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According to the Interactive Specialization Theory, cognitive skill development is
facilitated by a process of neural specialization. In line with this theory, the current study
investigated whether neural specialization for phonological and semantic processing
at 5-to-6 years old was predictive of growth in word reading skills 2 years later.
Specifically, four regression models were estimated in which reading growth was
predicted from: (1) an intercept-only model; (2) measures of semantic and phonological
neural specialization; (3) performance on semantic and phonological behavioral tasks;
or (4) a combination of neural specialization and behavioral performance. Results from
the preregistered analyses revealed little evidence in favor of the hypothesis that early
semantic and phonological skills are predictive of growth in reading. However, results
from the exploratory analyses, which included a larger sample, added age at Time 1 as
a covariate, and investigated relative growth in reading, demonstrated decisive evidence
that variability in phonological processing is predictive of reading growth. The best fitting
model included both measures of specialization within the posterior superior temporal
gyrus (pSTG) and behavioral performance. This work provides important evidence in
favor of the Interactive Specialization Theory and, more specifically, for the role of
phonological neural specialization in the development of early word reading skills.

Keywords: phonological processing, superior temporal gyrus, word reading, reading development, interactive
specialization theory, functional magnetic resonance imaging, longitudinal design, Bayesian methods

INTRODUCTION

Contemporary developmental models argue that cognitive skills initially rely on a distributed
network of brain regions. Then, over time and practice, that network narrows, as specific
regions begin to specialize, and an optimal functional network emerges. According to the
Interactive Specialization Theory (Johnson, 2011), it is this process of neural specialization
that then facilitates cognitive skill development. Support for this developmental model has
been demonstrated across many cognitive domains including face processing, social cognition,
and executive control (see Johnson, 2011). Within the linguistic domain, specifically, initial
support for this model has come from neuroscientific investigations demonstrating that,
for adults, specific linguistic skills are supported by distinct and specialized brain regions
(e.g., Price et al., 1997; Poldrack et al., 1999; Devlin et al., 2003; McDermott et al., 2003).
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Whereas, school-age children show less specialized linguistic
networks, as evidenced by both more distributed patterns of
activation in response to a variety of linguistic tasks and
more similar patterns of activation between linguistic tasks as
compared to adults (e.g., Booth et al., 2001, 2003). Furthermore,
activation within these language processing regions has been
found to be predictive of both concurrent and future linguistic
skill in children and adults (e.g., Hoeft et al., 2011; McNorgan
et al., 2011; Welcome and Joanisse, 2012; Conant et al., 2014).
While this research is supportive of the Interactive Specialization
Theory, one limitation to this work is that it has primarily
been conducted with individuals who have already established a
relatively high level of linguistic proficiency. Much less work has
explored the potential for and the role of neural specialization in
young children who are still refining their linguistic skills.

The strongest support for neural specialization comes from
work demonstrating a double dissociation in which distinct brain
regions are found to support one cognitive skill over another
(and vice versa). Weiss et al. (2018) conducted one of the first
investigations to date using this double-dissociation approach to
explore the potential for language-related neural specialization
in young children. Specifically, the authors examined whether 5-
to-6-year-old children showed evidence of specific brain regions
uniquely supporting phonological over semantic processing
(or alternatively semantic over phonological processing). In a
direct comparison between a phonological judgment task and
a semantic judgment task, the authors observed a double-
dissociation in which there was greater activity in the left
posterior superior temporal gyrus (pSTG) and supramarginal
gyrus during phonological processing and greater activity in the
left posterior middle temporal gyrus (pMTG) during semantic
processing. In addition, specialization-related activity in these
regions correlated with performance on relevant behavioral
tasks (e.g., phoneme awareness and word association) completed
outside of the magnetic resonance imaging (MRI) scanner.
The findings from Weiss et al. (2018) provide support that
neural specialization begins early in development and that
it is related to individual differences in concurrent skill.
However, according to the Interactive Specialization Theory
(Johnson, 2011), this early neural specialization should not
only support current performance but should also facilitate
the development of cognitive skills served by phonological and
semantic processing.

