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Automatized scalable healthcare support solutions allow real-time 24/7 health monitoring

of patients, prioritizing medical treatment according to health conditions, reducing

medical appointments in clinics and hospitals, and enabling easy exchange of

information among healthcare professionals. With recent health safety guidelines due

to the COVID-19 pandemic, protecting the elderly has become imperative. However,

state-of-the-art health wearable device platforms present limitations in hardware,

parameter estimation algorithms, and software architecture. This paper proposes a

complete framework for health systems composed of multi-sensor wearable health

devices (MWHD), high-resolution parameter estimation, and real-time monitoring

applications. The framework is appropriate for real-time monitoring of elderly patients’

health without physical contact with healthcare professionals, maintaining safety

standards. The hardware includes sensors for monitoring steps, pulse oximetry, heart rate

(HR), and temperature using low-power wireless communication. In terms of parameter

estimation, the embedded circuit uses high-resolution signal processing algorithms

that result in an improved measure of the HR. The proposed high-resolution signal

processing-based approach outperforms state-of-the-art HR estimation measurements

using the photoplethysmography (PPG) sensor.

Keywords: embedded high-resolution parameter estimation, healthcare multi-sensor wearable hardware

development, health monitoring application architecture, ESPRIT, photoplethysmography

1. INTRODUCTION

Nowadays, health systems, including hospitals and their intensive care units (ICU), are challenged
by a substantial need to increase critical care capacity due to the Coronavirus Disease 2019
(COVID-19) pandemic (Phua et al., 2020). This same paper highlights the importance of
streamlining workflows for rapid diagnosis and isolation, clinical management, and infection
prevention essential to caring for COVID-19 patients. It also emphasizes the need to protect
healthcare workers and other patients while supporting ICU practitioners’ activities, hospital
administrators, governments, and policymakers. As elderly people are more vulnerable to
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COVID-19, according to Rezende et al. (2020), and other
diseases, it is important to ensure continuing healthcare to this
part of the population using no-contact methods.

As suggested in Alwashmi (2020), health systems invest
in automatized and scalable digital health support solutions,
such as healthcare wearable devices and information systems
empowered with artificial intelligence. Such automatized digital
health solutions allow real-time 24/7 health monitoring of
patients, prioritizing medical treatment according to the patients’
health conditions, reducing medical appointments in clinics
and hospitals, by sharing secure information among healthcare
professionals. This is especially of interest when treating the
elderly, as they are at greater risk in hospital environments as
concluded in Costantino et al. (2021). Therefore, the framework
presented in this paper can enable fewer hospital admissions
of elderly people while closely monitoring their health and
prioritizing more severe cases.

According to Grand View Research (2020), the global market
for wearable medical devices was valued at USD 13 billion
in 2019, with an expected annual growth rate of 27.9% until
2027. Still, according to Grand View Research (2020), multi-
sensor health wearable devices are becoming popular due to
the cost reduction of remote health monitoring technologies,
including home healthcare. Moreover, an affordable and precise
health-centered wearable device can allow for novel monitoring
infrastructure and increase patients’ quality of life.

In this paper, we propose a multi-sensor wearable health
device (MWHD) framework with a real-time monitoring
application and high-resolution parameter estimation. The
proposed hardware includes sensors for step counting, pulse
oximetry, heart rate (HR), and temperature measurements. Since
wireless communications require a significant consumption of
device battery energy (de Freitas et al., 2012; Marinho et al.,
2013), the proposed MWHD optimizes the battery usage by
using Bluetooth Low Energy (BLE). In terms of parameter
estimation, the embedded integrated circuit programmed with
high-resolution signal processing algorithms processes the
sensors’ signals, allowing improved analysis of the steps, pulse
oximetry, and HR. Finally, the patient’s medical information
is reliably provided by the real-time monitoring application to
healthcare workers.

This paper is composed of five sections, including this
introduction as section 1. Section 2 shows related works
in health data signal processing and healthcare platforms.
Section 3 proposes a wearable device prototype using
photoplethysmography (PPG), an algorithm for HR estimation,
and a software platform architecture for remote healthcare
supervision. Section 4 presents the methodology and results of
the performance comparison of PPG processing algorithms for
HR estimation. Finally, section 5 concludes the paper.

2. STATE OF THE ART

In Wu et al. (2020), the feasibility of a compact wearable sensor
patch for measurements of different physiological signals,
including PPG and body temperature, is presented. The wearable

sensor system transmits the physiological measurements
wirelessly to a gateway using a BLE module. The health data is
encrypted, stored, and analyzed on the Internet cloud.

Concerning the usefulness and acceptance of wearable devices
among the elderly population, paper (Kekade et al., 2018)
presents a systematic review and survey results. The authors show
that fewer elderly people are using wearable devices, while more
than 60% of them were interested in using such devices. This
presents an opportunity to expand the adoption of wearables in
elderly healthcare. Also, only 26% percent of individuals were
willing to pay for a wearable device, showing a need to ally their
use with healthcare systems and not necessarily personal use.
Finally, despite the disadvantages of wearables, the paper found
good compliance prospects and prescribed raising awareness of
the technology.

In Puranik and Morales (2020), a digital filter for PPG signals
collected from an MWHD is proposed using an adaptive neural
network, allowing a more accurate estimate of the HR, resulting
in a variation of 3% concerning the ground truth. In Chung
et al. (2020), a deep learning approach is proposed for the
HR estimation using PPG signals, achieving an absolute error
of 1.5 beats-per-minute (BPM), outperforming state-of-the-art
methods. Finally, the authors of Panwar et al. (2020) present a
new deep learningmodel with the capability to estimate HR using
only a single channel provided by the PPG signal, achieving an
error for HR estimation of 0.046 BPM. Note that the usage of
neural networks requires labeled data and the tuning of the neural
network hyperparameters.

In Coffen et al. (2020), a new ring-shaped sensor is proposed
to estimate the heartbeat using reflective PPG. Themeasurements
are transmitted to a mobile phone via Bluetooth 4.0. Compared
with the commercial solution, the ring-shaped sensor presented
an error of 2% smaller.

