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Deafness and early language
deprivation influence arithmetic
performances
Margot Buyle* and Virginie Crollen

Psychological Sciences Research Institute (IPSY) and Institute of Neuroscience (IoNS), Université
catholique de Louvain, Louvain-la-Neuve, Belgium

It has been consistently reported that deaf individuals experience

mathematical difficulties compared to their hearing peers. However, the idea

that deafness and early language deprivation might differently affect verbal

(i.e., multiplication) vs. visuospatial (i.e., subtraction) arithmetic performances

is still under debate. In the present paper, three groups of 21 adults (i.e.,

deaf signers, hearing signers, and hearing controls) were therefore asked to

perform, as fast and as accurately as possible, subtraction and multiplication

operations. No significant group effect was found for accuracy performances.

However, reaction time results demonstrated that the deaf group performed

both arithmetic operations slower than the hearing groups. This group

difference was even more pronounced for multiplication problems than for

subtraction problems. Weaker language-based phonological representations

for retrieving multiplication facts, and sensitivity to interference are two

hypotheses discussed to explain the observed dissociation.

KEYWORDS
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Introduction

A converging body of evidence in the numerical cognition field suggests that
different arithmetic operations rely on distinct neuro-cognitive processes. Indeed,
while subtraction is solved using visuospatial procedures (Dehaene, 1992; Campbell
and Xue, 2001; Robinson, 2001; Seyler et al., 2003; Thevenot and Barrouillet, 2006;
Barrouillet et al., 2008; Prado et al., 2014) and visuospatial shifts of attention (Li
et al., 2018; Salvaggio et al., 2022) multiplication is, in contrast, rote learnt and
stored in verbal memory (Verguts and Fias, 2005). Visuospatial skills accordingly
predict subtraction, but not multiplication operations. Language skills inversely predict
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multiplication but not subtraction (Lee and Kang, 2002;
Guez et al., 2022). At the neural level, subtraction has
been linked to an increased activity of the parietal cortex,
typically associated with quantity and visuospatial processing.
Multiplication, on the other hand, relies on verbal brain areas
of the left hemisphere (Lee, 2000; Zhou et al., 2007; Prado
et al., 2011). In neuropsychology, impairments in phonological
processing (e.g., dyslexic individuals) induce marked difficulties
in multiplication fact retrieval but no impairment in subtraction
(Simmons and Singleton, 2008; Boets and De Smedt, 2010; De
Smedt and Boets, 2010). Double dissociations have moreover
been reported with some patients selectively impaired in
subtraction (Dehaene and Cohen, 1997; van Harskamp and
Cipolotti, 2001) and others presenting the exact opposite pattern
of performance: a selective impairment in multiplication fact
retrieval and a preservation of their subtraction performances
(Cohen and Dehaene, 2000; Cappelletti et al., 2001; van
Harskamp and Cipolotti, 2001; Sandrini et al., 2003).

When taking the link that exists between language skills
and arithmetic processing into account, it is not surprising
to see that deaf individuals, who often experience some
level of language deprivation in early childhood, present
poorer numerical abilities than their hearing peers (see Buyle
et al., 2021 for a review). A delay of 2 to 3.5 years on
mathematical achievement tests (Nunes and Moreno, 2002;
Bull et al., 2005) has indeed been highlighted and appears
to be more pronounced in verbal numerical tasks (e.g., see
Nunes et al., 2009 for multiplicative reasoning; Andin et al.,
2014 for relational statements, Serrano Pau, 1995; Titus, 1995;
Kelly et al., 2003 for fractions) than in visuospatial numerical
tasks. In line with this, the absence of the SNARC effect
in a verbal parity judgement task vs. the presence of the
SNARC effect in a visuospatial number comparison task was
recently shown in one of our previous studies (Buyle et al.,
2022).

These observations were interestingly assumed to be caused
by some linguistic aspects (Serrano Pau, 1995; Kelly and
Mousley, 2001; Kelly et al., 2003; Pagliaro, 2010). In contrast
to oral languages, sign languages are formed by several visual
components such as the configuration, movement, orientation
and location of the hands in space, the body posture, the
facial expression and the movement of the mouth (Emmorey,
2002; Sandler and Lillo-Martin, 2006). These visual and motor
aspects of sign language have already been shown to impact
cognitive processes such as memory (Wilson and Emmorey,
1997) and reading (Quandt and Kubicek, 2018). Alpha and
Beta EEG signals were for example found to be different
when deaf signers read English words whose American Sign
Language translations use two hands vs. one hand (Quandt
and Kubicek, 2018). This result demonstrates the involvement
of the sensorimotor system in cross-linguistic translation and
supports the Dual-Route Cascade (DRC) model proposed by
Elliott et al. (2011). This model suggests that the cognitive