There is substantial evidence that, among the many cognitive
functions they support, early phonological and semantic skills
contribute to later reading development (e.g., Catts et al.,
1999; Muter et al., 2004; Nation and Snowling, 2004). Much
of this research has focused on behavioral predictors, such
as performance on various standardized measures. However,
researchers within the last few decades have begun to extend
this work by exploring language-related brain-based predictors
(e.g., McNorgan et al., 2011; Linkersdörfer et al., 2014; Lee
et al., 2016; Preston et al., 2016; Smith et al., 2018). A subset of
this research, which has examined the use of both behavioral
and neural predictors, has shown that both functional- and
structural-based neural measures explain unique variance in
reading growth over that of purely behavioral measures (e.g.,

Hoeft et al., 2007, 2011; Maurer et al., 2009; Bach et al., 2013;
Myers et al., 2014; Borchers et al., 2019; Jasińska et al., 2020).
These studies provide promising support for the predictive utility
of neural measures and advance our understanding of the neural
bases of reading.

Although previous work has demonstrated the value of both
brain- and behavior-based phonological and semantic measures
in predicting growth in reading skill, results from this work
cannot be used to explicitly test the Interactive Specialization
Theory as no studies to date have included direct measures of
neural specialization in their models. The aim of the current
study was to more directly test the Interactive Specialization
Theory by examining whether individual differences in language-
related neural specialization predict growth in reading skills
over time. In particular, four specific hypotheses were tested.
First, consistent with previous research (for a review see Kirby
et al., 2008), we hypothesized that individual differences in
phonological and semantic processing would predict variability
in reading growth, such that better language skills (behaviorally)
or more specialized language networks (neurally) at 5-to-6 years
old would predict more growth in reading skills. Second, in
line with the Interactive Specialization Theory, we hypothesized
that measures of neural specialization would be a stronger
predictor of reading growth than behavioral measures. Third,
given the nature of the outcome variable (i.e., letter and word
reading), the young age of the participants, and consistent with
behavioral research (e.g., Muter et al., 2004; Schatschneider
et al., 2004), we hypothesized that phonological processing
would be a stronger predictor of reading growth than semantic
processing. Fourth, we hypothesized that any observed relation
between neural specialization and reading growth would be
driven by both an increase in region-appropriate processing
(i.e., phonological processing in pSTG; semantic processing
in pMTG) and a decrease in region-inappropriate processing
(i.e., semantic processing in pSTG; phonological processing
in pMTG).

MATERIALS AND METHODS

The study hypotheses, inclusionary criteria, and analytic
approach were all pre-registered through the Open Science
Framework prior to examining the data or completing the
planned analyses.1

Participants
Participants for this study were selected from a larger
longitudinal study investigating oral language development in
children 5-to-10 years old (Wang et al., submitted). The original
sample included 155 children who completed at least part of a
functional magnetic resonance imaging (fMRI) session between
the ages of 5 and 6.5 years old. The final sample included
30 children whomet the preregistered inclusionary criteria (to be
described subsequently; 60% of this sample overlapped with the
sample used in Weiss et al., 2018). At Time 1 (T1), participants
(19 female, 11 male) in the final sample ranged between 5.09 and

1Yamasaki, 2019; https://osf.io/ek8rc/
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6.28 years old (M = 5.78). At Time 2 (T2), participants in the
final sample ranged between 7.09 and 8.25 years old (M = 7.43).
An Institutional Review Board approved all study procedures.
Before participation, assent and consent were obtained from all
participants and their guardians. Participants were compensated
with $20 per session, plus an hourly rate of $20/hour, as well as
tickets earned over the course of their sessions that could be used
to redeem toys and books.

Procedures
Participants completed developmental questionnaires as well
as behavioral and fMRI language and reading tasks over the
course of several visits. At T1, participants first completed the
questionnaires and standardized language and reading tasks.
Following behavioral testing, participants completed 1–2 mock
scanner sessions during which the experimenter ensured that
they understood the fMRI tasks, they familiarized themselves
with the scanner environment, and they practiced the fMRI tasks
while in the mock scanner. Finally, participants completed the
fMRI tasks in the MRI scanner over the course of 2–4 sessions.
At T2, participants completed the standardized reading task.

Behavioral Tasks
Letter-Word Identification
Performance on the ‘‘Letter-Word Identification’’ subtest of
the Woodcock-Johnson Tests of Achievement–3rd Edition
(Woodcock et al., 2001) was used to measure individual
differences in reading skill. This task was selected given that some
participants, particularly at T1, could only identify letters and
2-3 letter words. In this task, participants are asked to verbally
identify, visually presented linguistic stimuli of increasing
difficulty (e.g., letters to whole words). The total number of
correct responses was computed for each participant at T1 and
T2. Growth in reading skill, the primary dependent variable
in the current study, was operationalized as the difference in
performance on the reading task between T2 and T1.

