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Selectivity of timing: A
meta-analysis of temporal
processing in neuroimaging
studies using activation
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Over the last few decades, many researchers have investigated time

perception and how it is processed in the brain. Past studies have identified

cortical and subcortical regions that play an important role in implicit and/or

explicit timing tasks. In regard to timing, different regions appear to have

roles of varying importance depending on the duration (sub-second vs.

supra-second), type of task (such as involving motor responses or passively

observing stimuli), and modality (such as auditory, visual, and sensorimotor)

resulting in the literature reporting divergent results that are contingent on the

specifics of the task. This meta-analysis aims at identifying regions that show

activation only for explicit timing tasks through reverse inference. As such,

two datasets (the first including studies that involved explicit timing tasks while

the second did not) were compared using the activation likelihood estimation

(ALE) algorithm. Reverse inference was implemented through Bayes factor

modeling, which allowed for the comparison of the activated regions between

the two ALE-maps. Results showed a constellation of regions that exhibited

selective activation likelihood in explicit timing tasks with the largest posterior

probability of activation resulting in the left supplementary motor area (SMA)

and the bilateral insula. Some areas that have been dubbed critical for time

perception in past studies (i.e., the cerebellum) did not exhibit prevalent

activation after analyses.
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Introduction

For a number of years, it has been debated whether
the brain consists of numerous “clocks” in which designated
areas are responsible for maintaining and perceiving time
intervals, or if time was a shared ability among neural networks
(Merchant et al., 2013). Notably, a harmony of these two theories
has become the most acceptable theory in which temporal
processing consists of a distributed network that includes
both cortical and subcortical structures, with regions that are
specialized for timing under specific circumstances (Nachev
et al., 2008; Coull et al., 2015; Cona and Semenza, 2017; Mioni
et al., 2020). Further, it is suggested that the brain utilizes a
core system of structures and may recruit secondary areas that
are dependent on the present condition and are altered based
on time-dependent changes (Grondin, 2010; Merchant et al.,
2013; Merchant and Yarrow, 2016). This core system is thought
to be comprized of areas that are part of the motor system
including the cerebellum, SMA, premotor cortex, basal ganglia
(Teki et al., 2012; Allman et al., 2014) and, in particular, the
corticothalamic-basal ganglia timing circuit (CTBGc; Merchant
et al., 2013; Merchant and Yarrow, 2016). It is through this
circuit that the thalamus sends information between the cortex
and basal ganglia, allowing for dynamic temporal prediction,
especially in regard to perceptual integration (Schwartze and
Kotz, 2013). In addition, areas that are a part of higher-order
cognition including networks responsible for attention and
working memory (Coull et al., 2008; Allman et al., 2014; Radua
et al., 2014) such as the prefrontal cortex (Teki et al., 2012;
Allman et al., 2014) are also involved. As noted in previous
literature, this core network can be further divided into striatal
and olivo cerebellar networks that work in tangent (Teki et al.,
2012; Allman et al., 2014), placing a large focus on the role of the
basal ganglia and the cerebellum in temporal perception.

Investigations into how time is processed in the brain is
accomplished in two ways: explicit and implicit timing tasks. For
explicit timing tasks, the goal of the participant is to estimate
a specific amount of time (dependent on the parameters of
the task) in relation to the interstimulus interval (ISI) through
either motor timing or perceptual timing tasks (Coull and
Nobre, 2008). Contrarily, implicit timing tasks refer to tasks
whose goal is not centered on timing, though covert timing
is a component and can be comprized of emergent timing
through motor outputs as well as temporal expectations through
perceptual input (Coull and Nobre, 2008). For the purposes
of this meta-analysis, we will be utilizing the definition of
explicit timing when referring to time perception, especially in
regard to the experiments included in the “IS TIME” dataset in
the Methodology which involved sub-second and supra-second
intervals as well as motor and perceptual tasks.

Numerous factors may play a role in which neural networks
are activated during explicit timing tasks, such as task type
and duration. For example, motor timing tasks (i.e., production

and reproduction) compared to perceptual timing tasks (i.e.,
temporal discrimination) involve different overlapping neural
networks; likewise, duration, in regard to sub-second and
supra-second time intervals, have also been shown to engage
different regions leading to divergent findings depending on
experimental methodology (Wiener et al., 2010).