system involved in reading is fundamentally the same in
deaf as in hearing (see the DRC model of Coltheart et al.,
2001), but the types of activated units are different: visemes
and phonemes for multimodal deaf bilingual vs. phonemes
for monolingual or unimodal bilingual hearing individuals.
L1 and L2 lexicons are both activated when deaf signers are
reading. The viseme-phoneme translation that occurs in deaf
signers can therefore affect their reading speed and proficiency.
Associations between sign phonology and reading skills
(Mayberry et al., 2011; Rudner et al., 2012) were accordingly
reported in deaf individuals (Davis and Kelly, 2003).

As a close correlation between phonological awareness and
arithmetic problem solving has also been repeatedly observed
(De Smedt et al., 2010), the parallel between reading and
arithmetic is tempting. The fact that sign languages use the
entire body in a spatial-visual-somatic way may, for example,
preserve or even positively impact (Chinello et al., 2012) the
visuospatial arithmetic abilities of deaf individuals. In contrast,
the fact that deaf signers do not easily access the phonology
of verbal languages or access it through a viseme-phoneme
translation may, in contrast, negatively impact their verbal
arithmetic abilities (as already observed in reading, see Elliott
et al., 2011). While this hypothesis is tempting, recent studies
nevertheless failed to demonstrate clear results supporting
this claim. While Andin et al. (2014) demonstrated that deaf
signers perform worse on multiplication than on subtraction
operations, more recent studies failed to demonstrate this
dissociation (Andin et al., 2019). Mixed conclusions can also be
found at the brain level. While an fMRI study showed that the
right horizontal intraparietal sulcus was more activated in deaf
signers as compared to hearing during multiplication operations
(Andin et al., 2019), more recent studies (Andin et al., 2022;
Berteletti et al., 2022) highlighted a comparable dissociation
between the brain networks supporting multiplication and
subtraction in deaf and hearing participants. There is therefore
an urgent need to better characterise the impact deafness and its
related language experience may have on arithmetic processing.

To do so, we will ask Belgian deaf signers, hearing signers
and hearing controls to perform easy and difficult subtraction
and multiplication operations. In Belgium, there are few
options regarding education of deaf children. First, there exists
the special-need education schools, but sign language is not
provided as instruction language since the teachers are often
hearing and using spoken language. Second, there is the regular
school system with the presence of a sign language interpreter.
However, the deaf child has to be confident with sign language
before he/she can benefit from “translated” classes. A third
and last option is the bilingual-bicultural education, which
offers deaf children all the opportunities to get into contact
with both spoken and signed languages, and both cultures.
Unfortunately, not many schools provide this educational
system in Belgium. Many Belgian deaf signers therefore consider
sign language as their preferred communication method but
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were taught arithmetic in another spoken language. Including
hearing signers in this study will therefore allow us to examine
whether the arithmetic difficulties experienced by deaf signers
are merely linked to the use of sign language or to the use of sign
language as mother tongue (L1) while being taught arithmetic
in a second spoken language (L2: Dutch or French). As several
studies already demonstrated that unimodal bilingualism can
impact number and arithmetic processing (Van Rinsveld et al.,
2015, 2016, 2017; Lachelin et al., 2022), there is no reason to
believe that number transcoding in bimodal bilinguals could not
have any impact on arithmetic performances.

Finally, as recent behavioural (De Visscher and Noël,
2014a,b) and brain (De Visscher et al., 2018) findings on hearing
people suggest that individual differences in multiplication fact
knowledge may be partly due to differences in sensitivity to
interference (De Visscher and Noël, 2013), we also decided to
investigate this concept. It is based on the interference model
of Campbell (1987) and Campbell (1995) according to which
arithmetic facts involve various combinations of the digits 0
to 9, and therefore consist of very similar associations between
two operands and the answer. As the similarity between the
items to remember can cause memory interference (Oberauer
and Lange, 2008), learning arithmetic facts that share a lot
of common features can therefore be considered as highly
interfering for the memory (Wickelgren, 1979). Individuals
with higher sensitivity to interference therefore experience
more proactive overlap from previously learned problems
during arithmetic fact retrieval (De Visscher et al., 2018).
A central executive impairment can therefore cause difficulties
in arithmetic fact retrieval (Kaufmann, 2002; Temple and
Sherwood, 2002; Noël et al., 2004; Barrouillet and Lépine, 2005),
especially when a deficit in suppressing irrelevant information
is present (i.e., inhibition) (Barrouillet et al., 1997; Pasolunghi
et al., 1999; Censabella and Noël, 2004; Passolunghi and Siegel,
2004; Geary et al., 2012). De Visscher and Noël (2013) for
example reported a case study of a dyscalculic individual
showing hypersensitivity to interference in memory, and a
circumscribed impairment to store arithmetic facts. Although
deaf children and adults were often reported to present lower
executive functioning than their hearing peers (Figueras et al.,
2008; Hauser et al., 2008; Hintermair, 2013; Dye and Hauser,
2014; Hall et al., 2016; Botting et al., 2017; Jones et al., 2020),
their sensitivity to interference while performing single-digit
multiplication problems was never taken into account. This will
be done in the present study.

