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EEG hybrid brain-computer
interfaces: A scoping review
applying an existing hybrid-BCI
taxonomy and considerations
for pediatric applications

Matheus G. Mussi* and Kim D. Adams*

Assistive Technology Laboratory, Faculty of Rehabilitation Medicine, University of Alberta,

Edmonton, AB, Canada

Most hybrid brain-computer interfaces (hBCI) aim at improving the

performance of single-input BCI. Many combinations are possible to

configure an hBCI, such as using multiple brain input signals, di�erent stimuli

or more than one input system. Multiple studies have been done since 2010

where such interfaces have been tested and analyzed. Results and conclusions

are promising but little has been discussed as to what is the best approach

for the pediatric population, should they use hBCI as an assistive technology.

Childrenmight face greater challenges when using BCI andmight benefit from

less complex interfaces. Hence, in this scoping review we included 42 papers

that developed hBCI systems for the purpose of control of assistive devices

or communication software, and we analyzed them through the lenses of

potential use in clinical settings and for children. We extracted taxonomic

categories proposed in previous studies to describe the types of interfaces

that have been developed. We also proposed interface characteristics that

could be observed in di�erent hBCI, such as type of target, number of targets

and number of steps before selection. Then, we discussed how each of the

extracted characteristics could influence the overall complexity of the system

and what might be the best options for applications for children. E�ectiveness

and e�ciency were also collected and included in the analysis. We concluded

that the least complex hBCI interfaces might involve having a brain inputs and

an external input, with a sequential role of operation, and visual stimuli. Those

interfaces might also use a minimal number of targets of the strobic type, with

one or two steps before the final selection. We hope this review can be used

as a guideline for future hBCI developments and as an incentive to the design

of interfaces that can also serve children who have motor impairments.
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1. Introduction

Children with very limited motor abilities may benefit from

the use of brain-computer interfaces (BCI) to access play and

learning activities, but there is very little research in the area. BCI

are devices that use brain signals processed via computational

operations to control machines for various purposes, from

rehabilitation to gaming. Despite the long list of interfaces

created to this day, most traditional BCI still face challenges

in achieving the desired performance needed for reliably

controlling assistive devices. Hybrid brain-computer interfaces

(hBCI) may be able to address the limitations of traditional

single-input BCI (Kinney-Lang et al., 2020; Orlandi et al., 2021).

The main goal of hBCI is to improve BCI performance through

multi-modal signal inputs, e.g., combinations of different brain

signals, BCI paradigms, and/or other external devices (Wolpaw

and Wolpaw, 2012).

There have been a few reviews of traditional single-input

BCI use with children (Mikołajewska and Mikołajewski, 2014;

Beraldo et al., 2020; Orlandi et al., 2021). However, the reviews

only revealed 8 unique studies for BCI control of devices, and

no reviewed studies used hBCI. In a review by Karlsson et al.

(2022), hybrid BCIs are mentioned as a potential technology for

children with disabilities to attain better accuracies and reduce

errors, however, only studies with adults were cited.

There have been several reviews on hBCI but they primarily

included studies that tested systems with adults who do

not have disabilities: Sharmila (2020) provided an overview

on the types of hBCI for wheelchair-based systems; Neeling

and Hulle (2019) focused on multi-input hybrids and their

applications; Sadeghi andMaleki (2018) compared accuracy and

information transfer rate (ITR) across systems; Hong and Khan

(2017) discussed the combination of brain signals and their

application for both clinical and non-clinical scenarios; Choi

et al. (2017) did a systematic review and proposed a taxonomy

classification system for hBCI systems; Banville and Falk (2016)

did a systematic review and discussed experimental protocols,

signal processing, and study rational; and Amiri et al. (2013)

reviewed multi-brain signal hBCIs. Muller-Putz et al. (2015)

compared hBCI applications that had participants with and

without disabilities. There have also been studies using hBCI that

proposed taxonomies or summarized it, such as Li et al. (2019)

who categorized hBCI according to Multiple Brain Patterns,

Multi-sensory and Multiple Signals, and Allison et al. (2011)

who summarized the initial efforts in hybridization and the

perspectives of hBCI.

BCI for children differs from implementation for adults for

several reasons. There might be difficulties in identifying signal

features (Mikołajewska and Mikołajewski, 2014), recognizing

oscillatory brain signals (Ehlers et al., 2012), and instructing

young participants to perform the desired self-regulating mental

task (Zhang et al., 2019b). During experiments, external

factors such as lab environment or the presence of the

caregiver can distract children and negatively influence the

recorded signal (Richards, 2003; de Haan, 2007; Gavin and

Davies, 2007). In addition, BCI system requirements may be

difficult, overwhelming or unpleasant to the children, causing

them to lose interest or be unable to continue (Gavin and

Davies, 2007). Cognitive skills that affect BCI performance are

beginning to be explored with adults, such as working memory,

general intelligence, executive function (Sprague et al., 2016),

maintaining attention (Riccio et al., 2013), and task switching

(Pitt and Brumberg, 2018). The Beraldo review summarized that

children 11 years and older achieved performance comparable

to adults (Beraldo et al., 2020). However, some of the needed

cognitive skills are only apparent after a certain level of brain

development (Menary et al., 2013), for example, Cowan et al.

(2006) reported that children have poorer attention capabilities

than adults.

The reviews on hBCI covered a wide variety of applications

and analyses, but it is difficult to determine what might be

appropriate to develop for use with children. Therefore, the

following is a review of the state of the art in hBCI, including

factors that may affect ease of use.

2. Review objectives

The objective of this review was to examine the literature

around hBCI with regards to clinical applications, especially

applied to control of devices and communication, with a lens

for potential use in the pediatric population (less than 18 years

old). The guiding research questions were: (1) What are the

existing approaches for hBCI systems that are focused on control

of devices, that could be used clinically?; (2) What are the factors

of the hBCI that may influence use by children?

3. Search methodology

The keyword search consisted of four parts to specify

the hybrid modality, the BCI system, the application type

and the acquisition source: (Hybrid* OR Multi-input* OR

Multi-Sensor* OR Multi-Device* OR Multimodal) AND (“brain

computer interface” OR BCI* OR hBCI OR “human machine

interface” OR HMI) AND (Activit* OR Task* OR Step* OR

Assignment* OR Exercise OR Test* OR Execut*) AND (((EEG)

OR (electroencephalogra*)) OR (non-invasive)).