Still, regarding form-factor preference and acceptance,
authors of Kolasinska et al. (2018) assess the usability of a set
of sensors hidden in everyday objects. When prompted which
pieces of jewelry were more frequently used, seniors gave the
two most common answers: a watch (39%) or a bracelet (39%).
Besides, health practitioners found greater functionality in writs-
located devices. The paper also found other indications of the
willingness of elderly people to use such wearable devices.

In Wang et al. (2019), it improves the HR estimation by using
a new notch filter, and the noise cancellation approach is based
on the least mean squares. As a result, the error of the HR
estimation employing this approach is smaller than 1 BPM using
measurements from intensive physical activities.

Reference (Xiong et al., 2017) discusses challenges in HR
estimation from a wrist band with PPG collected during
intense exercises. First, Principal Component Analysis (PCA)
and adaptive filtering are used for removing noise from the PPG
signals. Then, to estimate the HR, a Support Vectors Machine
(SVM) based approach is considered. The approach in Xiong
et al. (2017) presents errors of 1.01 BPM.

In Przybyło (2019), a new method is proposed to estimate HR
using PPG. The method also includes Blind Source Separation
(BSS) to improve the results further. The achieved Root-Mean-
Square Error (RMSE) is 6.1 BPM.
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In Godfrey (2017), authors discuss limitations shown in
commercial wearable devices, citing the main limitations as non-
clinically oriented devices and failure to provide transparent
functionality on account of proprietary software. The authors
propose that wearable devices can accommodate the needs of
older adults while simultaneously monitoring gait due to their
importance in checking aging-related pathologies. The paper
(Godfrey, 2017) concludes by recommending the use of multiple
and higher-resolution processing algorithms to overcome current
limitations in gait assessment.

A novel health wearable platform for the real-timemonitoring
of accidents of elderly people is shown in Lampoltshammer
et al. (2014). In terms of performance, the improved sensors in
Lampoltshammer et al. (2014) present a longer battery lifetime,
allowing their usage by elderly people for long periods.

Authors present another similar system in Durán-Vega
et al. (2019). The presented framework is used in real-time
monitoring of patients of nursing homes and comprises a
wearable device, mobile application, and necessary middleware.
The paper presents assessments for more convenient use of
both the wearable and the application on the patients and
of their caregivers. Our solution diverges by focusing on
any clinical setting, employing a high-resolution processing
algorithm aiming for clinical-appropriate data. Besides, our
solution also looks to lower the cost of the device, even more,
keeping it around $25 US.

2.1. State-of-The-Art Simplified Model for
PPG Waveforms
The PPG waveform can be modeled as a pulsating quasi-
periodic component attributed to synchronous cardiac
changes in the blood volume with each heartbeat. A slowly
varying low-frequency component superimposes this pulsating
component, with various lower frequency components attributed
to respiration, sympathetic nervous system activity, and
thermoregulation (Allen, 2007). The PPG signal is sampled with
a sampling rate of fs. Such sampled PPG waveform is modeled by:

x[n] = A cos [2π fn+ θ]+ r[n], (1)

whereA is the PPG signal amplitude, f is the relative frequency of
the PPG signal normalized by fs, θ is the phase of the PPG signal,
and r[n] is a component that comprises the noise and artifacts
present in the PPG signal. Note that, due to the HR variability
(HRV) (Buccelletti et al., 2009) and the Inter-Beat Intervals (IBI),
HR is a time variable. However, we assume a short estimation
interval, such that the model in (1) can be applied.

HR detection can then be formulated as a frequency
estimation problem. Thus, by measuring the frequency
parameter f of a periodic heart signal, given in Hz, we
convert the HR to the corresponding value in BPM, given by
BPM = f · 60.

In the literature, common approaches for the HR estimation
that are applied in embedded systems include Fast-Fourier
Transform (FFT) based (Santamaria et al., 2000), autocorrelation
(Proakis, 2013), zero-crossing detection (Zhang et al., 2008) and

peak detection (Scholkmann et al., 2012). These approaches are
summarized in Appendices A.1, A.2, A.3, and A.4, respectively.

3. PROPOSED HEALTHCARE PLATFORM
COMPOSED OF LOW-COST HARDWARE,
HIGH-RESOLUTION PARAMETER
ESTIMATION ALGORITHMS, AND
REAL-TIME MONITORING APPLICATION
ARCHITECTURE

This section, as depicted in Figure 1 proposes the multi-
sensor health wearable device framework with real-time
monitoring application and high-resolution parameter
estimation. According to Figure 1, each patient is assigned
an MWHD, which gathers and processes each subject’s health
data. Patients can be isolated from each other and healthcare
professionals, reducing contact to only the necessary to enforce
health protocols. This approach better fits the needs for tighter
healthcare procedures with seniors. The MWHD can transmit
the processed data via a wireless communication protocol based
on BLE to a concentrator device. Note that the concentrator
hardware depicted in Figure 1 has been proposed in Prettz
et al. (2017). This concentrator device uploads data to a cloud
server, which interacts with the proposed monitoring application
installed on mobile healthcare workers. The healthcare workers
are thus able to monitor patients and collaborate in real-time.

This section is divided into three subsections. In section 3.1,
we detail the proposed MWHD. In section 3.2, we propose
the high-resolution processing algorithm for HR estimation.
In section 3.3, we propose the healthcare platform for real-
time monitoring.

3.1. Proposed Healthcare Wearable Device
Including Multiple Sensors, Processor, and
Low Energy Wireless Communication
The proposed MWHD prototype shown in Figure 2 is battery-
operated and contains sensors to measure the health information
of the user—namely HR, pulse oximetry, body temperature,
and steps. The current paper focuses on high-resolution HR
measurements. Additionally, an application of step counting
is shown in Rega et al. (2019). We also implemented the
other parameters as directed by the manufacturer’s datasheet of
the MAX30102 pulse oximetry sensor from Maxim Integrated
(2018). The sensors communicate over an Inter-Integrated
Circuit (I2C) bus with the microcontroller unit (MCU). The
MCU then transmits data to mobile devices using BLE, thus
minimizing power consumption.