It is noteworthy to mention that additional factors may
distort the magnitude of activation for time perception,
an example being attention, in which attentional deficits
(Mioni et al., 2013) have shown less activation as well as
altered perceptions of duration length (Grondin, 2010). In
fact, other cognitive functions such as working memory and
sequencing are utilized by the core timing network, resulting in
changes in activated regions dependent on experimental tasks,
leading to discrepancies in the literature (Livesey et al., 2007;
Radua et al., 2014).

Despite the increase in recent publications pertaining
to temporal perception, it is still unclear how the brain
processes time. One obstacle may be the conditional elements
of experiments which vary among researchers, making it
harder to generalize results. Given that regions involved in
time perception are also involved in other domains, different
activation patterns may arise between studies. That being said,
past reviews have found similarities among findings, allowing
for a more comprehensive look at temporal processing.

Given that the timing neural network greatly overlaps with
the motor network, investigating the differences in activation
patterns across motor and perceptual timing tasks have become
more common. Wiener et al. (2010) ran a quantitative meta-
analysis using the Activation Likelihood Estimation (ALE)
algorithm comparing type of task (motor vs. perceptual)
and stimulus duration (sub-second vs. supra-second). The
authors reported that there were distinct sub-networks of
brain regions depending on the task context, across frontal
and parietal cortices, as well as sub-cortical regions within
the basal ganglia and cerebellum; for example greater sub-
cortical involvement was observed for sub-second intervals.
Further, significant activation likelihood in the bilateral SMA
and right inferior frontal gyrus were observed regardless of
task (perceptual vs. motor tasks) and duration (sub- vs. supra-
second). Similarly, Nani et al. (2019) ran an ALE meta-analysis
using updated methods that compared activation patterns for
task (motor vs. non-motor) and duration (sub-second vs.
supra-second). These authors found high overlap for both
ranges of duration in the superior frontal gyri, medial frontal
gyri, middle frontal gyri, and inferior frontal gyri, SMA, and
claustrum (Nani et al., 2019). Though the neural networks for
the different tasks and durations overlapped greatly, they found
that subcortical regions seemed to be more involved in motor
tasks and sub-second durations while cortical regions showed
more involvement with the perceptual tasks and supra-second
durations, corroborating earlier findings (Nani et al., 2019).
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Similarly, neural networks for timing have been shown to
be influenced by other networks outside of the system, such as
those involved in executive functioning. Radua et al. (2014) ran
a neuroimaging meta-analysis using signed differential mapping
(SDM), comparing activation likelihood in time perception and
executive function and found that both domains overlapped
in the fronto-parietal-insula and putamen, suggesting that
temporal processing involves cognitive functions such as
attention and working memory, or at least that these functions
could not be reliably separated from one another. Yet, the
researchers found areas that were involved in time perception
but not executive functioning, suggesting that time perception
has its own neural network which may overlap with other
domains (Radua et al., 2014). They also found that activity
for certain regions involved in time perception was modulated
depending on task load such that tasks that were deemed more
difficult evoked more activation in the SMA, insula/operculum,
dorsolateral prefrontal cortex, thalamus, and striatum (Radua
et al., 2014). Similarly, Livesey et al. (2007) also observed that
the left inferior parietal lobule, pre-SMA, and part of the dorsal
prefrontal cortex only had significant activation in larger task
loads that was absent in less difficult tasks. Both of these studies
show how the differences in experimental tasks can modulate
activation for time perception.