As the definition of a hybrid BCI (hBCI) can be broad, to

narrow down our scope, we defined someminimal requirements

for a hBCI system to be considered valid for our analysis.

Firstly, we only considered systems that included signal

acquisition via electroecephalography (EEG). EEG-based BCI

are the most popular system compared to other non-invasive

methods [such as near infra-red (NIRS), functional NIRS

(fNIRS), or magnetoencephalography] and they have the highest

information transfer rates (ITR), which puts them in an
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advantageous position in terms of performance compared to

other methods. Secondly, the BCI component must have had

a primary role in the overall system. Counterexamples of this

requirement would be hBCI that used brain signals only for

target selection confirmation or hBCI that used brain signals

only as a mechanism to switch between non-BCI input modes.

Thirdly, the multiplicity of inputs or paradigms had to work

synergistically to achieve improved results. The main interest in

this review was in systems that combine different paradigms,

inputs or sensory pathways attempting to improve traditional

BCI. Systems that implemented two paradigms to execute

completely unrelated tasks, although they happen to be accessed

through the same interface, were not considered for this review.

Systems that combined BCI paradigms and a switch mechanism

to perform separate tasks were not considered. For example, a

system that used one BCI paradigm to move a wheelchair and

another to select items on a shelf were rejected. Likewise, systems

that integrated an on/off switch mechanism to a previously

standalone BCI were also rejected. We understood that such

systems did not significantly contribute to the improvement of

the system’s performance but rather with its controllability and

asynchronous capabilities.

The scoping review methodology proposed by Arksey and

O’Malley (2005) was implemented. Articles from Web of

Science, PubMed, Scopus, and IEEE Xplore databases were

extracted as they focus on medical and engineering topics. The

criteria for inclusion and exclusion were delimited per filtering

phase, following the scoping reviewmethodology. The exclusion

criteria of the previous phases were kept for the next phases in

case the article did not explicitly mention an exclusive term in

the previous phase. All databases were searched on February

23rd of 2021, and articles published before that date were

included without specific cutoff criteria. Patents, reviews, and

other formats of publication that were not articles or conference

papers were not included.

3.1. Title inclusion/exclusion criteria

Article titles to be included had to: (1) contain “hybrid

BCI” or other terms that indicated hybridization such as

multi-input, multi-modality or multiple paradigms, signal

acquisition methods or devices; and (2) make reference to

control terms (selection, interaction, classification, etc.) or

devices (speller, robotic arm, wheelchair, etc.). The titles

that were excluded were the ones indicating that the paper

focused on: (1) non-hBCI systems (e.g., single-input BCI,

multi-input devices), (2) estimation applications (e.g., motion

trajectory prediction, group decision making), (3) assessment

applications (learning performance, affective/emotion state,

mental/psychological state, facial expressions or fatigue),

(4) imaging and detection applications (e.g., neuroimaging,

algorithms to localize best EEG sources, studies on brain

signal detection, cortical reorganization, epilepsy detection), (5)

other EEG-related algorithms, (e.g., artifact removal algorithms,

algorithm for EEG signal simulation), (6) rehabilitation or

therapeutic applications, (7) systems including functional

electrical stimulation, (8) invasive technologies, and (9) pure

headset development.

3.2. Abstract exclusion criteria

At this stage, the title-included articles were filtered based

on their abstracts. Articles were excluded if they were oriented

toward: (1) BCI as a complementary input in a multi-modal

system, (2) the study of hybrid classifiers for a single BCI

input, (3) optimal channel selection algorithms, (4) development

of a method or framework for experimentation, (5) signal

identification during other activities or (6) if they had no

participants (i.e., only used datasets for validation).

3.3. Full article exclusion criteria

The final filter allowed a more in-depth analysis of each

article. At this phase, articles were excluded if they: (1)

proposed an invalid hBCI (i.e., brain signal was a secondary

function, any of the inputs in a two-system input was only

used to keep/turn the system on/off, paradigms or inputs did

not work in synergy), (2) did not have a valid performance

measurement (accuracy or true positives, true negatives, false

positives and false negatives, or any indication of the number

of correct trials vs. the total) of the paradigms’ efficiency

(as opposed to the task accomplishment, which was not the

main interest), (3) had online trials but only provided offline

performance measurements, (4) did not include performance

measurements for the relevant system role of operation, either

for each of the inputs or their combination, (5) proposed a

system that was not suitable for control applications, (6) had

insufficient information for experiment replicability (i.e., lacked

information such as, but not limited to, number of trials,

number of participants, number of sessions, number of analyzed

samples, number of training/validation datasets, or clarity about

experiment protocol).

4. Data extraction

Descriptive information was extracted from the articles

such as study population, size, age, control task, and the tools

that were used for the development of the hBCI (model,

programming languages, toolboxes). System data was extracted

and labeled according to the hBCI taxonomy proposed by Choi

et al. (2017) (see Table 1). The categories used were: (1) diversity

of input signal, (2) role of operation, (3) mode of operation,

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1007136
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Mussi and Adams 10.3389/fnhum.2022.1007136

TABLE 1 Taxonomic features.

References Diversity of input Role of Op. Mode of Op. Mental strat. Brain sign. Stim. mod.