Selected Area A of Figure 2 comprises the CC2640R2F
Cortex R©-M3 MCU circuit by Texas Instruments (2016) and
additional components for operating the MCU and for the BLE
communication interface. Two crystals are positioned to generate
clock signals for different modes of the MCU, one with 24 MHz
for regular speed operation and another with 32 kHz for low-
power mode. The reduced speed during low-power mode saves
power during idle operation. The General Purpose Input/Output
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FIGURE 1 | Diagram of the proposed healthcare framework, consisting of a multi-sensor health wearable device, PPG high resolution parameter estimation, and

real-time monitoring application.

(GPIO) pins and Joint Test Action Group (JTAG) Interface are
made available in pin connectors for ease of access during testing
of the MWHD prototype. The Radiofrequency (RF) circuitry is
built according to the recommendations by Texas Instruments
(2016) related to the 4 x 4 External Single-ended configuration,
which requires a smaller board space and saves more power.
Two push buttons are added for user input and interaction with
the device.

Selected Area B of Figure 2 is the power sourcing part of
the circuit from a small Lithium-Polymer (LiPo) battery. The
nominal 3.7 V of the LiPo battery is regulated to 3.3 and 1.8 V
using low-dropout regulators LP5907MFX-3.3 and LP5907MFX-
1.8. The regulators guarantee a stable voltage of operation for the
MCU and sensors during device operation and battery’s charge
and discharge cycles. In addition, the LiPo battery is equipped
with a generic commercial micro USB recharging module with
overcharge, over-discharge, and current protections.

Selected Area C of Figure 2 includes the sensors for health
data measurements. The signals provided by the PPG sensor
MAX30102 are used to estimate the HR and pulse oxymetry
using red or infrared (IR) LEDs. In conjunction, red and IR
LED signals enable pulse oximetry estimation based on the
different absorption rates of arterial and venous blood. The
prototype device also comprises an accelerometer LIS331DLTR,
used for the step counter, to measure movement artifacts used for
interference reduction on the PPG signal. For keeping track of
body temperature variations, such as fever, the prototype utilizes
a MAX30205 sensor. The sensor is positioned on the bottom side

of the prototype device to contact the users’ skin. The values read
are calibrated according to the manufacturer’s specifications in
Maxim Integrated (2016).

The proposed printed circuit board (PCB) is designed as
a 4-layer board to achieve routing requirements and reduce
electromagnetic interference (EMI). Additionally, the proposed
PCB is double-sided mounted, with a central processor and
input buttons on the top and sensors on the bottom to contact
the user’s wrist skin (required by PPG and body temperature
measurements). Test points are also positioned for power
sourcing, communication interfaces, and JTAG debugging.

Figure 3 shows photos of the MWHD prototype produced
according to the block diagram of Figure 2. On the left-hand side
photo, the complete prototype encapsulated as a smartband is
shown, while on the right-hand side photo, the PCB of the block
diagram of Figure 2 is depicted.

The MWHD is projected as a low-cost device, enabling a
cheaper complete healthcare solution to be deployed on a large
scale. The cost of the components and PCB was USD 25.00 in
a low volume run, indicating that bulk production can make
further cost reductions. The final price of the device is on-
par with other low-cost fitness wearable devices available in the
market. This cost compares well with clinical health devices,
which can cost more than USD 100.00 by a considerable margin.

We carried out the hardware prototype development and
the proposed algorithm for HR estimation simultaneously. In
addition, we gathered HR data from a MAX30100 device for
experimental validation. This different PPG sensor module is
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FIGURE 2 | Block diagram showing the functional circuit components of the proposed prototype wristband.

FIGURE 3 | Dimensions of the PCB and enclosure produced for the proposed

MWHD device prototype.

equivalent to the projected prototype. The employed pulse
oximeter and HR sensor integrated circuit captured data in
peripheral oxygen saturation (SPO2) measuring mode, though
pulse oximetry data is not presently considered. Furthermore,
data from the IR LED from the sensor is considered
during the tests due to reduced interference from ambient
background lighting, while the red LED data is disregarded for
the application.

The MAX30100 PPG sensor module communicates via I2C
bus to the main MCU, which then transmits gathered data
to the computer’s serial port via a USB-to-Serial adapter. The
experiment uses wired serial transmission to guarantee signal
integrity further, avoiding adverse effects to any samples input
to the algorithms due to events such as package drop or
wireless interference.

3.2. Proposed High Resolution Signal
Processing Algorithm for HR Estimation
A novel approach for HR detection applying the Estimation
of Signal Parameters by Rotational Invariance Techniques
(ESPRIT) (Roy and Kailath, 1989) algorithm is presented in
this subsection. In Reis et al. (2017), the high-resolution signal
processing technique named SPHINS is successfully applied for
the frequency estimation in forensic applications. In Rega et al.
(2019), a high accuracy step counter algorithm based on ESPRIT
has been proposed using the accelerometer signals acquired by
the sensors of our MWHD prototype proposed in section 3.1.
Inspired by the outstanding results of Reis et al. (2017), Reis
et al. (2016), and Rega et al. (2019), we propose the usage of the
high-resolution signal processing algorithm ESPRIT to measure
the HR.

The algorithm exploits the property of rotational invariance of
signal subspaces spanned by two temporally displaced data sets
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(Roy and Kailath, 1989). A simplified description of the least-
squared version of the ESPRIT algorithm is shown next based on
Manolakis et al. (2005) and Reis et al. (2016).

By applying the Hilbert transform on the PPG waveform
model in (1), we obtain the analytic representation of the signal
x[n] ∈ R given by:

y[n] = x[n]+ jH{x[n]}, (2)

where the operator H{} denotes the Discrete Hilbert Transform
(DHT) and j =

√
−1.