Language Tasks
Phonological and semantic processing served as the predictor
variables in this study and were measured at T1 both behaviorally
and using fMRI. Behaviorally, the ‘‘Elision’’ subtest of the
Comprehensive Test of Phonological Processing–2nd Edition
(Wagner et al., 1999) was used to measure individual differences
in phonological processing. In this task, participants are
auditorily presented with a word, asked to repeat the word
aloud, mentally remove a phonological segment of that word,
and then repeat the new word aloud (e.g., ‘‘Say cup, now say cup
without saying /k/’’). The ‘‘Word Classes’’ subtest of the Clinical
Evaluation of Language Fundamentals–5th Edition (Wiig et al.,
2003) was used to measure individual differences in semantic
processing. On this subtest, participants are presented with a set
of items and asked to select the two that match semantically (e.g.,
visual presentation of a cat, cow, and kitten; ‘‘Look, listen, and tell
me which two words go together: cat, cow, kitten.’’). Raw scores,
reflecting the number of correct responses, were used to index
individual differences in language processing on each subtest and
served as the behavior-based predictors in the analyses.

fMRI Tasks
Participants completed two language tasks in the MRI scanner.
In both tasks, a trial consisted of two stimuli presented
sequentially and binaurally through MRI compatible earphones
(Sensimetrics, Model S14). Participants were asked to judge
whether the pair of stimuli matched on a given dimension.
The right index finger was used for a ‘‘yes’’ response and the
right middle finger was used for a ‘‘no’’ response. The duration
of each stimulus was manipulated using Praat2 to be within
the range of approximately 500–700 ms. The first stimulus
was presented followed by a pause, which together lasted
about 1,000 ms. The second stimulus was presented followed
by a jittered response interval. A blue circle was displayed
simultaneously with the presentation of the auditory stimuli.
The blue circle turned yellow 1,000 ms before the start of the
next trial to remind participants to respond if they had not
already done so. For each task, participants completed 96 trials,
24 per each of four conditions, divided into two runs. Within
each run, trials associated with each of the four conditions were
presented in a pseudorandomized order which was consistent
across participants.

Sound Judgment Task
In the Sound Judgment task, the stimuli consisted of one-syllable
words and participants were asked to respond to the question,
‘‘Do the two words have any of the same sounds?’’ There were
three experimental conditions: (1) Rhyme, in which the two
words shared the same final vowel and phoneme/cluster
(corresponding to two-three letters; e.g., WIDE-RIDE);
(2) Onset, in which the two words shared the same initial
phoneme (corresponding to one letter; e.g., COAT-CAP); and
(3) Unrelated, in which the two words shared no phonemes
(e.g., ZIP-CONE). All word pairs had no semantic association
according to the University of South Florida Free Association
Norms (Nelson et al., 2004). There were no significant differences
between conditions in word length, number of phonemes, or
written word frequency for either the first or second words
in a trial within runs (Rhyme vs. Onset: ps > 0.173; Rhyme
or Onset vs. Unrelated: ps > 0.177) or across runs (Rhyme:
ps > 0.663; Onset: ps > 0.436; Unrelated: ps > 0.436; linguistic
characteristics obtained from the English Lexicon Project, Balota
et al., 2007). In addition to the experimental conditions, a control
condition was included, in which participants heard pairs of
frequency modulated noise sounds and in response were asked
to respond with a ‘‘yes’’ button press.