Though the current literature demonstrates a myriad
of experiments exploring explicit and implicit timing, it is
important to consider methodology, especially in regard to
discrepancies between studies. For example, Mioni et al.
(2020) demonstrated that experimental modality plays an
important role when examining the neural networks at play for
time perception. Many of the aforementioned studies utilized
functional magnetic resonance imaging (fMRI) to examine
neural activity while Mioni et al. (2020) ran their analysis on
temporal studies that used transcranial magnetic stimulation
(TMS); they found that some prominent areas that were
agreed upon from other studies to be integral to temporal
processing, were not seen in their review. One area to note is
the SMA, which did not show changes depending on motor
or perceptual tasks in the TMS studies used, stating that its
connections with subcortical regions (which are not stimulated
during TMS) may be the cause (Mioni et al., 2020). Yet, the
other possibility is that the SMA is not critical for timing,
and so its prominent observation across meta-analyses may in
fact be epiphenomenal. Indeed, the SMA and right prefrontal
cortex, both areas observed to be active across all timing
contexts, are also commonly observed across the larger corpus of
neuroimaging studies in general (Behrens et al., 2013). As such,
their involvement in timing studies is called into question.

Thus, how to address the question of the necessity for
timing? While useful, all of the previous meta-analyses described
have relied on forward inference. That is, activation-likelihood
was tested for a particular function by aggregating studies that
studied that function. In this case, any regions that survive

significance testing are those that are most likely to be active
for that particular function. In the case of timing, these
meta-analyses can only say if a region will be active given
that a subject performs a timing task; for example, the SMA
activation likelihood can be construed as p(SMA| timing). Yet,
activation likelihood says nothing regarding the specificity of
observed regions for a particular function. That is, if activity
were observed in a given region first, what is the probability
that subjects were engaged in that function? Using the above
example, for the SMA this would be inferred as p(timing|
SMA); that is, if activity is observed in the SMA, what is
the probability the subject was timing? This line of reasoning
forms a so-called reverse inference (Poldrack, 2006), a common
interpretive pitfall in neuroimaging studies. However, for meta-
analyses, the problem can be formulated using Bayes Theorem
to calculate the posterior probability of activation. This method
was recently developed as an addition to the ALE methodology
(Costa et al., 2021), and can be employed by calculating the
posterior probability across two ALE maps: one for the function
in question (in this case, time perception), and one not for that
function (in this case, studies not on time perception); this use
of posterior probability distinguishes this meta-analysis from
other timing meta-analyses. Thus, the present study applied
this methodology to neuroimaging studies of time perception
to investigate the specificity of timing regions using posterior
probability.

Methodology

Literature search

The literature search consisted of searching the BrainMap
database.1 First, Sleuth 3.0.42 software provided through
BrainMap was used to discover the relevant articles. For this
meta-analysis, two datasets were collected: the first being articles
that investigated explicit timing (“IS TIME”) with the second
being articles that did not investigate explicit timing (“IS NOT
TIME”). The “IS NOT TIME” dataset was created through
Sleuth via the following search algorithm:

IS NOT TIME: [Experiments Context IS Normal Mapping]
AND [Experiments Activation IS Activation Only] AND [Subjects
Diagnosis IS Normals] AND [Experiments Imaging Modality
IS fMRI] AND [Experiments Imaging Modality IS PET] AND
[Experiments Behavioral Domain IS NOT Cognition/Temporal].

In this way, BrainMap was utilized for its ability to search
for an array of articles that did not include explicit timing tasks
(as denoted by the “IS NOT” in the Sleuth pathway). BrainMap
provides a unique opportunity to collect a vast number of

1 www.brainmap.org

2 http://brainmap.org/sleuth/
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articles outside of our target function (time perception) which
allowed for a comparison to the “IS TIME” dataset.

The “IS TIME” dataset was provided from Cona et al. (2021),
a recent study investigating time perception and comparing it
with spatial processing; the “IS TIME” meta-analysis included
114 experiments, 1,262 foci, and 1,703 participants. These
studies involved explicit timing tasks which were collected
according to the PRISMA guidelines. The “IS NOT TIME”
dataset, which was acquired through Sleuth, consisted of 9,953
experiments, 84,143 foci, and 155,041 participants and did
not involve explicit timing tasks. Both datasets were cross-
referenced to remove duplicate studies that were included in
both groups.

These datasets were then analyzed through GingerALE
3.0.2 from BrainMap3 using the Talairach coordinate system.
All information in MNI (Montreal Neurological Institute)
coordinates were automatically converted to Talairach through
GingerALE, which was used to create unthresholded modeled
activation maps for both datasets.