We replace (1) into (2) and rewrite y[n] ∈ C by taking into
account thatH{} is a linear operator, as:

y[n] = A cos [2π fn+ θ]+jH{A cos [2π fn+ θ]}+r[n]+jH{r[n]}.
(3)

The signal y[n] can then be represented as a sum of the complex
exponentials with added noise component w[n], comprising the
real and imaginary parts of the noise component r[n]:

y[n] = A exp [2π fn+ θ]+ w[n]. (4)

By segmenting the samples obtained by y[n] in (4), we can build
a data matrix Y where N is the amount of data records of the
length-P time-window vector signal y[n], thus:

Y =
[

y[0] y[1] . . . y[N − 1]
]T ∈ C

P×N , (5)

where y[n] =
[

ŷ[n] ŷ[n+ 1] . . . ŷ[n+ P − 1]
]T
, and T is the

transposition operator of matrices.
Next we compute the sample covariance matrix of (5)

as follows:

Ry =
YYH

N
. (6)

By applying the Eigenvalue Decomposition (EVD) in (6), we
obtain the following expression:

Ry = U6UH, (7)

whereU is an P×Pmatrix of right singular vectors and H denotes
the Hermitian operator. Matrix6 ∈ R

N×P has dimensionsN×P
and is composed of singular values.

Matrix U can be decomposed as U = [uy0 |Uw], where uy0 ,
the first column of U, is the vector that generates the signal
subspace, of dimensions P × 1, formed by the singular vector
corresponding to the maximum singular value of the data matrix
Y. The remaining singular vectors form a matrix in which its
columns correspond to the basis that generate the noise subspace
Uw, of dimensions P× (P−1), orthogonal to the signal subspace.

By writing vectors uu and ud formed by the first and last P− 1
elements of uy0 , respectively, the rotational invariance presented
previously, and exploited by ESPRIT, guarantees that:

uuφ = ud, (8)

where φ ∈ C corresponds to the rotation scalar. By solving (8),
the phase value estimation of φ is given by:

φ = 6 uHu ud

uHu uu
, (9)

where 6 is the phase notation that denotes the phase angle value
of the corresponding complex number.

We determine the frequency estimator f̂ with the computed
phase angle value of φ and the sampling frequency fs, thus:

f̂ = φ

2π
· fs. (10)

To estimate HR, we calculate the time window T of the
measurement given by T = nsamples/fs, that is equivalent to the
duration of the measurement in seconds. Finally, the estimated

value is BPM = f̂ · 60/T.
Next, we present the summarized steps of the ESPRIT based

algorithm for the HR estimation.

Algorithm 1: Proposed ESPRIT-based HR estimation via Hilbert
Transform
Given signal x[n] in (1), sampled with frequency fs, during a time
window of T:
1) Obtain signal y[n] according to (3) by applying the Discrete
Hilbert Transform to x[n].
2) Segment the samples obtained in signal y[n] to obtain the data
matrix Y in (5)
3) Compute the sample covariance matrix estimate Ry of the data
matrix Y as in (6).
4) Decompose Ry in the corresponding EVD matrices to
calculate by eigendecomposition matrix U according to (7),
whose columns are the corresponding right eigenvectors of Ry.
5) Determine the column uy0 of matrix U, corresponding to the
maximum singular value of data matrix Y.
6) Determine uu and ud by taking the first and last P−1 elements
of vector uy0 .
7) Estimate the rotation scalar φ ∈ C from vectors uu and ud
based on the rotational invariance property as in (8).
8) Extract the estimated angle value of φ from (9).
9) Determine the frequency estimator using phase angle value of
φ into (10).

10) Calculate the estimated BPM value equal to f̂ · 60/T.

3.3. Healthcare Platform for Real-Time
Monitoring and Evaluation
The software architecture of the proposed application is divided
into five layers, as depicted in Figure 4.

In the Presentation Layer of Figure 4, a login screen
for authentication and registration of new users is defined.
This feature allows users to register and identify their
medical credentials and securely store their information in the
application servers.
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FIGURE 4 | Software architecture for the developed real-time monitoring healthcare application.

The Service Layer of Figure 4 exposes the business logic
implemented in the software to potential consumers. One
example of an external system is the concentrator, responsible for
uploading data from wearable devices.

The Business Layer of Figure 4 is the logic behind the
platform. We divided this layer into two blocks, in which the
Healthcare Subsystem is used to check the data generated
from the patient. The other block, called Management
Subsystem, has an administrative function, tasked with
supervising and managing multiple patients, wearable devices
and healthcare workers.

The Data Access Layer of Figure 4 contains components
to abstract the logic required to access the data stores. Such
components provide common data access functionality, isolating
the upper layers from the specific database technology, and
making the application easier to maintain and configure.

The Persistence Layer of Figure 4 provides several advantages
to the software since it is more efficient to save and retrieve
data and provide for the whole application. In our context, we
have four data sources, namely:Wearable Devices, People, Health
Data, and Logging Data.

One advantage of the proposed online application in the
solution framework is the interaction with the end-user. Using

the platform, healthcare workers can track multiple users’ health
conditions in a centralized and reliable manner. Note that the
proposed real-time monitoring platform can be integrated into
other MWHD, as exemplified in Prettz et al. (2017), with the
usage of a commercial MWHD.

Even though secure data communication is not a focus
of this paper, it is essential to highlight that a distributed
system such as this proposed healthcare application needs a
fully distributed security system, such as proposed in Ferreira
and de Sousa Jr. (2017). As it also comprises interactions
according to the Internet of Things (IoT) paradigm and
involves personal data, a particularly lightweight protocol for the
authentication of devices, as proposed in de Almeida et al. (2018),
is also paramount.

4. EXPERIMENTAL VALIDATION

To evaluate the performance of the proposed ESPRIT-based
HR estimation approach in section 3.2, measurements using the
PPG sensor equivalent to that of section 3.1 are considered.
Unfortunately, the MAX30100 sensor used for this experimental
validation fromMaxim Integrated (2014) has an analog-to-digital
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converter (ADC) with lower resolution than that available in
the MAX30102 in Maxim Integrated (2018) sensor present in
the MWHD prototype, and also different possible parameter
configurations. Nevertheless, we believe the results presented
here are extensible to the proposed MWHD due to equivalences
in both sensors’ PPG technology.