To sum up, our study aims to investigate whether
the arithmetic deficit in deaf individuals is: (1) global, or
more specifically related to verbal numerical operations (i.e.,
multiplication problems); (2) linked to auditory deprivation,
language deprivation, the mere use of sign language or the use
of sign language as L1 while being taught arithmetic in a spoken
L2 (Dutch or French that might not have been fully accessible
despite the use of hearing aids); and (3) linked to the interference

index of single-digit multiplication problems. If the arithmetic
difficulties of deaf adults are global, their performance should
be worse than the one of the hearing signers and hearing
controls in both arithmetic operations. If deafness and its related
language experience more strongly affects verbal operations,
the difference between the deaf and the hearing adults should
be bigger for the multiplication operations. Finally, as hearing
signers were taught arithmetic in their mother tongue (i.e.,
French or Dutch), their later acquisition of sign language should
not affect their arithmetic performances. They should therefore
behave exactly as the hearing controls.

Methods

Participants

Three groups of 21 adults were recruited in the Dutch and
French-speaking parts of Belgium: a group of congenitally deaf
adults (12 females, 10 French, Mage = 39.1 years ± 2.92),
a group of hearing signers (16 females, 11 French,
Mage = 37.6 years ± 2.95), and a control group of hearing
adults who did not know sign language (12 females, 10
French, Mage = 38.8 years ± 3.15) (see Table 1 for a detailed
description of the participants). All participants had normal
or corrected-to-normal vision and no neurological problems.
Hearing participants were matched to deaf participants for
gender [X2 (2, 63) = 2.19, p = 0.33], age [F(2,60) = 0.066;
p = 0.94, η2 = 0.002], educational level [F(2,58) = 2.230; p = 0.12,
η2 = 0.071], handedness [X2 (2, 63) = 1.11, p = 0.58], and mother
tongue (French vs. Dutch) [X2 (2, 63) = 0.13, p = 0.94]. Hearing
signers reported a minimum level of B1 (i.e., intermediate
CEFR level) for sign language (see Supplementary Table 1
for more details). Most (13) deaf individuals reported sign
language as their mother tongue. Only seven deaf participants
indicated being born in a deaf family, but six deaf participants
indicated sign language as their mother tongue although not
having any relatives with hearing problems. On the other
hand, one deaf indicated having Dutch with gestures as mother
tongue, and eight deaf participants reported acquiring sign
language later in their life (2 to 20 years old), however, they
were fluent in sign language and indicated it as their preferred
way of communication (see Supplementary Table 2 for more
details). Both oral and written instructions in Dutch and
in French were given, as well as instruction videos in sign
language for deaf participants. Questions could be asked
to the researcher, who is basic proficient in sign language.
When really experiencing a language barrier, questions were
answered in a written manner. Participants provided their
written informed consent and the procedures were in line with
the Declaration of Helsinki. The study was approved by the
“Comité d’Ethique Hospitalo-Facultaire Saint-Luc-UCLouvain”
(2019/19AOU/357).
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TABLE 1 Characteristics of participants.