Activation likelihood estimation

The Activation Likelihood Estimation (ALE) algorithm is
commonly used for quantitative meta-analyses of neuroimaging
results. ALE works by modeling activation foci described
in each study into three-dimensional Gaussian probability
distributions per voxel (Turkeltaub et al., 2011). The overlap of
these distributions results in an ALE score which is compared
to numerous null distributions that are randomly generated
in order to assess significance of the activation foci via a
permutation test (Wiener et al., 2010). As such, the resultant
ALE map provides information pertaining to the probability
of overlap of the statistically significant activation foci across
studies (Nani et al., 2019; Teghil et al., 2019).

Reverse inference

The ALE “IS TIME” and “IS NOT TIME” maps were
processed using Mango 4.1 (Multi-image Analysis GUI4)
software. The Bayes fACtor mOdeliNg (BACON) plug-in for
Mango is a computational tool used for reverse inference for
neuroimaging data, detailed by Costa et al. (2021). The BACON
plug-in was utilized to incorporate the non-timing activation
likelihood (“IS NOT TIME” dataset) from the activation
likelihood for timing (“IS TIME” dataset) to calculate a posterior
probability. As such, there are no overlapping functions in the
final map (Figure 1).

3 http://brainmap.org/ale/

4 http://ric.uthscsa.edu/mango/

The BACON plug-in is rooted in Bayesian statistics since it is
heavily based on the Bayes factor. Bayes’ theorem has been used
in neuroimaging studies to determine the posterior probability
of activation (D) for a voxel in a cognitive process (Cauda et al.,
2020; Costa et al., 2021). In this way, reverse inference can be
used to infer activation patterns for timing using alterations
of Bayes’ theorem. Following equations provided by Costa
et al. (2021), Bayes’ theorem can be written expressing two
hypotheses: H0 (i.e., the presence of a function such as time
perception) and H1 (i.e., the absence of the function):

P (H0|D) =
P (D|H0)

P (D)
P(H0)

and
P (H1|D) =

P (D|H1)

P (D)
P(H1)

Using these equations, P(H0| D) and P(H1| D) are the
posterior probability while P(D) is the prior probability (Cauda
et al., 2020). If no foreknowledge for P(H0) and P(H1) is known,
then P(H0) and P(H1) are considered identical and can be
written in the form of Bayes’ factor:

BF01 =
P(H0|D)

P(H1|D)

This equation allows one to compare the hypotheses such
that if BF > 1, then H0 is supported while the opposite is true
in that if BF < 1, then H1 is supported. Further, since both
posterior probabilities summate to 1, the equation can be written
in its final form as noted by Costa et al. (2021):

P (H0|D) =
BF01

BF01 + 1

As such, the BACON plug-in includes this final equation
to compute the posterior probability for activation in a specific
cognitive process such as time perception (Costa et al., 2021).
Through Mango, it compares ALE maps (“IS” and “IS NOT”)
to calculate the independent activation of the foci allowing for
reverse inference.

Results

After analysis, selective activation for time perception was
found bilaterally in the insula, pars opercularis, angular gyrus,
thalamus, pre-central gyrus, and amygdala. Some activation
was localized to the left hemisphere including the posterior-
medial frontal gyrus, fusiform gyrus, putamen, caudate nucleus,
medial temporal gyrus and post-central gyrus (see Figure 1 and
Table 1).

The area that exhibited the highest posterior probability
[p(timing| activation)] for timing tasks was the left posterior-
medial frontal gyrus (SMA at 0.483) while the lowest was the
left post-central gyrus (0.403). Following the left SMA, the areas
with the highest posterior probability were mainly located in the
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FIGURE 1

Surface brain renderings of the activation likelihood estimation (ALE) maps. Gray contours represent the areas that have a posterior probability
of 0.4 or greater. To note, these posterior probabilities reflect the probability of each individual voxel, not the probability of a cluster (or region)
being activated. (1) Left posterior-medial frontal gyrus (SMA). (2) Left insula lobe. (3) Right insula lobe. (4) Left inferior frontal gyrus (pars
opercularis). (5) Left angular gyrus. (6) Left thalamus. (7) Right inferior frontal gyrus (pars opercularis). (8) Right thalamus. (9) Right angular gyrus.
(10) Left pre-central gyrus. (11) Left amygdala. (12) Left fusiform gyrus. (13) Left putamen. (14) Left caudate nucleus. (15) Right amygdala. (16) Left
middle temporal gyrus. (17) Right pre-central gyrus. (18) Left post-central gyrus.