The experimental validation trials were performed by one
voluntary person that was asked to perform specific activity levels
to produce different heart rate observations for the measured
values. The voluntary person wore a medical-grade PPG device—
for ground truth—along with our proposed PPG measuring
device. For each considered parameter, a total of five samples
were captured, with a total duration of 10 s each. Initially, the
voluntary was in rest, and then performed intense cardiovascular
exercise for a defined time interval. Then, the voluntary rested
after the cardiovascular exercise.

Initially, signal pre-processing is performed on the sampled
data to eliminate artifacts and other detrimental factors that
hinder each HR estimator’s performance. Then, such processes
are employed to account for signal processing present in PPG
systems’ real operation, maintaining this work’s scope.

Motion artifacts are removed using an outlier detector that
removes abruptly varying artifacts from the signal based on the
derivative’s high absolute values between consecutive samples. A
low-frequency blocker filter—as proposed in Smith (2008)—is
implemented with R = 0.95 to filter most of the low frequency
noise in the signal. A 6-th order Butterworth low-pass filter with
a cutoff frequency of 4 Hz is applied to attenuate high-frequency
noise. It leaves an effective bandwidth that can detect an HR of
up to 240 BPM.

To establish a referential target value for the real HR value,
we employ a medical oximeter model ELERA SH-K3 that
measures HR and pulse oximetry using red and infrared light
for transmissive PPG, worn on the user’s finger. Immediately
before and after each measurement, the HR values of the device
were logged. This gives an initial and final reference value for
the oximeter in the measurement time frame, allowing for HR
variation during the experiment to be taken into account. The
values measured after the experiment are then used as ground
truth values for calculating the RMSE of each estimator. As a
result, we believe that the sensors’ final readings better reflect the
BPM values during the experiment, as they include the same time
window of the sample measurements.

After processing the samples with the procedures described,
the same PPG sample data points were input in each of the
compared algorithms, generating the estimated heart frequency
for each sample. These estimated values were then compared to
the ground truth values for each sample. Results are expressed in
terms of the RMSE, given by:

RMSE(f , f̂ ) =

√

√

√

√

√

1

nsamples

nsamples−1
∑

i=0

(fi − f̂i)2, (11)

Calculated for the estimator f̂i, referenced either from the
oximeter’s ground truth value fi as read at the end of each
measurement. After assessing each sample’s individual RMSE, the

general RMSE value for each algorithm was generated in each
parameter’s category. The performance comparison among the
algorithms was based on the resulting general RMSE value for
each algorithm in the categories considered.

The algorithms’ scripts are developed in MATLAB version
2018a and were tested on Windows. Licensing is required
for non-academic use of the software. The code used in this
experimental validation is available on GitHub in Pinheiro
(2021). Samples used are available on request.

For experimental validation, the PPG sensor configurations
vary to evaluate each algorithm’s capabilities and robustness.
Initially, the IR LED current level, which controls its transmission
power, is investigated using the values made available on the
sensor. Lower IR current levels decrease the device’s energy
consumption. However, as the LED power also decreases, the
detected signal is weaker, which may increase the estimation
error. Configurations from 30.6 to 50 mA saturated the
sensor’s ADC, generating no meaningful data. The remaining
measurements were processed with a signal time window of
5 s and a sample rate of 100 Hz, amounting to 500 samples.
In Figure 5, results are presented considering the oximeter
reference, read right after experimental measurements ended.

According to Figure 5, the proposed algorithm based on
ESPRIT resulted in lower RMSE values for most of the current
values considered. Moreover, the proposed algorithm could
performmore accurately at lower current levels, indicating saving
more power.

In Figure 6, we varied the IR LED pulse width. Longer pulse
widths increase power consumption and the detected signal’s
length, enabling the ADC to settle in a more precise value.
Consequently, the ADC resolution available at the sensor is
dependent on the selected pulse width, whose possible values
are shown in Table 1. Experimental data was gathered, fixing the
LED current level at 27.1 mA and sample rate at 100 Hz. Data
were processed with 500 samples, corresponding to a 5 s time
window. The RMSE of the estimations is presented by the final
readings of the oximeter reference considered in Figure 6.

The estimator results are consistent with the previous test
case, with the proposed algorithm generally having lower RMSE
values. These tests showed significant results regarding algorithm
performance with reduced pulse width and ADC resolution.
Pulse width shorter than 50% of the maximum value is shown
to degrade estimation precision considerably. In addition, the
shortest pulse width generated higher error values than other
configurations. This may be due to signal ripple caused by pulse-
width modulation (PWM) operation, which is more substantial
the pulse is shorter. Another factor to consider is the lower ADC
resolution corresponding to lower LED pulse width. Therefore,
a lower sampling resolution can further impair the output PPG
parameter estimation along with suspected ripple noise.

We also validate variations in the sample rate to corroborate
with the previous experimental stages. A higher sampling
rate decreases signal aliasing, yet the more massive samples
per second require the ADC to settle in a lower resolution.
The experimental results obtained show that higher sample rates
have decreased precision in HR, possibly due to the imposed
reduction in ADC resolution in each configuration tested, as can
be seen in Table 2. Hence, a sample rate of 100 Hz is considered
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FIGURE 5 | RMSE of estimated BPM values for each algorithm for different current level configurations, referenced to values read by the oximeter.

FIGURE 6 | RMSE of estimated BPM values for different pulse width and corresponding ADC resolution configurations, referenced to values read by the oximeter.

TABLE 1 | LED pulse width configurations tested and the correspondent ADC

resolution.

Pulse width (µs) ADC resolution (bits)

1,600 16

800 15

400 14

200 13

advantageous since it maintains a larger signal bandwidth and
maximum ADC resolution.

The proposed algorithm based on ESPRIT showed consistent
results throughout the experiments performed. Moreover, it

TABLE 2 | Maximum available ADC resolution for each sample rate configuration

tested.

Sample rate (Hz) ADC resolution (bits)

50 16

100 16

167 15

200 15

400 14

generally has lower RMSE values for lower IR LED current
configurations and lower sampling frequencies, following the
general trend in the pulse width variation. Hence, the increased
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TABLE 3 | Access times to different test requests performed to the API of the

real-time monitoring application.