Ahn et al. (2014) SB Sim Synch Op. Cond. SMRmu Operanttactile

SB Seq Synch Op. Cond. SMRmu Operanttactile

Allison et al. (2010) SB Sim Synch Op. cond.Sel. att. SSEPSMR Visual

Allison et al. (2012) SB Sim Synch Op. cond.Sel. att. SSEPSMR Visualoperant

An et al. (2014) SB Seq Synch Sel. att. ERP Visualauditory

SB Sim Synch Sel. att. ERP Visualauditory

Breitwieser et al. (2016) SB Sim Synch Sel. att. SSEPERP Tactile

Brennan et al. (2020) EI Sim Synch Sel. att. SSEP Visual

Brunner et al. (2011) SB Sim Synch Op. cond.Sel. att. SSEPSMR Visual

Buccino et al. (2016) MB Sim Asynch Op. cond. SMR Operant

Chiarelli et al. (2018) MB Sim Synch Op. cond. SMR Operant

Duan et al. (2015) SB Seq Asynch Op. cond.Sel. att. SSEPSMRmu Visualoperant

Duan et al. (2019) SB Seq Synch Op. cond.Sel. att. SSEPSMR VisualOperantauditory

Egan et al. (2017) SB Sim Synch Sel. att. SSEPERP Visual

Fan et al. (2015) SB Seq Synch Sel. att. SSEPERP Visual

Glowinsky et al. (2018) MB Sim Synch Sel. att. ERP Auditory

Jalilpour et al. (2020) SB Sim Synch Sel. att. SSEPERP Visual

Kaongoen and Jo (2017) SB Sim Synch Sel. att. SSEPERP Auditory

Katyal and Singla (2020) SB Sim Synch Sel. att. SSEPERP Visual

Khalaf et al. (2020)
MB Sim Synch Op. cond. SMR Operant

MB Sim Synch Op. cond.Sel. att. SSEPSCP Visualoperant

Ko et al. (2020) SB Seq Asynch Sel. att. SSEPERP Visual

Lee et al. (2018)
MPh Seq Synch Sel. att. ERP Visual

MPh Seq Asynch Sel. att. ERP Visual

Li et al. (2018) SB Seq Synch Op. cond.Sel. att. SSEPSMR Visualoperant

Lin et al. (2016)
MPh Sim Asynch Sel. att. SSEP Visual

MPh Sim Synch Sel. att. SSEP Visual

Long et al. (2012a) SB Seq Asynch Op. cond.Sel. att. ERPSMR Visualoperant

Long et al. (2012b) SB Sim Synch Op. cond.Sel. att. ERPSMR Visualoperant

Mannan et al. (2020) EI Sim Synch Sel. att. SSEP Visual

Mousavi et al. (2020) SB Sim Synch Op. cond. SMR Operant

Nann et al. (2020) MPh Seq Synch Op. cond. SMR Operant

Saravanakumar and Reddy (2019) EI Sim Synch Sel. att. SSEP Visual

Shi et al. (2019) MPh Seq Asynch Op. cond. SMR Operant

Shin et al. (2018) MB Seq Synch Op. cond. SMRSCP Visualoperant

Soekadar et al. (2015) MPh Seq Synch Op. cond. SMR Operant

Wu et al. (2016) SB Sim Synch Sel. att. SSEPERP Visual

Xu et al. (2014) SB Sim Synch Sel. att. SSEPERP Visual

Xu et al. (2020)
SB Sim Asynch Sel. att. SSEPERP Visual

SB Sim Synch Sel. att. SSEPERP Visual

Yang et al. (2020a) SB Seq Synch Sel. att. SSEP Visual

Yang et al. (2020b) SB Sim Synch Op. cond.Sel. att. SSEPSMR VisualOperant

Yao et al. (2014) SB Sim Synch Op. cond. SMR Operant

Yao et al. (2017) SB Seq Synch Op. cond. SMR Operant

Yu et al. (2017) SB Seq Asynch Op. cond.Sel. att. ERPSMR VisualOperant

Yu et al. (2019) SB Seq Synch Sel. att. ERP Visual

Zhang et al. (2019a) MPh Seq Synch, Asynch Op. cond. SMR Operant

Zhou et al. (2020) MPh Sim Asynch Sel. att. SSEP Visual

Underlined elements indicate different experiments within a paper. SB, single-brain signal; MB, multi-brain signal; MPh, multi-physiological; EI, external input; Sim, Simultaneous; Seq,

Sequential; Synch, Synchronous; Asynch, Asynchronous; mu, µ-rhythm.
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FIGURE 1

Inclusion/exclusion criteria flowchart.

(4) mental strategy, (5) brain signal signature, and (6) stimulus

modality. A brief description of the categories is provided here:

Diversity of input is categorized as homogeneous or

heterogeneous, depending on whether the input types

are brain signals only, or brain signals combined with

other inputs, respectively. Homogeneous hybrid-inputs

can have a single-brain signal approach [e.g., both

electroencephalography (EEG)] with multiple paradigms

or a multi-brain signal approach [e.g., EEG and functional

near-infrared spectroscopy (fNIRS)] with single or

multiple paradigms. Heterogeneous inputs combine multi-

physiological signals [e.g., EEG and electromyography

(EMG)] or external inputs (e.g., EEG and Eye Tracker).

Role of operation refers to the role of each system and

how they are chronologically bound together. The role can

be simultaneous, where both systems work concurrently in

either the same or in different parts of the task. It can also

be a sequential-switch, where one system initiates the other

system, or a sequential-selector, where one system partially

completes the task and the other system confirms or rejects

the selection.

Mode of operation is the mode with which the experiment

is paced. For synchronous experiments, stimuli are

presented within a specific timeframe and cues are used.

Asynchronous interfaces are self-paced by the subject, with

more flexible timeframes.

Mental strategy is categorized as either selective attention

or operant conditioning. Selective attention strategies rely

on external stimuli to generate expected brain responses,

while operant conditioning strategies (also known as slow

cortical potentials) rely on the self-regulation of the subject

to generate distinguishable brain responses.

Brain signal signature are defined by the mental paradigm

used for the interface, and is directly associated with

the mental strategy. For selective attention, the steady-

state evoked potential (SSEP), transient event-related

potentials (ERP) and motion-onset evoked potential

(mVEP) are possible signatures. For operant conditioning,

slow cortical potentials (SCP) can be modulated via

movement related efforts (sensory-motor rhythms—SMR)

or attention levels (µ-rhythm). Other mental tasks

involving music and speech imagery were also classified

as SCP.

Stimulus modality is the pathway through which the

user is stimulated so that the brain can elicit predictable

signals. The pathway can be sensorial such as visual,

tactile or auditory, or self-induced in the case of operant
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conditioning, defined as the operant pathway. A further

classification can be made in terms of diversity of stimulus

modalities within the interface. Single modality uses the

same sensory pathway for all inputs and paradigms,

and multi-modality uses different sensory pathways for

the same brain signature [e.g., steady-state visual evoked

potential (SSVEP) and steady-state somatosensory evoked

potential (SSSEP)].

Some interface characteristics that might play an important

role in the complexity of a hBCI system were also tracked. These

characteristics are important to be considered when designing

hBCI as they may directly impact the workload, appeal and the

level of engagement of children when using the system.

Type of target refers to the kind of stimuli that happens

on the screen. Target types can either elicit a certain brain

response or indicate to the participant what self-regulating

action to take. On-screen targets require visual focus on the

stimuli so that the brain can evoke certain signal patterns.