TABLE 1 Brain regions with selective activation for timing tasks in neuroimaging studies using the activation likelihood estimation (ALE) algorithm.

Location Volume (mm3) Posterior probability MNI coordinates

x y z

Left posterior-medial frontal gyrus (SMA) 1,437 0.483 −2 6 50

Left insula lobe 2,018 0.481 −32 18 6

Right insula lobe 581 0.478 32 20 4

Left inferior frontal gyrus (pars opercularis) 2,018 0.473 −44 4 30

Left angular gyrus 627 0.453 −30 −56 42

Left thalamus 187 0.452 −12 −18 8

Right inferior frontal gyrus (pars opercularis) 299 0.449 44 6 30

Right thalamus 115 0.434 8 −16 8

Right angular gyrus 250 0.427 28 −58 44

Left pre-central gyrus 87 0.424 −28 −8 52

Left amygdala 50 0.422 −22 −4 −12

Left fusiform gyrus 116 0.415 −40 −58 −14

Left putamen 69 0.411 −14 6 2

Left caudate nucleus 59 0.410 12 6 4

Right amygdala 7 0.407 22 −4 −12

Left middle temporal gyrus 11 0.404 −56 −20 6

Right pre-central gyrus 9 0.403 28 −6 52

Left post-central gyrus 6 0.403 −36 −24 52

Shows all local maxima separated by more than 20 mm. Regions were automatically labeled using the Anatomy Toolbox atlas. x, y, and z = Montreal Neurological Institute (MNI)
coordinates in the left-right, anterior-posterior, and inferior-superior dimensions, respectively.
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left hemisphere and included the left insula (0.481), right insula
(0.478), left pars opercularis (0.473), left angular gyrus (0.453),
and left thalamus (0.452). The remaining areas that exhibited
selective activation for timing tasks did not exceed a posterior
probability of 0.45 and are located in Table 1.

Discussion

After running the ALE algorithm, 18 regions were identified
as having the relatively highest posterior probability during
timing tasks using reverse inference (Table 1). Though the 0.4
threshold was chosen arbitrarily to generate clearly delineated
clusters, the posterior probability values of each region allow
for the comparison of the relative difference in probability from
one region to another. Indeed, we suggest that the utility of
our analysis is to reveal differences between the probability of
activation for different brain regions during timing tasks. Thus,
for anyone conducting a neuroimaging study of time perception,
they may consider the probability that any one brain region
will be observed in their study. Numerous areas that are known
to be a part of the neural network for processing time were
supported in the data including parts of the motor circuit such
as the SMA and pre-central gyrus, subcortical structures such as
the thalamus, as well as various cortical areas across the frontal,
parietal, temporal, and occipital lobes. From our analysis, the
highest posterior probability was found in the left SMA at 0.483
when controlling for activity in non-timing tasks.

The SMA is located in the dorsomedial frontal cortex and
is comprized of the pre-SMA and SMA-proper (Nachev et al.,
2008). Most notably, the SMA is a key component of the
neural network for timing but is also involved in other domains
outside of time perception including motor planning and action
sequencing since it connects to areas including the basal ganglia,
primary motor cortex, and prefrontal cortex (Nachev et al.,
2008; Cona and Semenza, 2017). Since the SMA is involved in
both motor and non-motor tasks, Cona and Semenza (2017)
proposed the domain-general hypothesis in which the SMA is
involved in one operation across different domains, such as
time, space, language, memory, etc., all of which the SMA is
known to play a role in. Wiener et al. (2010) provides evidence
to support the domain-general hypothesis in that the SMA
exhibited significant activation for timing tasks regardless of
stimuli duration or condition, allowing the SMA to have a
versatile role in temporal processing. In this way, the SMA
may be involved in numerous cognitive domains in an energy
efficient manner through sequence processing as the common
operation for each of these domains (Tanji and Shima, 1994;
Gerloff et al., 1997; Menon et al., 2000). Though sequence
processing is important for multiple domains, it is imperative
for an internal representation of time. As shown by Tanji and
Shima (1994), the SMA showed increased activity for certain
sequences of movements in trained Japanese Macaques in the