Subject Age Sex Handedness Onset Cause Formal
school
years
(after

primary
school)

1 56 F R 0 Hereditary 13

2 47 M L 0 Rubella 6

3 26 F R 3 years Meningitis 12

4 26 F R 0–1 year Unknown 7

5 48 M R 0 O2 insufficiency 6

6 51 F R 0 Meningitis 15

7 28 M R 0 Genetic 14

8 50 M L 0 Genetic 7

9 37 F R 0 Genetic 12

10 49 F R 0 Rubella 7

11 23 F R 0 Unknown 9

12 43 M R 0 Hereditary 5

13 24 F R 0 Unknown 11

14 20 M R 0 Unknown 7

15 53 M R 0 Hereditary 6

16 53 F R 0 Hereditary 6

17 35 M R 0 Unknown 9

18 63 F R 0 Hereditary N/A

19 35 M L 0 Genetic 8

20 37 F R 0 Nerf atrophy 12

21 22 F R 0 Unknown 10

22 21 F R 0 CMV 8

23 23 F R / / 9

24 30 F R / / 12

25 23 F R / / 11

26 31 F R / / N/A

27 58 F R / / 12

28 23 F R / / 7

29 26 F R / / 12

30 29 F R / / 9

31 51 F R / / 17

32 32 F R / / 11

33 41 F R / / 9

34 23 F R / / 8

35 29 F L / / 15

36 57 F L / / 14

37 28 F R / / 16

38 30 F R / / 11

39 50 M R / / 10

40 63 M R / / 9

41 51 M R / / 10

42 54 M R / / 6

43 38 M R / / 12

44 55 F R / / 11

45 23 M R / / 12

46 23 M R / / 9

47 23 F R / / 10

48 20 F R / / 8

49 38 F R / / 12

50 50 M R / / 11

51 57 F R / / 6

(Continued)

TABLE 1 (Continued)

Subject Age Sex Handedness Onset Cause Formal
school
years
(after

primary
school)

52 46 M R / / 6

53 66 M R / / 11

54 31 M R / / 16

55 57 M R / / 10

56 50 F R / / 9

57 39 M R / / 8

58 38 F R / / 9

59 25 F R / / 14

60 36 F L / / 11

61 49 M R / / 7

62 47 F R / / 7

63 20 F R / / 9

64 21 F R / / 10

R, right-handed; L, left-handed; F, female; M, male; CMV, cytomegalovirus.

Task and procedure

Participants had to solve two different arithmetic problems,
namely subtraction problems and multiplication problems,
which were presented on a computer screen in black font
(Courier New font and size 42) on a grey background. Each
category of operations consisted of 20 problems to solve:
some easy operations (i.e., without carry-over for subtraction;
one-digit number × one-digit number for multiplication)
and some difficult operations (i.e., with carry-over for
subtraction problems; two-digit number × one-digit number
for multiplication problems; see Table 2). The participants
first had to press the space bar when they knew the answer
(to collect correct reaction times), and then use the keyboard
to write down their answers. Operations were presented in
a fixed order starting with subtraction problems and then
multiplication problems. Easy operations were also presented
before the difficult ones. This was done to not discourage
deaf participants who are known to experience difficulties with
arithmetic (Hyde et al., 2003; Kelly et al., 2003; Bull et al., 2011).
Operations were presented on the screen until the participant
pressed the space bar to be able to indicate their answer. The
accuracy and reaction times of the responses were measured.
Subjects executed the task in a silent room where the task was
presented and the responses were recorded using E-Prime 2.0
software running on a Dell computer with Windows XP as
operating system.

Statistical analysis

Statistical analyses were carried out using IBM SPSS
statistics 26 software for Mac OS Monterey 12.0.1 (Armonk,
NY, USA). Statistical significance was set at p < 0.05
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TABLE 2 Operations presented to the participants.

Subtraction Carryover Level Multiplication Format Level Interference index

6–2 No Easy 3 × 2 U × U Easy 0

8–5 No Easy 4 × 3 U × U Easy 10

7–3 No Easy 5 × 4 U × U Easy 8

9–4 No Easy 6 × 5 U × U Easy 6

17–5 No Easy 8 × 6 U × U Easy 11

27–4 No Easy 2 × 7 U × U Easy 4

48–6 No Easy 9 × 4 U × U Easy 9

54–3 No Easy 4 × 8 U × U Easy 25

63–9 Yes Difficult 7 × 9 U × U Easy 17

35–6 Yes Difficult 5 × 7 U × U Easy 7

21–7 Yes Difficult 13 × 5 DU × U Difficult N/A

44–8 Yes Difficult 24 × 4 DU × U Difficult N/A

24–11 No Easy 38 × 3 DU × U Difficult N/A

58–33 No Easy 17 × 6 DU × U Difficult N/A

27–15 No Easy 56 × 2 DU × U Difficult N/A

47–22 No Easy 61 × 3 DU × U Difficult N/A

52–39 Yes Difficult 72 × 2 DU × U Difficult N/A

43–27 Yes Difficult 29 × 5 DU × U Difficult N/A

65–39 Yes Difficult 45 × 4 DU × U Difficult N/A

54–18 Yes Difficult 31 × 6 DU × U Difficult N/A

U, one-digit number; DU, two-digits number.