The still targets flash periodically (usually with less than

6 Hz) with a certain inter-stimuli interval and are usually

associated with P300 paradigms and spellers. Those targets

generally require counting and focus on a single desired

target. Strobic targets have flashing with higher frequencies

(usually above 6 Hz) incorporated into them. They are

mostly used in SSEP or rapid serial visual presentation

(RSVP) paradigms and can change in intensity, color,

shape, visuals or position, and targets usually have different

frequencies. Spatial targets stimulate users to displace

objects, cursors or other elements over time by triggering

a certain threshold of intensity. They are mostly used for

slow cortical potentials.

There are also off-screen targets, which require greater

focus and mental training as they do not present stimuli,

nor feedback in some cases (Mahmoudi and Erfanian,

2006). These include motor/tactile (MoTa) targets, which

require focus on certain motor imageries or tactile

stimulations. This approach could be an alternative for

people with significant visual impairments. Mental tasks

measure the blood flow generated in the brain when

arithmetic operations, mental geometric manipulation or

word formation are performed by the participant. They

are usually associated with NIRS, fNIRS and functional

transcranial Doppler ultrasound (fTCD) inputs. Finally,

sound cues are targets that rely on sound for selection.

These targets can be difficult to distinguish, even when the

audio tracks are substantially manipulated as in An et al.

(2014) or Glowinsky et al. (2018).

Number of targets can vary depending on the application

and the tasks to be performed with the interface. Some

authors have attempted to increase the number of targets

to increase the ITR. Although it might be a good strategy

that can give the user more flexibility and a faster system,

a greater number of targets could make a user distracted or

overwhelmed by many options.

Number of steps before selection can also be considered

the number of sub-tasks required. Some systems require

multiple steps before a final selection is completed (i.e.,

multiple input commands and classifications needed to

make a final selection). Although having multiple steps can

add redundancy that can make the final selection more

accurate, it could also increase a system’s complexity.

Effectiveness and efficiency were the two main performance

metrics considered. As most of the BCI community uses

accuracy (or other parameters that allow for accuracy

assessment) to indicate effectiveness, we used accuracy as our

metric for effectiveness. Huggins et al. (2011) reported that

accuracies above 90% are expected by potential BCI users.

On the other hand, efficiency is measured in a variety of

different ways. Most papers that do present efficiency metrics

use information transfer rate (ITR), but execution time or

commands per minute are also recurrent. It is important to note

that our main interest was in the metrics referring to the overall

BCI system’s classification and not to the task accomplishments.

5. Search results

When all the filters were applied, 42 articles were selected

for this scoping review, as shown in Figure 1. Initially, the search

on all databases yielded 1,585 publications, 617 from Web of

Science, 225 from PubMed, 489 from Scopus, and 244 from

IEEE Xplore. The number of duplicates was 1214, which, when

removed, resulted in 771 unique articles. From those, 303 were

included after title-filtering, 150 after abstract-filtering and 42

after article-filtering. No conference papers remained among the

42 final articles, although we did not set a strict exclusion criteria

for conference papers.

Figure 2 shows how many articles were published per year.

The earliest paper that passed the filtering criteria was from

Allison et al. (2010). The overall number of articles per year has

been growing. In 2020, 14 articles were written that matched our

criteria, over three times more than in the previous six years.

5.1. Descriptive data

Population diagnosis, size and age range are shown in

Table 2. No studies included child participants. One study had

a participant aged 18 years (Kaongoen and Jo, 2017) but most

studies had at least one participant within the range of 20–30

years, except for Nann et al. (2020) who worked with tetraplegic

participants aged 51.8 ± 15.2 years. Only two papers included

participants above 40 years of age (Brennan et al., 2020; Nann
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FIGURE 2

Number of papers included per year.

et al., 2020). Figure 3 displays the age range of participants

in each study with the achieved average accuracy. Ahn et al.

(2014) and Breitwieser et al. (2016) were omitted from the graph

because their average accuracies were less than 70% (44.5 and

60%, respectively).

Only three studies included participants with disabilities.

Soekadar et al. (2015) tested the systemwith one participant with

flaccid hand paralysis, a 34 year old male. The study reported

that he was able to control a robotic hand via motor imagery

(MI), even though his accuracy was slightly lower than the

average of the other neurotypical participants (76.03% compared

to 80.65%). Brennan et al. (2020) included 14 participants with

brain injury (although only nine completed the hBCI trials) with

an average age range of 41.6±13.9 years. Participants underwent

trials with both an SSVEP BCI and an SSVEP Eye Tracker hBCI

for comparison. The hBCI trials had higher accuracy than the

BCI, with 99.14% compared to 80.26%. Participants with brain

injury only did one session of experiments, while neurotypical

participants did two. Nann et al. (2020) had four participants

with tetraplegia with an average age of 51.8 ± 15.2 years. The

study tested an EEG BCI and an hBCI combining EEG with

horizontal oculoversion, increasing the accuracy from 58.68 ±

10.62% to 81.25 ± 5.84%. All participants with tetraplegia rated

the system as user-friendly and reliable. The study population

ranged from 1 to 30 participants, with the most common

population size being ten participants (21.3% of the studies), as

seen in Figure 4.

The devices controlled are represented in Figure 5. Eighteen

of the hBCI systems were oriented to control, but only controlled

an interface, and did not specify the device. The most common

control task was spellers, with 13 systems. Six articles controlled

devices that were moved with brain signals such as drones,

wheelchairs and other vehicles (physical or simulated). Four

controlled robotic devices, four controlled cursors or games, and

two focused on home automation systems.

Twelve out of 42 of studies used the g.USBamp, as shown

in Figure 6. Most of the papers reported using a fabric cap with

Ag/AgCl electrodes or golden cups. The only headset-style used

was the Cognionics system, used in Yang et al. (2020a,b). Articles

that combined multiple acquisition systems were: Buccino et al.

(2016) combining the microEEG with the fNIRS NIRScout;

Khalaf et al. (2020) combining the g.USBamp with the SONARA

TCD; Chiarelli et al. (2018) combining the Net300 with the

Imagent fNIRS; Shin et al. (2018) combining Biosemi with

LIGHTNIRS; and Glowinsky et al. (2018) combining BrainAmp

with ETG-4000 NIRS.

The stated tools that were used for the development of hBCI

are represented in Figure 7. Programming languages, toolboxes,

stimuli generators and processing tools were considered. The

most used language was MatLab, followed by Python and C#, C,

and C++. BCI2000, Psychtoolbox, and EEGLAB were the most

used toolboxes, usually paired with MatLab.