absence of external guidance, which supports the SMA’s role
in sequencing in motor planning and execution. In addition,
Menon et al. (2000) showed changes in activation specifically
in the left pre-SMA depending on the number of operands
in a numerical problem such that mathematical problems
involving three operands elicited greater activity than those
involving two, supporting the SMA’s role in sequencing. This
is further supported by the SMA’s involvement in maintaining
rhythm. It does so by acting as an internal metronome for
processing rhythms (Cannon and Patel, 2021), in which the
SMA matches rhythms by entraining firing rates to the perceived
beat, replicating the beat internally (Cadena-Valencia et al.,
2018; Cannon and Patel, 2021). As such, the SMA has shown
higher activation levels for rhythms that maintain the beat
compared to irregular rhythms with non-beats (Grahn and
Rowe, 2012).

Though the SMA had the highest posterior probability of
being invoked during timing tasks (0.483 for the left SMA) in
this analysis, it does not show as much as activity as others
have previous published. That being said, Wiener et al. (2010)
and Radua et al. (2014) both found the SMA (BA 6) to have
the highest level of activation voxel-wise for time perception.
It is important to note recent studies have found evidence of a
gradient in the SMA in regard to spatial and temporal processing
(Cona et al., 2021). Cona et al. (2021) used ALE to find a
spatial-temporal gradient in the SMA in which parts of this area
processed both time and space. Since this analysis effectively
removed any activity outside of that involving timing, this may
help explain why the percentage of activity is somewhat smaller
in this analysis in regard to other publications, though additional
factors may also be at play.

Another region that had relatively high posterior probability
was the bilateral insula. Similar to the SMA, the insula has
recently been considered to function as an accumulator for
timing as shown in a study by Wittmann et al. (2010),
in which participants listened to one of three supra-second
tones (the encoding phase) and then reproduced that duration
through a button press (reproduction phase). They found that
the posterior insular cortex, as well as other regions such
as the SMA, were activated for the encoding phase while
the anterior insula (and other areas of the anterior cortex)
was activated for the reproduction phase, suggesting a neural
network for processing supra-second intervals in which the
posterior regions of these areas encode durations while the
anterior regions maintain those durations (Wittmann et al.,
2010). In addition, a review by Vicario et al. (2020) noted that
there is a relationship between altered levels of insular activation
in clinical disorders such that participants with disorders that
displayed time underestimation (such as those with Parkinson’s
disease, autism, and attention deficit hyperactivity disorder) also
had reduced levels of activity in the insula while those that
displayed time overestimation (i.e., schizophrenia, depression,
and anxiety) had increased levels of insular activity. Further,
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Vicario et al. (2020) also noted that insula activity was found
specifically during supra-second timing tasks, reiterating the
insula’s role in timing across numerous seconds.

Overall, a number of regions in the frontal and parietal lobes
have shown to play a role in temporal processing. Fedorenko
et al. (2013) introduced the multiple-demand system as a way
to explain how numerous regions in the frontal and parietal
areas appear to contribute to a variety of cognitive functions
such as temporal and spatial processing, attention, performance
monitoring, and so forth. Further, additional frontal regions,
such as the inferior and middle frontal gyri are also recruited for
temporal processing, most likely because of high-level cognition
such attention and working memory (Nani et al., 2019; Cona
et al., 2021). Further, Wiener et al. (2010) also found that
the right inferior frontal gyrus (as well as the SMA) showed
significant activation regardless of task and duration, supporting
the idea that frontal regions also play a role in motor timing
tasks, not just perceptual timing tasks. As an extension of
the multiple-demand network, Camilleri et al. (2018) recently
conducted a larger, hierarchical meta-analysis which provided
distinctions in activation likelihood across distinct regions.
Here, the SMA is likely to be invoked as an organizational hub
for task demands; that is, depending on the task domain (i.e.,
language, working memory, timing), the SMA recruits other
regions to perform that task. Indeed, other meta-analyses of time
perception studies have demonstrated that activation likelihood
in the SMA can be fractionated on the sensorimotor aspects of
the task, such that more anterior regions of the SMA complex
are likely to be recruited for perceptual timing tasks (where
no motor response is required), whereas posterior regions are
preferentially recruited for motor timing tasks (where a motor
response demarcates the timed interval) (Wiener et al., 2011;
Schwartze et al., 2012). In contrast, other regions of the network,
including the IFG and inferior parietal cortex serve as “workers”,
such that these regions abstract the rules and decisions of the
tasks for higher-order cognition.