Action Access time (ms)

Retrieve data from feed page 43.87

Access patient’s profile 95.0

Add new patient 97.70

List teams 61.19

Request patients list 213.08

Add new healthcare worker 36.01

precision demonstrates the potential for power-saving and more
resilient performance in challenging scenarios.

An analysis of power consumption of the proposed MWHD
was carried out in de Assis (2018) and is summarized here
for further experimental validation. As a result, the current
consumption was measured as 2.032 mA on average. That leads
to a total battery autonomy of theMWHD of approximately 73 h,
about a small-sized 150mAh LiPo battery.Moreover, that enables
the MWHD to be used for around 3 days without recharging,
adding comfort to senior patients’ use.

The connection between the MWHD and the real-time
monitoring application is possible due to the Representational
State Transfer (REST) protocol. We built an Application
Programming Interface (API) to perform this connection with
the database based on this protocol. We computed the times in
different requests for the different pages of the platform. The
results are presented in Table 3.

As shown in Table 3, the low latency of access validates
that the proposed online platform can be used for real-
time monitoring.

5. CONCLUSION

This paper proposes a multi-sensor wearable health device
framework and a real-time monitoring application with high-
resolution parameter estimation. A complete solution enables
the needs of elderly patients to be better accommodated whilst
ensuring that the latest COVID-19 related health protocols
are observed. The proposed hardware includes step counting,
pulse oximetry, HR, and temperature sensors. In addition, the
proposedMWHDoptimizes battery usage by using BLE. In terms
of parameter estimation, the embedded system programmed
with high-resolution algorithms processes signals from the
multiple sensors used, allowing an improved estimation of the
steps and HR. Finally, the patient’s medical information is
reliably provided to the healthcare workers by the real-time
monitoring application.

Future works include a possible hardware modification to
include an additional processor dedicated to data measurement
and processing, ensuring that the proposed high-resolution
ESPRIT algorithm runs alongside the BLE interface while
conserving the most battery power. Furthermore, the proposed
health application is considered to evolve with parallel and
distributed processing based on microservices over GPU grids,
thus allowing computing strategies to process multiple dataflows
from devices for the sake of machine learning and pattern

recognition. As mentioned, it will also leverage the exploitation
of federated learning techniques over dataflows from multiple
MWHD, thus allowing monitoring and artificial reasoning on
grouped data from patients under supervision.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

GP and BP: formal analysis, investigation, software, and
writing – original draft. RM and GS: validation, investigation,
and supervision. FM: resources. FM and EJ: visualization.
RdS and FM: funding acquisition. EJ: validation and data
curation. JdC and RdS: conceptualization and supervision. JdC:
formal analysis, methodology, and writing – original draft. RdS:
writing – review and editing. All authors have read and agreed to
the published version of the manuscript.

FUNDING

This work is supported in part by CNPq – Brazilian
National Research Council (No. PQ-2 312180/2019-5 on
Cybersecurity No. 465741/2014-2), in part by the National
Auditing Department of the Brazilian Health System SUS (No.
DENASUS 23106.118410/2020-85), in part by the Brazilian
Ministry of the Economy (Nos. DIPLA 005/2016 and ENAP
083/2016), in part by the Administrative Council for Economic
Defense (No. CADE 08700.000047/2019-14), in part by the
General Attorney of the Union (No. AGU 697.935/2019), and in
part by the General Attorney’s Office for the National Treasure
(No. PGFN 23106.148934/2019-67).

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of CNPq
– Brazilian National Research Council, CAPES – Brazilian
Higher Education Personnel Improvement Coordination, FAP-
DF – Brazilian Federal District Research Support Foundation,
DENASUS – National Auditing Department of the Brazilian
Health System SUS, AGU – General Attorney of the Union,
ABIN – Brazilian Intelligence Agency, ME – Brazilian Ministry
of the Economy, CADE – Administrative Council for Economic
Defense, and PGFN – General Attorney’s Office for the National
Treasure. The authors would also like to thank Prof. José Alfredo
Ruiz Vargas for supporting us as a co-author of this paper. Icons
in Figure 1 were produced with Freepik from www.flaticon.com.

Frontiers in Human Neuroscience | www.frontiersin.org 10 January 2022 | Volume 15 | Article 750591

www.flaticon.com
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Pinheiro et al. Multi-Sensor Wearable Health Device Framework

REFERENCES

Allen, J. (2007). Photoplethysmography and its application in clinical physiological

measurement. Physiol. Measure. 28:R1. doi: 10.1088/0967-3334/28/3/R01

Alwashmi, M. F. (2020). The use of digital health in the detection and

management of covid-19. Int. J. Environ. Res. Public Health 17:2906.

doi: 10.3390/ijerph17082906

Buccelletti, E., Gilardi, E., Scaini, E., Galiuto, L., Persiani, R., Biondi, A., et al.

(2009). Heart rate variability and myocardial infarction: systematic literature

review and metanalysis. Eur. Rev. Med. Pharmacol. Sci. 13, 299–307. Available

online at: https://www.europeanreview.org/article/650

Chung, H., Ko, H., Lee, H., and Lee, J. (2020). Deep learning for heart

rate estimation from reflectance photoplethysmography with acceleration

power spectrum and acceleration intensity. IEEE Access 8, 63390–63402.

doi: 10.1109/ACCESS.2020.2981956

Coffen, B., Scott, P., and Mahmud, M. S. (2020). “Real-time wireless

health monitoring: an ultra-low power biosensor ring for heart

disease monitoring,” in 2020 International Conference on Computing,

Networking and Communications (ICNC) (Big Island, HI: IEEE), 626–630.

doi: 10.1109/ICNC47757.2020.9049814

Costantino, G., Solbiati, M., Elli, S., Paganuzzi, M., Massabó, D., Montano, N., et al.

(2021). Utility of hospitalization for elderly individuals affected by COVID-19.

PLoS ONE 16:e0250730. doi: 10.1371/journal.pone.0250730

de Almeida, M., de Sousa, R. T. Jr., Garcia Villalba, L. J., and Kim, T.-H. (2018).