5.2. hBCI taxonomy data

The characteristics according to Choi et al. (2017)’s

taxonomy are shown in Table 1. Some papers presented more

than one variation of the system. In the 42 papers, 47

systems were presented. Khalaf et al. (2020) presented two

systems with different brain signals, one using SMR and one

combining SSEP and SCP. Other papers presented synchronous

and asynchronous experiments using spellers for cue-based

experiments and free-spelling (Lin et al., 2016; Lee et al., 2018;

Xu et al., 2020), and others did both sequential and simultaneous

stimuli interfaces (Ahn et al., 2014; An et al., 2014). Therefore,

all of the following percentages were calculated with 47 total

systems, unless otherwise stated.

5.2.1. Diversity of input

Considering the diversity of input, 36 out of 47 of the systems

(76.6%) were homogeneous and 11 (23.4%) were heterogeneous,

as show in Figure 8A. Thirty of the homogeneous systems used

EEG only and the reminder used a multi-brain signal input

approach: two combined EEG and fNIRS, two combined EEG

and NIRS, and two combined EEG and fTCD. All the multi-

brain signal input systems only presented offline results. Of the

eleven heterogeneous systems, eight were multi-physiological

and three made use of external input. The multi-physiological

signals were mostly EEG and EOG, but Lin et al. (2016)

combined EEG and EMG and Zhang et al. (2019a) combined

EEG, EOG, and EMG. As for the ones with external input,

Mannan et al. (2020) and Brennan et al. (2020) used EEG and
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TABLE 2 Performance and interface traits.

References Pop. Size Pop. age Diagnosis Input 1 Input 2 Target,

types

N. targets Steps Control Acc [%] ITR

[b/min]

Ahn et al. (2014)
16 22.22 to 27.78 - MI TSA MoTa 2 1 - 60 -

16 22.22 to 27.78 - MI TSA MoTA 2 2 - 71 -

Allison et al. (2012) 14 22.9 - MI SSVEP Strobe,

MoTA

2 2 - 81 -

Allison et al. (2010) 10 - - SSVEP MI Strobe,

Spatial

8 2 Cursor 60 -

An et al. (2014)
15 27.33 to 32.59 - P300 P300 Still,

Sound

36 2 Speller 92 2†

15 27.33 to 32.59 - P300 P300 Still,

Sound

36 2 Speller 87.7 1.65†

Breitwieser et al. (2016) 14 20.1 to 32.5 - SSSEP tERP MoTa 2 2 - 44.5 -

Brennan et al. (2020)
30 22.87 to 52.33 - SSVEP ET Strobe 4 1 HA 99.84 24.41

14 27.7 to 55.5 Brain

injury

SSVEP ET Strobe 4 1 HA 99.14 15.87

Brunner et al. (2011) 12 23.7 to 28.1 - MI SSVEP Strobe,

MoTa

2 2 - 95.6 6.3

Buccino et al. (2016) 15 19.7 to 35.1 - ME - MoTA 4 1 - 82.1 4

Chiarelli et al. (2018) 15 27 to 37 - MI - MoTA 2 1 - 83.28 -

Duan et al. (2015)
3 23 to 27 - SSVEP MI Strobe,

MoTa

5 3 Robotic 80 -

3 23 to 27 - SSVEP MI Strobe,

MoTa

5 3 Robotic 73.3 -

Duan et al. (2019) 9 22 to 32 - SSVEP MI Strobe,

MoTa

5 1 DVW 87.65 -

Egan et al. (2017) 10 - - P300 SSVEP Strobe 2 2 - 79 -

Fan et al. (2015)
16 21 to 36 - P300 SSVEP Still,

Strobe

9 2 DVW 99.07 24.19‡

16 21 to 36 - P300 SSVEP Still,

Strobe

9 2 DVW 98.93 25.95‡
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TABLE 2 (Continued)

References Pop. Size Pop. age Diagnosis Input 1 Input 2 Target,

types

N. targets Steps Control Acc [%] ITR

[b/min]

Glowinsky et al. (2018) 11 22.3 to 28.9 - P300 - Sound 2 1 - 77.43 -

Jalilpour et al. (2020) 6 22 to 27 - SSVEP RSVP Strobe 60 2 Speller 93.06 21.41

Kaongoen and Jo (2017) 10 18 to 22 - ASSR P300 Sound 2 2 - 85.33 9.11

Katyal and Singla (2020) 10 19 to 36 - SSVEP P300 Strobe 8 2 - 92.3 82.38

Khalaf et al. (2020)
10 23 to 32 - MI - MoTa 2 1 - 83.73 6.82

11 25 to 32 - SSVEP MT Strobe,

Mental

2 2 - 87.46 4.46

Ko et al. (2020) 14 21.49 to 28.11 - SSVEP RSVP Strobe 64 2 Cursor 78.1 7.95

Lee et al. (2018)
20 24 to 32 - P300 ET Still 36 2 Speller 98.2 37.6

20 24 to 32 - P300 ET Still 36 2 Speller 97.8 40.6

Li et al. (2018) 6 - - SSVEP MI Strobe,

MoTa

5 1 DVW 91.1 85.8

Lin et al. (2016)
5 22.7 to 24.5 - SSVEP EMG Strobe 60 3 Speller 85.8 90.9

10 22.9 to 27.5 - SSVEP EMG Strobe 60 3 Speller 82.6 -

Long et al. (2012a) 5 - - P300 MI Spatial 5 3 Cursor 92.84 18.96‡

Long et al. (2012b) 11 22 to 32 - P300 MI Still,

MoTa

5 1 DVW 100 -

Mannan et al. (2020) 20 24 to 46 - SSVEP ET Strobe 48 1 Speller 90.35 184.06

Mousavi et al. (2020) 12 19.4 to 21.4 - MI ErrP Spatial 2 1 Cursor 75.33 2.1

Nann et al. (2020)
8 20.9 to 27.3 - MI ET MoTa 4 3 Robotic 85.89 -

4 36.6 to 67 Tetraplegic MI ET MoTa 4 3 Robotic 81.25 -

Saravanakumar and Reddy (2019) 10 22.74 to 29.66 - SSVEP ET Strobe 36 1 Speller 98.33 69.21

Shi et al. (2019) 10 19.4 to 22.8 - MI ET MoTa 5 1 DVW 88.43 -

Shin et al. (2018) 18 21.3 to 26.3 - MI MT MoTa,

Mental

3 1 - 82.2 4.7

Soekadar et al. (2015)
1 34 Flaccid

hand

MI ET MoTa 2 2 Robotic 80.65 -

5 22.7 to 30.3 - MI ET MoTa 2 2 Robotic 76.03 -

Wu et al. (2016) 9 23 to 26 - SSVEP P300 Strobe 4 2 - 86.92 24.06

Xu et al. (2014) 11 23 to 36 - SSVEP P300 Still 36 2 Speller 93.9 43

(Continued)
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an eye tracker and Saravanakumar and Reddy (2019) used EEG

and EOG combined with a video-based eye tracker.