Notably, there are a number of regions that are believed
to be a core component of the timing neural network that
did not have a large relative difference in activation in this
analysis. This may be due to a number of reasons including the
fact that this analysis used reverse inference to find activation
selectivity for timing tasks while brain regions that are known
to be involved with timing may have shown equal or higher
activation in non-timing tasks compared to timing tasks. An
example is the cerebellum, which is known to play a considerable
role in temporal processing (Teki et al., 2012; Allman et al., 2014;
Coull et al., 2015; Paton and Buonomano, 2018; Mioni et al.,
2020), though it did not have relatively high probability in this
analysis.

The cerebellum is primarily known for its involvement
in motor functions such as coordinating movements. O’Reilly
et al. (2008) provided evidence that the anterior portion of
the cerebellum is the primary area for motor-related functions

while the posterior cerebellum is more so involved in non-
motor functions. When exploring temporal-spatial models in
the cerebellum, O’Reilly et al. (2008) found that part of the
posterior cerebellum was involved in judging timing. One of
the ways in which the cerebellum is known to be involved
with temporal processing is through music, specifically by
maintaining the beat. The cerebellum is able to perform beat
maintenance by projecting to frontal regions using forward
prediction models in which it is able to anticipate the beat and
respond to errors, similar to the SMA (Cadena-Valencia et al.,
2018; Cannon and Patel, 2021). To support this, Fujioka and
Ross (2017) found increased event-related desynchronizations
in beta oscillations for piano players compared to those without
training for shorter beat intervals (400-ms) compared to longer
beat intervals (1,200-ms) not only in the cerebellum, but also
in other regions involved in the motor network including
sensorimotor and premotor cortices. This also supports the
cerebellum’s preference in sub-second durations compared to
supra-second durations (Wiener et al., 2010; Fujioka and Ross,
2017; Mioni et al., 2020). On the other hand, Radua et al.
(2014) did not find activation for the cerebellum in regard to
explicit time perception but only for higher cognitive functions,
suggesting that these higher-level functions overlap with those
required for processing time. That being said, the cerebellum
is greatly involved in the motor network, which may at least
partially explain its lack of activity in this analysis.

Another region of the brain that has been well documented
as a contributor to temporal processing is the basal ganglia,
a collection of subcortical nuclei primarily known for being
a main component of the motor network and important for
sensory timing and the timing of motor movements (Coslett
et al., 2010; Paton and Buonomano, 2018). Structurally, damage
to the basal ganglia causes changes in timing in numerous
disorders such as Parkinson’s disease, Huntington’s disease,
attention-deficit disorder, and more (Paton and Buonomano,
2018); yet, damage to the basal ganglia does not always equate
to a failure in temporal processing (Coslett et al., 2010). The
basal ganglia have been attributed with creating an internal
sense of time through the use of predictions (Grahn and Rowe,
2012; Paton and Buonomano, 2018). An example of which the
basal ganglia has been shown to achieve this has been shown
through its role in maintaining a metric hierarchy since it shows
higher activation in regard to duple meter compared to triple
meter as well as irregular rhythms that break the meter (Grahn
and Rowe, 2012). It is not surprising that the basal ganglia is
able to make temporal predictions since timing is imperative to
movement sequences and is subsequently reinforced (Paton and
Buonomano, 2018). It is believed that the basal ganglia shares its
prediction models closely with the cerebellum given their direct
connection through the striatum (O’Reilly et al., 2008). Further,
publications have claimed that the basal ganglia is imperative
to timing for both motor and sensory modalities (O’Reilly et al.,
2008; Paton and Buonomano, 2018) while others provide a more
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supportive role for the basal ganglia in regard to timing (Coslett
et al., 2010) so its true contribution is still rather elusive.