for all computations. Data were checked for normality of
distribution and presented as Mean ± Standard Error (SE).
Accuracy scores and reaction times (in ms) were measured.
A binary Generalised Linear Mixed Model (GLMM) was run
on accuracy scores (correct or not correct). A GLMM was run
on the reaction time data (only reactions times for correct
answers were included), indicating gamma distribution. One
random factor was included in all analyses because of its
significant contribution to the variance (i.e., subjects). The
fixed factors included Group (deaf, hearing signers, hearing
controls), Operation (subtraction, multiplication) and Level
(easy, difficult), as well as their interactions. Given that deaf
adults often experience executive functioning difficulties due
to language deprivation, we hypothesised that our deaf group
might be more sensitive to interference. To investigate if
deaf individuals are indeed more affected by the interference
index of single-digit multiplication problems, we performed a
GLMM indicating gamma distribution with Group, Interference
index and its interaction as fixed factors, and reaction time
as dependent variable. Interference indexes were taken from
De Visscher and Noël (2014b), since the authors calculated
the interference index for all the 36 single-digit multiplication
problems. As this index is not prone to change, and always
remains the same for one specific operation, we could use this
value directly in our analysis (see Figure 1 of De Visscher
and Noël, 2014b; Table 2 for the related interference index
of the single-digit multiplications presented in this study).

Sequential Bonferroni adjusted significance level was applied
when appropriate. Only the first and last model of the
GLMM analyses where all non-significant interactions were not
considered anymore in the model are reported, to (1) obtain a
model that is quite easy to interpret, and (2) to gain power for the
remaining parameters to detect significance. Outlier data were
removed from statistical analysis when 3 standard deviations out
of the mean (i.e., one deaf participant was removed from the
testing sample). For subtraction problems, 0.95% outlier data
were removed for accuracy and for reaction times in the deaf
group; 0.48% for accuracy and 2.38% for reaction times in the
hearing signer group, and 1.90% of the reaction times for the
hearing controls group. For multiplication, the proportion of
outliers for accuracy was 1.20% for the deaf group, 0.24% for the
hearing signers, and 0.48% for the hearing controls. A total of
2.38% was removed of the reaction times for the hearing signer
as well as for the hearing control group, and 2.62% for the deaf
group.

Results

Accuracy

A binary GLMM was run on the accuracy scores as
described above. No main effect of Operation [F(1,2494) = 2.55;
p = 0.11] or Group [F(2,2494) = 0.13; p = 0.88] was shown.
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FIGURE 1

(A) Mean accuracy scores (proportions) and (B) mean reaction times (ms) for deaf (in blue), hearing signers (in orange), and hearing controls (in
green) for the two different operations, and the two different levels of the arithmetic task. Error bars represent the standard error of the means.
Asterisks represent significant difference. Grey points represent individual mean scores.

Nevertheless, a significant main effect of Level [F(1,2494) = 57.8;
p < 0.001] and a significant Level x Operation interaction was
observed [F(1,2494) = 4.42; p = 0.036]. The Group × Operation
[F(2,2494) = 2.36; p = 0.095], Group × Level [F(2,2494) = 0.27;
p = 0.77], and Group × Operation × Level [F(2,2494) = 0.23;
p = 0.80] interactions were not significant. The final GLMM
was run with the only significant interaction included and led to
the same conclusion: Significantly higher accuracy scores were
observed for the easy operations (m = 0.97, se = 0.005) compared
to the difficult operations (m = 0.90, se = 0.015, p < 0.001).
A significant difference between subtraction problems and
multiplication problems was found for the easy operations only,

where the accuracy scores of multiplication problems were lower
(m = 0.96, se = 0.009) than those for subtraction problems
(m = 0.98, se = 0.005, p = 0.025) (see Figure 1A).