5.2.2. Role of operation

Almost 60% of systems were simultaneous in their

role of operation, totaling 28 out of 47 systems. Nineteen

were sequential, including five sequential-selectors (Long

et al., 2012a; Fan et al., 2015; Lee et al., 2018; Ko et al.,

2020; Yang et al., 2020a) and two sequential-switching

systems (Yu et al., 2017; Li et al., 2018).

5.2.3. Mode of operation

Most experiments relied on cues and used the synchronous

mode of operation. Ten had asynchronous modalities, where

the participant could self-pace their selections. Zhang et al.

(2019a) was the only study to utilize both synchronous and

asynchronous. Due to its multi-input nature, Zhang et al.

allowed the EOG and EMG to operate asynchronously, and

when the EEG mode was selected, the system switched to cue-

based operation.

It was also made evident in the review that having

mechanisms to amend or confirm selections can increase

performance. Mousavi et al. (2020) utilized ErrP to correct

MI misclassification, resulting in an improvement in accuracy.

Similarly, Soekadar et al. (2015) implemented a task correction

with EOG which resulted in a more intentional operation of the

system. Fan et al. (2015) implemented a confirmation before the

final selection utilizing SSVEP, resulting in one of the highest

evaluated accuracies (99.07%).

5.2.4. Mental strategy and brain signature

Almost half of the systems used selective attention (23

systems, 48.9%), about a quarter used operant conditioning (13

systems, 27.7%), and the reminder combined both (11 systems,

23.4%). The selective attention systems were equally divided in

terms of paradigms: six used only SSEP, six used only ERP and

eleven combined both. As for the operant conditioning, all used

SMR. Most were exclusively SMR (10 systems), two combined

SMR with µ-rhythms, and one used SMR combined with SCP.

The systems with multiple mental strategies mostly used SSEP,

and combined it with SMR (6 systems), SMR and µ-rhythm (1

system) and SCP (1 system). The other three combined ERP

and SMR.

Figure 8B shows the percentage of brain signatures that

were used. The total number for each brain signal signature is

represented by the outermost ring, and the combinations made

with each signature are represented by the innermost ring. All

the systems using µ-rhythms had SMR as well, therefore, the

SMR combination is not represented in the figure.
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FIGURE 3

System’s accuracy vs. population age. The ranges in blue only included participants without disabilities. The age ranges indicated in green and

orange represent the results for participants with and without disabilities within the same paper, respectively. The triangle markers represent

system results with a single participant.
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FIGURE 4

Number of times that the population sizes were used for the

validation of hBCI systems.

FIGURE 5

Control tasks distribution.

5.3. Stimulus modality

Figure 8C shows how the stimulus modalities were

distributed for the considered systems. The matching color

sections between the inner and outer ring indicate a single

stimulus modality. The two most utilized stimulus modalities

were visual and operant. Twenty of the 47 systems were purely

visual, and 32 systems had visual stimulus combinations. Ten

systems were purely operant and 22 of systems combined

other modalities with operant stimuli. The combination of

both visual and operant was also used, totaling nine systems.

Only five systems included auditory stimuli (two purely

auditory, two combined with visual and one combined

with visual and operant stimuli) and three systems included

FIGURE 6

Number of appearances per acquisition system.

FIGURE 7

Tools utilized for the development of hBCI systems.

tactile stimuli (one purely tactile and two combined with

operant stimulus).

5.4. Interface characteristics

The interface characteristics of the study are shown

in Table 2.
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FIGURE 8

Taxonomy distribution. (A) Percentage of diversity of input. (B) Percentage of paradigms. (C) Percentage of stimulus modalities.

5.4.1. Type of targets

Most interfaces used strobic targets. Usually they were

associated with SSVEP or RSVP. Jalilpour et al. (2020),

for example, combined SSVEP and RSVP to control a

speller with 60 targets and achieved an accuracy of 93%.

Katyal and Singla (2020) combined SSVEP and P300 to

select targets among eight targets separated in two circular

sub-groups on the screen. The final offline accuracy was

of 92.3%.

Still targets were mostly associated with P300 paradigms.

Lee et al. (2018) combined P300 with winking of the eye to

control a 6x6 speller, achieving 97.8% in the synchronous mode

of operation and 98.2% in the asynchronous. Similarly, Yu

et al. (2019) combined P300 and double-blinks to control a

28-character speller. The authors reported 93.6% accuracy.

Spatial targets were associated with MI and required

participants to focus to maintain a certain brain pattern. Long

et al. (2012b) combined MI and P300, Allison et al. (2012)

combined SSVEP and MI to control a 2D-cursor on the screen,

and Mousavi et al. (2020) combined MI with ErrP to improve

accuracy. Long et al. (2012b) achieved 92.84% while Allison

et al. (2012) achieved 60.0% and Mousavi et al. (2020) achieved

75.33% in online trials.

MoTa targets were associated with MI, motor execution,

tactile ERP and tactile selective attention, ranging from 44.5

to 93.98% accuracy. Yao et al. (2014), Ahn et al. (2014), and

Yao et al. (2017) combined MI with tactile selective attention.

Yao et al. (2017) reported 86.1% accuracy offline, Yao et al.

(2014) achieved 83.1%, and Ahn et al. attempted a simultaneous

and sequential role of operation and achieved 60 and 71%,
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respectively. Breitwieser et al. (2016) included tactile ERP

with SSSEP for an online experiment, but the accuracy was

only 44.5%.

Mental targets require applied effort to visualize or do

mathematical operations during trials. Only two papers used

mental targets, Shin et al. (2018) and Khalaf et al. (2020). Khalaf

et al. (2020) combined word formation and mental rotation

tasks with SSVEP, achieving 87.46% accuracy. Shin et al. (2018)

combined MI and mental arithmetic offline with an 82.2%

accuracy. Glowinsky et al. (2018) had 77.43% accuracy for the

auditory component. In An et al. (2014), the auditory P300 had a

lower accuracy (66.2% at its highest), compared to 85.4% for the

visual P300. Kaongoen and Jo (2017) did a preliminary offline

study combining auditory steady-state response and auditory

P300 with 85.33% accuracy and 9.11 bits/min.