Limitations

Our analysis utilized reverse inference through the ALE
algorithm to essentially subtract selective activity for temporal
tasks from non-temporal tasks. The analysis was accomplished
via the BACON plug-in which accounts for activation-
likelihood against the target activation-likelihood. As such, the
analysis is not excluding undifferentiated functions per say,
but rather incorporating both likelihoods into an estimate of
posterior probability. Nevertheless, regions that may be involved
in non-timing processing still had a relative difference in
activation in timing tasks since these regions exhibited more
activation likelihood for timing than non-timing tasks across the
studies included. The BACON analysis is sensitive to different
levels of activation likelihood, which is why some multi-modal
areas did not have a relatively high posterior probability (i.e.,
cerebellum) while some did (i.e., SMA). Thus, one of the cons of
using this methodology is the fact that activity in multi-modal
areas is partially or, in some cases, fully lost after analysis, as
demonstrated by the lack of prevalent data in the cerebellum,
which is a large, heterogeneous structure, which may make it
more difficult to find convergence in these areas across studies
considering the enormity of its non-timing activity.

In line with this, a limitation of this analysis can be
attributed to dataset size. The “IS TIME” dataset (which
included 114 experiments involving explicit timing tasks) was
quite smaller than the “IS NOT TIME” dataset (which included
9,953 experiments involving non-timing tasks). As such, the
enormity of the non-timing activity in the “IS NOT TIME”
dataset may have biased the activation levels in favor of the
non-timing related activity, overshadowing the timing related
activity. Because of this size difference, the raw ALE values
for the “IS NOT TIME” dataset were an order of magnitude
larger than those for the “IS TIME” dataset. Further, this may
lead to a decrease in the size of the posterior probabilities,
as the likelihood of any one voxel will be overall higher for
“IS NOT TIME” dataset compared to the “IS TIME” dataset.
As a result, the posterior probability of voxel activation for
timing seemed low (p = 0.4) compared to other publications,
which may be attributed to the difference in these ALE values.
That being said, this “low” posterior probability for timing may
suggest that timing functions are not a special property of any
specific part of the brain. Overall, though the “IS TIME” dataset
contained much fewer studies than the “IS NOT TIME” dataset,
we are still seeing a pattern of relative activity for timing tasks
across the brain.

Other possible limitations may lie in the studies themselves
with the type of task involved. As suggested by Wiener et al.
(2010), the inclusion of sub-second and supra-second timing

intervals in the studies included in the “IS TIME” dataset
may show different patterns of activity. This may be the case
considering Merchant and Yarrow (2016) theory in which the
timing neural network is divided into a core network that
is constantly activated and a supplementary network that is
activated in the presence of certain tasks (in regard to duration,
stimulus modality, etc.). In this way, differential aspects of
each experiment (i.e., hypothesis, task conditions, stimuli, etc.)
naturally cause limitations when comparing studies. Lastly,
individual factors that are outside of the authors’ control may
also affect the activation levels. For example, it has been noted
that attention can greatly affect activity in the neural network for
timing, leading to less activation with lower levels of attention
across studies (Coull et al., 2008; Allman et al., 2014; Paton and
Buonomano, 2018).

Conclusion

This review investigated activation for time perception in
neuroimaging studies using reverse inference through ALE. The
analysis showed 18 regions that had a larger relative difference in
activation for timing tasks compared to non-timing tasks, with
the highest level of activation being in the left SMA. Though the
data supported the involvement of parts of the motor network
in time perception, some key areas that are known to be a core
region essential for time perception were absent. These results
demonstrate how regions previously shown to be involved in
timing may be more involved in non-timing tasks, suggesting
the presence of a domain-general system (Wiener et al., 2010;
Cona and Semenza, 2017). As such, hypotheses like the multiple-
demand system (Fedorenko et al., 2013) may play a larger role
than previously thought.
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