Reaction times

Regarding the reaction times, the GLMM indicated a
significant difference for Operation [F(1,2265) = 4.26; p = 0.039],
Group [F(2, 2265) = 10.1; p < 0.001], and Level [F(1,2265) = 938;
p < 0.001]. No significant Group × Level interaction
[F(2,2265) = 0.32; p = 0.72] and no Group × Operation × Level
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FIGURE 2

Mean reaction times (ms) per interference index for the easy multiplication operations in the different groups (deaf in blue, hearing signers in
orange, hearing controls in green) of the arithmetic task. Error bars represent the standard error of the means.

interaction [F(2,2265) = 0.51; p = 0.60] was seen. However,
significant Group × Operation [F(2,2265) = 4.00; p = 0.018] and
Operation × Level [F(1,2265) = 16.4; p < 0.001] interactions
were observed. The final GLMM was run including the
two significant interactions and led to the same conclusion:
Subtraction problems (m = 3318, se = 162) were solved faster
than multiplication problems (m = 3492, se = 170, p = 0.040).
Deaf adults (m = 4551, se = 372) were slower than hearing signer
adults (m = 3114, se = 254, p = 0.003), and hearing control
adults (m = 2783, se = 227, p < 0.001). Hearing signers did not
perform differently compared to hearing controls (p = 0.33).
Responses to difficult operations were slower (m = 4987,
se = 246) than responses to easy operations (m = 2323,
se = 112, p < 0.001). The difference between deaf (m = 4917,
se = 417 for multiplication problems and m = 4213, se = 355 for
subtraction problems) and hearing signers (m = 3122, se = 263
for multiplication problems, p = 0.001 and m = 3106, se = 262
for subtraction problems, p = 0.024) as well as between deaf
and hearing controls (m = 2775, se = 234 for multiplication
problems, p < 0.001 and m = 2791, se = 236 for subtraction
problems, p = 0.003) was bigger for the multiplication problems
than for the subtraction problems. The difference between
subtraction problems and multiplication problems was only
found for the difficult operations (m = 5379, se = 280 for
multiplication problems and m = 4623, se = 248 for subtraction
problems, p < 0.001), and not for the easy ones (m = 2267,
se = 117 for multiplication problems and m = 2381, se = 120
for subtraction problems, p = 0.13) (see Figure 1B). Similar
results are found when including years of formal education as
covariate (see Supplementary material). Moreover, no speed
accuracy trade-off was observed in any groups and/or any
operations.

When investigating the interference index using a GLMM,
a main effect of Group [F(2,561) = 7.96; p < 0.001], and

Interference index [F(9,561) = 23.0; p < 0.001] was observed
together with a significant Group × Interference index
interaction [F(18,561) = 2.10; p = 0.005]. Deaf (m = 3010,
se = 309) performed slower than hearing signers (m = 1975,
se = 202), p = 0.011, and hearing controls (m = 1727,
se = 177), p = 0.001 (see Figure 2). Post-hoc analyses on
the Group × Interference index interaction can be found
as Supplementary Table 3. In general, a pattern indicating
more significant group differences with augmenting interference
index was observed.

Discussion

Deafness has been indicated as a risk factor for mathematical
difficulties, where the differences between signed and
spoken language, less exposure to numerical language, and
differences in domain-general processing are suggested
to contribute mostly to this phenomenon (see Santos
and Cordes, 2022 for a review). The challenges that deaf
individuals experience with mathematical abilities have
indeed been consistently demonstrated in the literature
over the last decades (e.g., Wollman, 1965; Hine, 1970;
Wood et al., 1986; Bull, 2008), and are thought to primarily
lie in the acquisition of verbal number concepts such as
counting, fractions, and, more importantly for our purposes,
arithmetic skills (Titus, 1995; Leybaert and Van Cutsem,
2002; Kritzer, 2009; Pagliaro and Kritzer, 2013). While
the underperformance of deaf individuals in arithmetic
has been highlighted by different mathematical assessment
tests (Bull et al., 2011 for math achievement test; Hyde
et al., 2003 for arithmetic word problems; Kelly et al., 2003
for relational statements; Pagliaro and Ansell, 2012 for
arithmetic story problems), the differential impact deafness
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and language deprivation may have on verbal vs. visuospatial
arithmetic operations is less clear. To examine this possible
dissociation, deaf signer, hearing signer and hearing control
adults were asked to solve easy vs. difficult subtraction
and multiplication operations.

Overall, our results demonstrated that performances were
lower for the difficult operations as compared to the easy
ones, and lower for multiplication problems as compared
to subtraction problems in all three groups. This accuracy
difference between subtraction problems and multiplication
problems was, however, only present for the easy operations,
while the reaction time difference between the same operations
was only present for the difficult operations. But, most
importantly for our purposes, and in contrast to Andin
et al. (2019), we managed to highlight a difference between
deaf signers and hearing adults at the behavioural level.
Group differences were found for reaction times–but not
for accuracy scores–(i.e., the deaf were slower than the two
hearing groups), and these group differences were larger
for multiplication problems than for subtraction problems.
The discrepancy between our study and the one of Andin
et al. (2019) probably comes from the fact that different
groups of participants and different tasks were tested in
these two studies. Indeed, in Andin et al. (2019), the deaf
participants group only included native signers. Participants
were moreover required to verify (and not calculate) the
results of subtraction and multiplication problems. In a
verification task, individuals can decide that the answer is
false on the basis of plausibility judgements (e.g., Duverne
and Lemaire, 2004, 2005; Hinault et al., 2015). Solution times
are therefore not representative of the genuine time it takes
to solve an arithmetic operation in an ecological situation. It
is finally worth mentioning that only single-digit operations
were included in this study. This level of arithmetic reasoning
might have not been sufficient enough to highlight group
differences in adults (Andin et al., 2022).