New dos defensemethod based on strong designated verifier signatures. Sensors

18:2813. doi: 10.3390/s18092813

de Assis, M. F. P. (2018). Implementacao de Algoritmos em Sistemas Embarcados

de Baixo Consumo Dotados de Radio Sem Fio e Analise de Perfil de Consumo

Energatico. Trabalho de Conclusao de Curso, Universidade de Brasalia,

Faculdade de Tecnologia, Departamento de Engenharia Elatrica, Brasalia.

de Freitas, E. P., da Costa, J. P. C. L., de Almeida, A. L. F., and Marinho,

M. (2012). “Applying mimo techniques to minimize energy consumption

for long distances communications in wireless sensor networks,” in Internet

of Things, Smart Spaces, and Next Generation Networking, eds S. Andreev,

S. Balandin, and Y. Koucheryavy (Berlin; Heidelberg: Springer), 379–390.

doi: 10.1007/978-3-642-32686-8_35

Durán-Vega, L. A., Santana-Mancilla, P. C., Buenrostro-Mariscal, R., Contreras-

Castillo, J., Anido-Rifón, L. E., Garcia-Ruiz, M. A., et al. (2019). An IoT system

for remote health monitoring in elderly adults through a wearable device and

mobile application. Geriatrics 4:34. doi: 10.3390/geriatrics4020034

Ferreira, H. G. C., and de Sousa, J.r., R. T. (2017). Security analysis of

a proposed internet of things middleware. Cluster Comput. 20, 651–660.

doi: 10.1007/s10586-017-0729-3

Godfrey, A. (2017). Wearables for independent living in older adults: gait and falls.

Maturitas 100, 16–26. doi: 10.1016/j.maturitas.2017.03.317

Grand View Research (2020). Wearable Medical Device Market Size, Share Trends

Analysis Report By Product Type (Diagnostic, Therapeutic, Respiratory), By Site

(Strap/Clip/Bracelet, Handheld), By Application, And Segment Forecasts, 2020 -

2027. Technical report, Grand View Research.

Kekade, S., Hseieh, C.-H., Islam, M. M., Atique, S., Khalfan, A. M., Li, Y.-

C., et al. (2018). The usefulness and actual use of wearable devices among

the elderly population. Comput. Methods Programs Biomed. 153, 137–159.

doi: 10.1016/j.cmpb.2017.10.008

Kolasinska, A., Quadrio, G., Gaggi, O., and Palazzi, C. E. (2018). “Technology

and aging,” in Proceedings of the 4th EAI International Conference on Smart

Objects and Technologies for Social Good - Goodtechs’18 (Bologna: ACM Press).

doi: 10.1145/3284869.3284884

Lampoltshammer, T. J., Pignaton de Freitas, E., Nowotny, T., Plank, S., Da Costa,

J. P. C. L., Larsson, T., et al. (2014). Use of local intelligence to reduce energy

consumption of wireless sensor nodes in elderly health monitoring systems.

Sensors 14, 4932–4947. doi: 10.3390/s140304932

Manolakis, D. G., Ingle, V. K., and Kogon, M. S. (2005). Statistical and Adaptive

Signal Processing. Artech House, Inc.

Marinho, M. A. M., de Freitas, E. P., Lustosa da Costa, C. J. P., and de Almeida,

F. A. L. (2013). “Using cooperative mimo techniques and uav relay networks to

support connectivity in sparse wireless sensor networks,” in 2013 International

Conference on Computing, Management, and Telecommunications (Ho Chi

Minh City: ComManTel), 49–54. doi: 10.1109/ComManTel.2013.6482364

Maxim Integrated (2014).MAX30100 Pulse Oximeter and Heart-Rate Sensor IC for

Wearable Health. Maxim Integrated. Rev. 0.

Maxim Integrated (2016). MAX30205 Human Body Temperature Sensor. Maxim

Integrated. Rev. 0.

Maxim Integrated (2018). MAX30102 High-Sensitivity Pulse Oximeter and Heart-

Rate Sensor for Wearable Health. Maxim Integrated. Rev. 1.

Panwar, M., Gautam, A., Biswas, D., and Acharyya, A. (2020). PP-Net: a deep

learning framework for PPG based blood pressure and heart rate estimation.

IEEE Sensors J. 10000–10011. doi: 10.1109/JSEN.2020.2990864

Phua, J., Weng, L., Ling, L., Egi, M., Lim, C.-M., Divatia, J. V., et al.

(2020). Intensive care management of coronavirus disease 2019 (covid-

19): challenges and recommendations. Lancet Respirat. Med. 8, 506–517.

doi: 10.1016/S2213-2600(20)30161-2

Pinheiro, G. (2021). gabrielpmp/esprit-hr: Release version. (Brasília: Gabriel Passos

Moreira Pinheiro).

Prettz, J. B., da Costa, J. P. C. L., Alvim, J. R., Miranda, R. K., and Zanatta,

M. R. (2017). “Efficient and low cost MIMO communication architecture

for smartbands applied to postoperative patient care,” in 2017 Second Russia

and Pacific Conference on Computer Technology and Applications (RPC)

(Vladivostok: IEEE), 1–5. doi: 10.1109/RPC.2017.8168055

Proakis, J. G. (2013). Digital Signal Processing: Pearson New International Edition.

Pearson Group.

Przybyło, J. (2019). Continuous distant measurement of the user’s heart

rate in human-computer interaction applications. Sensors 19:4205.

doi: 10.3390/s19194205

Puranik, S., and Morales, A. W. (2020). Heart rate estimation of PPG signals

with simultaneous accelerometry using adaptive neural network filtering. IEEE

Trans. Cons. Electron. 66, 69–76. doi: 10.1109/TCE.2019.2961263

Rega, D. G., Miranda, R. K., Javidi, E., Maranhao, J. P. A., da Costa, J.