5.4.2. Number of targets

A greater number of targets was mostly seen in spellers.

Xu et al. (2020) developed a speller with 108 targets. Twelve

3x3 character matrices were presented to participants at

once and they participated in synchronous and asynchronous

experiments. Although they had some of the highest ITR (172.5

bits/min for synchronous and 164.7 bits/min for asynchronous)

they had the lowest accuracies (81.67% for synchronous and

79.17% for asynchronous) compared to the other spellers, with

an average of 90.7%.

5.4.3. Number of steps before selection

Most systems in the review (22 out of 47 systems) had a

maximum of two steps. Seven systems utilized three steps and

Zhang et al. (2019a) was the only one with four steps. Their

system utilized EEG, EOG and EMG modes, each with specific

commands. EOG blinking switched modes and a participant

might need to make up to four steps to cycle through all the

modes and then make a selection.

5.5. E�ectiveness and e�ciency

Table 2 shows the accuracy and ITR results. Sixteen of the

42 studies only performed offline experiments. Some articles

also made available the individual input results while in hybrid

mode during online trials. Figure 9 shows the accuracy vs.

individual input type during online trials. For Figure 9, when

multiple conditions were tested (e.g., results with different

number of runs, with and without correction mechanisms, with

more or less samples, etc.), the best results were considered.

In papers where both real-world and simulation results were

presented, only the real-world control application results were

considered. Eye gaze and EOG activities (blinking, frowning,

vertical/horizontal movements, etc) were reported as eye-tasks.

FIGURE 9

Accuracy per individual input type during online trials.

FIGURE 10

Average accuracy per stimulus modality.

Figure 10 shows the relationship between accuracy and

each stimulus modality used in the studies. Although not all

modalities had the same sample size, we can see a trend where

systems using visual pathways have higher accuracies than

the others.

6. Discussion

As described by different research groups, the

implementation of hBCI can be a bigger challenge for

children than for adults. This review sought to extract and

analyse existing hBCI applications, and explore what might be

the most appropriate approaches for children. Below we present
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some considerations based on the extracted factors that might

be helpful in the design and experimentation of future interfaces

that are easier to use and more adapted for children.

6.1. Headsets and caps

Some authors have written that children report discomfort

when using a BCI cap or headset (Zhang et al., 2019b; Jadavji

et al., 2022). Headsets are, presumably more comfortable and

easier to don than caps, but only one of the articles in this

review utilized a headset in the hBCI system Yang et al.

(2020a,b). Hybrid-hBCI systems that combine multiple input

caps (Chiarelli et al., 2018; Shin et al., 2018; Khalaf et al.,

2020) could be even more uncomfortable due to the overlapping

caps/headsets. New approaches to headset/cap designs so they

can bemore comfortable are needed. Additionally, headsets with

a built-in capability of measuring different brain signal inputs

may be preferable for use with children.

6.2. Diversity of input

Having an external input can facilitate selection if the

participant does not have significant impairments. Inputs such

as eye trackers, joysticks and switches add reliability to the

system and therefore increase its performance. Three of the

selected papers used external inputs, Mannan et al. (2020) and

Brennan et al. (2020) used NIR eye trackers and Saravanakumar

and Reddy (2019) utilized a camera-based eye tracker. All the

systems used the eye gaze as a means to narrow down the

possible targets. Mannan et al. (2020) and Saravanakumar and

Reddy (2019) used the gaze to select the character sub-group and

the SSVEP to select the character within the sub-group while

Brennan et al. (2020) used the gaze to select the sub-region on

the screen and compare it against the SSVEP selection for the

final decision. Their accuracy results were among the highest

(Brennan et al., 2020 with 99.84%, Saravanakumar and Reddy,

2019 with 98.33% and Mannan et al., 2020 with 90.35%), even

when the system was utilized by nine participants with brain

injury (Brennan et al., 2020 with 99.14%).

6.3. Role of operation

Multi-tasking generally decreases processing speed and

increases the amount of information needed to make a

decision (Howard et al., 2020). Detecting multiple brain signals

simultaneously can make it easier for a participant since they

only have to focus on one thing and it can decrease mental

fatigue, especially for children (Cowan et al., 2006). Ahn et al.

(2014)’s two experiments combining MI and tactile selective

attention, with sequential and simultaneous roles of operation,

yielded 71% accuracy for sequential, while the simultaneous

reached 60%. Thus, multi-tasking reduced accuracy in this task.

The systems that implemented confirmation/correction

mechanisms had beneficial results (Fan et al., 2015; Soekadar

et al., 2015; Mousavi et al., 2020). We infer that children could

take advantage of this feature when using hBCI. The ErrP can

be of great assistance especially for the children that are getting

started with hBCI systems as it is a natural response that does

not require any training nor extra action.

6.4. Mental strategy and brain signature

Switching between brain signatures or performing multiple

brain signatures simultaneously can increase the complexity of

the system, especially if the brain signatures belong to different

mental strategies. For example, Duan et al. (2015) utilized SSVEP

to move a robot, mu-rhythms to switch modes, and MI for

grasping. It was the only system with more than two brain

signals for control. Its accuracy, 73.3%, was lower than the

average of all the included papers, which was 85.64%. Similarly,

but in a simultaneous role of operation, Allison et al. (2012)

developed a system where a ball could be moved in a 2D space

utilizing SSVEP and MI for horizontal and vertical movement,

respectively. The average accuracy was 60%.

6.5. Stimulus modality

Most papers chose visual pathways to stimulate the brain.

Visual stimulation is the most used, and it is also the least

complex modality. Visual paradigms, in general, elicit clear

signals over the occipital and parietal regions, especially when

using SSVEP and P300 (de Haan, 2007; Ehlers et al., 2012).

On the other hand, operant modalities require a certain

level of training and focus from the participant to generate

distinguishable signals (Yuan and He, 2014). The auditory

modality was considered more complex than the operant

modality because it requires more attention and has a steeper

learning curve than operant modalities (Nijboer et al., 2008).

Lastly, tactile modalities require body awareness, and can

become confusing with multiple targets (Brouwer and van Erp,

2010).