Recent years have seen a surge in empirical studies
examining the role of language in accounting for cross-language
disparities in children’s number understanding and arithmetic
competence (Fuson and Kwon, 1992; Rasmussen et al., 2006;
Wang et al., 2008; Krinzinger et al., 2011; Göbel et al.,
2014). It has for example been suggested that the superior
arithmetic performance of Chinese and other Asian students
could be explained by the relative linguistic transparency of
the Asian counting systems (Fuson and Kwon, 1992; Miller
et al., 2005), which gives a clear and consistent representation
of the base-ten system (contrarily to the base-five system
of the sign languages used in Belgium). In line with this,
when considering bilingual individuals, the language in which
arithmetic was learned seems to have a remaining advantage
on performance. Van Rinsveld et al. (2016), for example, found
better performances on arithmetic problem solving in German
than in French, since German is the first learned language at

the Luxembourgish school system. While comparisons across
different auditory languages have been made, the present
study aimed to examine the impact of sign language use on
arithmetic problem solving. Since the obtained results indicated
no significant difference between hearing signer and hearing
control adults, one could assume that it is rather the usage of sign
language as L1, while having learned multiplication in spoken
language, that influences multiplication performances and not
the knowledge of sign language per se. Belgian deaf signers could
possibly use a visuospatial route while solving multiplication
operations. Hearing individuals would in contrast directly access
the verbal route. The visuospatial detour that deaf signers
experience could explain why solving multiplication operations
requires them more time and resources (i.e., cognitive load).
Hearing individuals may not prevent themselves from relying
on the phonological aspects of the presented stimuli, while
deaf signers may experience some issues in accessing the verbal
associations of multiplication facts. This hypothesis is, however,
speculative and should be further tested in the future.

As the control groups (hearing controls and hearing signers)
have experienced typical language development with typical
language access from birth, they differ from the deaf group
in language modality and in hearing status but also in early
language access. This delay in accessing language can therefore
be the main factor subtending the arithmetic difficulties of our
deaf sample. Signed languages are indeed complete, natural
languages that consist of their own unique visual grammar
and syntax (Stokoe et al., 1965). Consistently with the fact
that typically developing children with higher phonological
awareness are better in forming verbal representations of
multiplicative relations between two numbers (De Smedt et al.,
2010; Berteletti et al., 2014), deaf children born to deaf parents
who are fluent signers, do not display the same difficulties
with mathematics as those with language deprivation early
in development (e.g., Kritzer, 2009; Mousley and Kurz, 2015;
Hrastinski and Wilbur, 2016). This distinction highlights an
important relationship between language access and acquiring
numerical concepts, or the importance of mastering sign
language phonology to perform well on multiplication in
the deaf signers population (e.g., Berteletti et al., 2022).
Supplementary Figure 1 representing individual data indicates
that the early deaf signers seem to be more efficient than the
later deaf signers of our sample. Late deaf signers probably
experienced some early language deprivation and possibly
limited access to spoken languages during the critical years for
learning mathematics. Speculatively, if all opted to acquire sign
language later in life (i.e., after the age of 3 years/o), it is probably
because the quality of the auditory input or the difficulty in
processing it was non-negligible (see Supplementary Figure 1).
More systematically comparing native or late signers to early
or late cochlear implanted deaf individuals would definitely
help to understand whether the mathematical difficulties deaf
often experience originate from auditory deprivation per se
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or from a delay in accessing and mastering verbal or visual
languages.

