functional imaging and lesion studies have noted the
roles of multiple brain areas in carrying out these functions.
The areas include the cerebellum, basal ganglia, inferior parietal
cortex, prefrontal cortex, premotor cortex, thalamus, and
supplementary motor area (Ivry and Spencer, 2004; Kung et al.,

2013; Kasdan et al., 2022). In particular, the cerebellum has
functional significance in the predictive coding of temporal
information in speech (Lesage et al., 2017). Furthermore, studies
focused on the perception of beats with only two pulses have
highlighted the key role of the cerebellum in absolute timing
measurements (Nichelli et al., 1996; Malapani et al., 1998; Grube
et al., 2010). In turn, the neural correlates of our proposed
temporally asymmetric impulse responses are general in the
brain. Multiple mechanisms exhibit such asymmetries, such
as sensory transduction (Grzywacz et al., 1992) and synaptic
transmission (Bi and Wang, 2002). These mechanisms lead to
asymmetries in sensory processing, particularly in the auditory
system (Phillips et al., 2002; Deneux et al., 2016).

Can the motor system correct the
estimation of time?

Humans often listen to musical rhythms while entraining
some movement to the beat through tapping or head bobbing,
for example. Pure beat perception relies upon an accurate
bilateral network of motor areas (Grahn and Brett, 2007).
This perception may utilize these motor regions for the
purposes of action-oriented simulations, as indicated by the
ASAP hypothesis (Patel and Iversen, 2014). Moreover, the
production of rhythms through sensorimotor synchronization
engages the motor cortex properly (Kasdan et al., 2022). The
participation of the motor system may give some indication
as to how musicians and dancers can predict the timing of
external rhythms despite the occurrence of perceptual systematic
errors. The motor system may also help accurately carry out
movements within the timing of these intervals. Indeed, this
motor activation and the subsequent input of somatosensory
and proprioceptive information into the cerebellum has been
highlighted as a feedback mechanism for error correction in
sensorimotor synchronization (Repp, 2005; Zatorre et al., 2007).
Similarly, musical expertise improves the efficiency and fluency
of these mechanisms (Loehr et al., 2011). Thus, we may be able
to support J.K. Simmons’ character’s evaluation of the musical
rushing or dragging. We do it by noting the use of his arms to
conduct the ensemble with a preferred tempo. Alternatively, he
may have simply used relative perception in his evaluations. If all
members of a musical ensemble have similar systematic errors,
then the dragging or rushing of an individual may be an added
mistake to the collective biases.

Implications for aesthetic values of
rhythm

How can people enjoy musical rhythm if the perception
of beat times is wrong? We see three possible answers to this
question. First, the most popular tempos are in the range
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of 90–99 beats per minute (Xiao’an, 2021). These tempos
correspond to isochronic inter-beat intervals of around 0.63 s.
In our data, such intervals are around those yielding the least
systematic errors in the estimation of time (Figure 2 and
Figure 4B). Second, even if people get the timing of beats
too soon or too late, two consecutive beats tend to have
similar systematic errors. Hence, the interval between these beats
is statistically correct. We predict that people will only stop
enjoying the rhythm if the intervals start varying by more than
the intended inter-beat intervals yielding at least 75% correct
response. These threshold error intervals vary by the number of
beats and the inter-beat interval. For the subject in Figure 2, for
9 beats, these threshold relative errors are approximately 20%,
10%, 10%, and�20% for inter-beat intervals of 0.15 s, 0.3 s, 0.6 s,
and 1.2 s respectively. Third, when an ensemble of musicians is
playing together, the key is for them to synchronize their beats.
The motor system may have a more important role than the
auditory system in this synchronization (Section “Can the motor
system correct the estimation of time?”). In addition, even if
musicians in an ensemble perceive every beat incorrectly, this
would not matter if all players in the ensemble synchronize their
errors.

A potentially powerful conclusion from our modeling
studies is that the systematic errors that the brain makes
when estimating the time of beats may have a link to why
humans enjoy rhythms. The modeling suggests that the brain
has purposeful mechanisms when estimating time. These
mechanisms may not always estimate the time right, but the
errors may reflect the optimization of survival goals. Thus, as
we Discuss in “Where in the brain is beat time estimated and
temporal asymmetries produced?” the brain devotes purposeful
resources to the estimation of time. These resources make
this estimation fluent. Therefore, according to the Processing
Fluency Theory (Reber et al., 2004; Aleem et al., 2017, 2019), the
estimation of time with small, albeit systematic, errors should
be aesthetically pleasing to the brain. We propose that the brain
does not abhor errors, but may even like them if they help us
survive.
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