We suggest that modalities for children, from the easiest

to the hardest, based on the accuracies per modality seen in

Figures 9, 10, would be visual, operant, auditory and tactile.

There were not enough studies that used auditory and tactile

modalities to statistically confirm their lower performance

compared to visual and operant. However, the studies included

in our scoping review presented accuracies and ITR below the

average of visual and operant modalities. We can also infer that

both auditory and tactile modalities would require a higher level
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of auditory perception and body awareness, which might not be

well-developed in some children.

Having a system that requires the engagement of multiple

senses through multiple stimulus modalities might also increase

the system’s complexity when stimulus modalities work in

parallel to each other (i.e., selecting different targets). An

et al. (2014) experimented with both roles of operation

combining visual and auditory P300. During the sequential

operation experiment, stimuli alternated between visual and

auditory stimuli within 300 ms, so that two independent

decisions could be made in parallel (selecting the sub-group

and the character within sub-group). When asked about the

workload, participants reported that the sequential modality had

considerably higher workload than the experiments in which

they used each paradigm individually. Allison et al. (2012)

combined visual (SSVEP) and operant (MI) stimulus modalities

to move a cursor in a 2D space. Although no workload

assessment was done, the average accuracy across participants

was 60%.

On the other hand, when multiple stimulus modalities

are combined to reinforce the selection of the same target,

the complexity can be diminished. During the simultaneous

operation experiment, An et al. (2014) organized visual

and auditory stimuli so that both stimuli referred to the

same target. The reported workload for the simultaneous

operation experiment was lower than the individual paradigm

experiments. Most participants felt more relaxed during the

simultaneous experiment as they could subconsciously switch

between modalities to avoid increased mental demand as both

stimuli were redundant. Khalaf et al. (2020) combined visual

(SSVEP) and operant (SCP) modalities to make a selection.

During the experiment, participants had two targets with

different SSVEP flashing frequencies, each associated with either

a mental rotation or a word formation task. This allowed

participants to only focus on one target whilst still reinforcing

their choice. The average accuracy across participants was

87.46% (result averaged from each individual task).

6.6. Target types

Seo et al. (2019) showed that certain types of targets can

cause more fatigue in users. The authors show that, for example,

SSVEP has a higher eye-fatigue level than P300. Based on

qualitative comments reported in the article and the reported

accuracies, we infer that some target types require less workload

than others, and therefore, we might want to consider the easier

ones to use with children. The complexity order of targets

that we propose, from less to more complex, considering the

expected required effort and fatigue, would be strobic targets,

still targets, spatial targets, motor/tactile targets, mental tasks,

and sound cues.

Most of the qualitative comments in the articles were

regarding systems utilizing SSVEP stimuli. Allison et al. (2010),

Brunner et al. (2011), Allison et al. (2012), and Mannan et al.

(2020), reported low annoyance for strobic targets. Figure 9

shows that the SSVEP paradigm had the highest accuracy

average, followed by the P300. It is possible that children

might be more annoyed by the flashing than adults, but

current research shows that children perform well using SSVEP

Norton et al. (2018). It is also important to consider that

some frequencies between 12 and 25 Hz may induce seizure in

children with photosensitivity (Fisher et al., 2005; Okudan and

Ozkara, 2018).

We assume spatial targets could be the most engaging for

children as it is easy to add graphical elements with attractive

and game-like designs, but it can also be complex because spatial

targets require more training and can result in lower accuracies

as seen in Allison et al. (2012) and Mousavi et al. (2020).

MoTa target types, as well as all the other off-screen

targets, can be especially beneficial for vision-impaired children.

Nonetheless, the studies involving tactile stimuli had accuracies

below 90% and only one study reported online results (Ahn et al.,

2014; Yao et al., 2014, 2017; Breitwieser et al., 2016).

One weakness of mental task experiments is that they have

a low ITR [4.7 bits/min for Shin et al. (2018) and 4.46 for

Khalaf et al. (2020)]. Plus, it could be difficult for children to

maintain their interest since it involves focusing, potentially on

tasks that might not seem playful. None of the studies had online

trials, preventing the assessment of expected performance in

real-world scenarios.

Finally, auditory cues produced a lower accuracy than visual

targets (An et al., 2014; Glowinsky et al., 2018). Although it could

also be an alternative for children with impaired vision, An et al.

(2014) reported a higher workload for off-screen stimuli when

comparing visual and auditory P300. This is consistent with

how auditory cues have been reported to be more difficult to

learn (Nijboer et al., 2008).

A sequential role of operation would be recommended for

a pediatric hBCI as it only requires focus on one stimuli at a

time rather than multi-tasking. To compensate for their shorter

attention span, as reported by Riccio et al. (2013), the system

could use a singular visual stimulusmodality. Lastly, to attenuate

the system’s complexity, a single brain signal signature can be

used with the help of an external input to help increase the

system’s accuracy.

7. Limitations

The authors of this paper only considered EEG-based

systems as they are more commonly used, but hybrids using

other brain signals exist. Many articles were excluded from this

review for various reasons: the word choices for the search terms

may have missed some studies or techniques if authors used
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different terms to define hybrid-related concepts; the necessary

information to be included in this review was missing; the

hybrid aspect did not meet our inclusion criteria (e.g., the eye

input was used only as a switch or the brain component was

a secondary input). We also acknowledge that the sample size

for statistical assumptions is small and some of our conclusions

could be skewed due to the uneven number of studies per feature

and uneven number of trials for each studies. We also did not

specifically use criteria based on empirical evidence for what

might be important to consider for children using hBCI as we

could not find such studies with the pediatric population. Future

research might prove that some of the inferences made in this

paper were inaccurate.

8. Conclusion

This scoping review analyzed 42 papers that presented 47

different hBCI systems. Articles were focused on clinically viable

hBCI that were EEG-based and had hybrid inputs or brain

signals for the purpose of improving system performance. Using

a taxonomy for categorization of features and other interface

traits, we inferred how systems may be more or less complex,

for users in general, and for children. Such considerations

were based on accuracy and ITR results, and also qualitative

comments presented in the studies.

We conclude that hBCI systems that have a single brain

signal signature and external input, using a sequential role

of operation with a singular visual stimulus modality, should

have a lower complexity than other combinations. Additionally,

interfaces using from two to five (or less than 37 for spellers)

strobic targets, with single or double steps before selection,

can also attain good performance while keeping the system

simple. The inferences made throughout this paper could serve

as a guideline for future researchers that are developing hBCI

for children.
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