P. C. L., and Pinheiro, G. P. M. (2019). “ESPRIT-based step count for

wearable devices,” in 2019 13th International Conference on Signal Processing

and Communication Systems (ICSPCS) (Gold Coast, QLD: IEEE), 1–5.

doi: 10.1109/ICSPCS47537.2019.9008702

Reis, P. M. G. I., da Costa, J. P. C. L., Miranda, R. K., and del Gado, G. (2016).

“Audio authentication using the kurtosis of esprit based enf estimates,” in 2016

10th International Conference on Signal Processing and Communication Systems

(Surfers Paradise, QLD: ICSPCS), 1–6. doi: 10.1109/ICSPCS.2016.7843308

Reis, P. M. G. I., da Costa, J. P. C. L., Miranda, R. K., and Del Galdo, G. (2017).

Esprit-hilbert-based audio tampering detection with SVM classifier for forensic

analysis via electrical network frequency. IEEE Trans. Inform. Forensics Secur.

12, 853–864. doi: 10.1109/TIFS.2016.2636095

Rezende, L. F. M., Thome, B., Schveitzer, M. C., de Souza-Júnior, P.

R. B., and Szwarcwald, C. L. (2020). Adults at high-risk of severe

coronavirus disease-2019 (covid-19) in Brazil. Revista de Saúde Pública 54:50.

doi: 10.11606/s1518-8787.2020054002596

Roy, R., and Kailath, T. (1989). Esprit-estimation of signal parameters via

rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37,

984–995. doi: 10.1109/29.32276

Santamaria, I., Pantaleon, C., and Ibanez, J. (2000). A comparative study of high-

accuracy frequency estimationmethods.Mech. Syst. Signal Process. 14, 819–834.

doi: 10.1006/mssp.2000.1321

Scholkmann, F., Boss, J., andWolf, M. (2012). An efficient algorithm for automatic

peak detection in noisy periodic and quasi-periodic signals. Algorithms 5,

588–603. doi: 10.3390/a5040588

Smith, J. (2008). Introduction to Digital Filters: With Audio

Applications.W3K.Texas Instruments (2016). CC2640 Simple Link TM

Bluetooth R Wireless. MCU.

Texas Instruments (2016).CC2640 SimpleLinkTMBluetooth R© WirelessMCU. Texas

Instruments.

Wang, M., Li, Z., Zhang, Q., and Wang, G. (2019). Removal of

motion artifacts in photoplethysmograph sensors during intensive

exercise for accurate heart rate calculation based on frequency

estimation and notch filtering. Sensors 19:3312. doi: 10.3390/s191

53312

Wu, T., Wu, F., Qiu, C., Redoute, J.-M., and Yuce, M. R. (2020). A rigid-

flex wearable health monitoring sensor patch for IoT-connected healthcare

applications. IEEE Internet Things J. 6932–6945. doi: 10.1109/JIOT.2020.

2977164

Frontiers in Human Neuroscience | www.frontiersin.org 11 January 2022 | Volume 15 | Article 750591

https://doi.org/10.1088/0967-3334/28/3/R01
https://doi.org/10.3390/ijerph17082906
https://www.europeanreview.org/article/650
https://doi.org/10.1109/ACCESS.2020.2981956
https://doi.org/10.1109/ICNC47757.2020.9049814
https://doi.org/10.1371/journal.pone.0250730
https://doi.org/10.3390/s18092813
https://doi.org/10.1007/978-3-642-32686-8_35
https://doi.org/10.3390/geriatrics4020034
https://doi.org/10.1007/s10586-017-0729-3
https://doi.org/10.1016/j.maturitas.2017.03.317
https://doi.org/10.1016/j.cmpb.2017.10.008
https://doi.org/10.1145/3284869.3284884
https://doi.org/10.3390/s140304932
https://doi.org/10.1109/ComManTel.2013.6482364
https://doi.org/10.1109/JSEN.2020.2990864
https://doi.org/10.1016/S2213-2600(20)30161-2
https://doi.org/10.1109/RPC.2017.8168055
https://doi.org/10.3390/s19194205
https://doi.org/10.1109/TCE.2019.2961263
https://doi.org/10.1109/ICSPCS47537.2019.9008702
https://doi.org/10.1109/ICSPCS.2016.7843308
https://doi.org/10.1109/TIFS.2016.2636095
https://doi.org/10.11606/s1518-8787.2020054002596
https://doi.org/10.1109/29.32276
https://doi.org/10.1006/mssp.2000.1321
https://doi.org/10.3390/a5040588
https://doi.org/10.3390/s19153312
https://doi.org/10.1109/JIOT.2020.2977164
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Pinheiro et al. Multi-Sensor Wearable Health Device Framework

Xiong, J., Cai, L., Wang, F., and He, X. (2017). SVM-based spectral analysis

for heart rate from multi-channel wppg sensor signals. Sensors 17:506.

doi: 10.3390/s17030506

Zhang, F., Yeddanapudi, M., and Mosterman, P. J. (2008). Zero-crossing location

and detection algorithms for hybrid system simulation. IFAC Proc. 41,

7967–7972. doi: 10.3182/20080706-5-KR-1001.01346

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflictof interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Pinheiro, Miranda, Praciano, Santos, Mendonça, Javidi, da

Costa and de Sousa. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Human Neuroscience | www.frontiersin.org 12 January 2022 | Volume 15 | Article 750591

https://doi.org/10.3390/s17030506
https://doi.org/10.3182/20080706-5-KR-1001.01346
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Multi-Sensor Wearable Health Device Framework for Real-Time Monitoring of Elderly Patients Using a Mobile Application and High-Resolution Parameter Estimation
	1. Introduction
	2. State of the Art
	2.1. State-of-The-Art Simplified Model for PPG Waveforms

	3. Proposed Healthcare Platform Composed of Low-Cost Hardware, High-Resolution Parameter Estimation Algorithms, and Real-Time Monitoring Application Architecture
	3.1. Proposed Healthcare Wearable Device Including Multiple Sensors, Processor, and Low Energy Wireless Communication
	3.2. Proposed High Resolution Signal Processing Algorithm for HR Estimation
	3.3. Healthcare Platform for Real-Time Monitoring and Evaluation

	4. Experimental Validation
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