While Andin et al. (2019) failed to find behavioural
group differences in reaction time and accuracy on their
arithmetic task, they nevertheless highlighted differences in
the neural networks deaf signers and hearing non-signers
engage to calculate (but see Andin et al., 2022; Berteletti
et al., 2022). Whereas language related brain regions in the
left cerebral hemisphere are usually recruited for arithmetic
fact retrieval (Dehaene et al., 2003), stronger activation of
the right horizontal intraparietal sulcus was found in deaf
signers compared to hearing non-signers. This indicates that
deaf signers may solve multiplication operations by relying
on magnitude manipulation to a larger extent than their
hearing peers (Andin et al., 2019). They could therefore be
more sensitive to the numerical magnitude of the operations
presented (see Supplementary Figures 2, 3). In line with
this, we have to admit that our multiplication problems
tend to be larger in overall magnitude than our subtraction
problems. The greatest difficulty that we observe in deaf
signers for the multiplication problems may therefore lie in
their greater quantity processing rather than to the visuo-
phonemes translation they require. If small multiplication
problems (Siegler, 1988) are solved by direct memory retrieval,
it is true that larger multiplication problems are more
likely to be split up in easier problems and then involve
visuospatial procedures to manipulate intermediate calculations
and the magnitude of the final result (LeFevre et al., 1996;
Thevenot et al., 2001, 2007; Núñez-Peña et al., 2011). As
splitting up the operation in easier problems involves retrieving
them as arithmetic facts, we are nevertheless convinced that
multiplication problems (easy and difficult) require more
language and memory processes than subtraction operations.
Retrieving arithmetic facts and manipulating intermediate
calculations could therefore be difficult for deaf individuals.
This makes even more sense if we consider that: (1) language
deprivation correlates with executive functioning difficulties
(Hall et al., 2016; Botting et al., 2017; Jones et al., 2020;
Ribner et al., 2022); and (2) spoken language is temporal
and has been shown to lead to higher serial spans than
signed information in serial recall tasks (Bavelier et al.,
2008). As deaf signers who present language deprivation were
shown to perform significantly poorer on executive functioning
tasks than hearing individuals (Figueras et al., 2008; Hauser
et al., 2008; Hintermair, 2013; Dye and Hauser, 2014; Hall
et al., 2016; Botting et al., 2017; Jones et al., 2020), they
could therefore heighten more sensitivity to interference.
This assumption was supported by our interference index
analysis. Moreover, as temporal order is maintained more
efficiently in auditory-based representations than in visually-
based representations (Paivio and Csapo, 1971; Watkins and
Watkins, 1980; Watkins et al., 1992), speakers would rely
more on temporal encoding, while signers would rely more

on spatial encoding (Wilson, 2001). Deaf individuals could
therefore experience more problems to solve multiplication
operations, as they might be less efficient to learn a sequence of
multiplication facts.

To conclude, our findings are in line with several
previous studies suggesting that deaf individuals have no
deficits in their numerical representation of magnitude
information (i.e., similar accuracy scores), but might
experience a less efficient processing (i.e., slower reaction
times) of basic numerical information (Epstein et al.,
1994; Iversen et al., 2004; Bull et al., 2005; Chinello et al.,
2012; Rodriguez-Santos et al., 2014). This less efficient
processing is, in our case, more pronounced for multiplication
than for subtraction operations and could be explained
by several mutually not exclusive reasons: (1) the fact
that deaf individuals have delayed and therefore less
automatic access than their hearing peers to the verbal
phonological loop (Elliott et al., 2011); (2) the fact that deaf
individuals might show higher sensitivity to the magnitude of
the arithmetic operation presented; and (3) the fact that deaf
individuals might show higher sensitivity to interference for
multiplication operations (De Visscher and Noël, 2013, 2014a,b;
De Visscher et al., 2018).

Conclusion

This study investigated how deafness and its related
variable language experience, including language deprivation,
shapes verbal vs. visuospatial arithmetic performances.
Although the accuracy scores between deaf signers, hearing
signers and hearing controls did not differ, the deaf signers
showed significantly slower reaction times compared to
the two hearing groups. Importantly, this significant group
difference was larger for multiplication operations than
for subtraction operations. These findings support the idea
that numerical tasks relying on verbal processes are more
strongly impacted by deafness and its following language
experience, compared to numerical tasks implying visuospatial
processes (Buyle et al., 2022). Further studies are, however,
needed to better understand the mechanisms underlying this
dissociation. Performances of deaf and hearing children should
for example be compared on many more “easy” operations.
Varying much more the magnitude of the operands and
the interference index of the multiplications presented will
help to understand the impact of these two factors on the
arithmetic development of deaf individuals. Asking deaf
and hearing children to perform multiplication operations
under verbal vs. visuospatial load may similarly help to
understand whether deaf and hearing signers use different
processes to solve these operations (verbal processes in hearing
vs. visuospatial processes or magnitude manipulation in
deaf signers).
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