Meaning Judgment Task
In the Meaning Judgment task, the stimuli consisted of one-
or two-syllable words and participants were asked to respond
to the question, ‘‘Do the two words go together?’’ There were
three experimental conditions: (1) High Association, in which
the words shared a semantic association strength of 0.40–0.85
(M = 0.64, SD = 0.13), (2) Low Association, in which the words
shared a semantic association strength of 0.14–0.39 (M = 0.27,
SD = 0.07), and (3) Unrelated, in which the words shared no
semantic association. Associative strength was determined based

2http://www.fon.hum.uva.nl/praat/
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on values from the University of South Florida Free Association
Norms (Nelson et al., 2004). There were no significant differences
between conditions in word length, the number of phonemes,
number of syllables, or written word frequency for either the first
or second words in a trial within runs (High vs. Low: ps> 0.165;
High or Low vs. Unrelated: ps > 0.068) or across runs (High:
ps > 0.162; Low: ps > 0.179; Unrelated: ps > 0.312; linguistic
characteristics obtained from the English Lexicon Project, Balota
et al., 2007). In addition to the experimental conditions, a control
condition in which participants were asked to press ‘‘yes’’ when
they heard a pair of frequency modulated noise sounds was also
administered.

fMRI Data Acquisition
A 3.0 Tesla Skyra Siemens scanner with a 64-channel head
coil was used to acquire all fMRI images. Functional images
were acquired using a susceptibility weighted single-shot echo
planar imaging (EPI) method with the following parameters:
TR = 1,250 ms, TE = 30 ms, multiband acceleration
factor = 4, flip angle = 80◦, FOV = 256 × 256 mm, voxel
size = 2× 2× 2mm, number of slices = 56. A high-resolution T1-
weighted structural image was also acquired using the following
parameters: TR = 1,900 ms, TE = 2.43 ms, flip angle = 9◦,
FOV = 256 × 256 mm, voxel size = 1 × 1 × 1 mm, number of
slices = 192.

fMRI Data Preprocessing and Analysis
MRI data were preprocessed and analyzed using SPM12.3

The anatomical images were segmented and warped to a
pediatric template. The pediatric template was generated using
CereboMatic (Wilke et al., 2017) and a sample of anatomical
images acquired on a 3T scanner from 124 children (62 females,
62 males) between the ages of 5.5-to-8 years old. Functional
images were first realigned to the mean functional image across
runs and then co-registered to the skull-striped anatomical
image. Then, functional images were normalized to the pediatric
template and smoothed using a 6 mm isotropic Gaussian kernel.
Art-Repair4 was used to identify outlier volumes among the
functional images. Outliers were defined as volumes with greater
than 1.5 mm of movement or a 4% deviation in global mean
signal intensity volume-to-volume. Interpolated values from
adjacent non-outlier volumes were used to replace any volume
identified with excess motion or signal deviation.

First-level statistical analyses were performed on individual
participants’ data (see Supplementary Table 1 in the
Supplementary Materials for a complete list of the specific
runs analyzed for each participant) using a general linear model
as implemented in SPM12. The first level model included
ten regressors for each run, one for each of the experimental
conditions (Sound Judgment: Rhyme, Onset, Unrelated or
Meaning Judgment: High, Low, Unrelated), one for the
control condition, and six nuisance regressors reflecting the
realignment parameters. Two contrasts were estimated to index
phonological and semantic neural specialization. Phonological
specialization was indexed using the contrast [(Onset and

3https://www.fil.ion.ucl.ac.uk/spm/
4http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html

Rhyme) − Control] > [(Low and High) − Control]. Similarly,
semantic specialization was measured using the contrast [(Low
and High)− Control]> [(Onset and Rhyme)− Control].

Following the first-level analysis, individualized regions-of-
interest (ROIs) within the pSTG and pMTG were identified
for each participant. The pSTG and pMTG were selected as
regions of interest based on prior research showing phonological
and semantic specialization within these regions, respectively,
in both 5-to-6-year-olds (Weiss et al., 2018) and adults (for
a review see Binder, 2016). First, an anatomical mask for the
left superior temporal gyrus and the left middle temporal gyrus
was defined using the automated anatomical labeling (aal) atlas
and the WFU pickatlas toolbox (Maldjian et al., 2003). Then,
the MarsBar toolbox (Brett et al., 2002) was used to isolate
an anatomical mask consisting of the posterior half of the left
superior temporal gyrus (pSTG; y = −24) and the posterior half
of the left middle temporal gyrus (pMTG; y = −33). For each
participant, the average beta value for each task condition was
extracted from the top 100 activated voxels within the pSTG
anatomical mask associated with the phonological specialization
contrast and the top 100 activated voxels within the pMTG
anatomical mask associated with the semantic specialization
contrast (see Figure 1). Measures of neural specialization were
calculated using these average beta value estimates for each
condition in the pSTG and pMTG. These measures served as the
brain-based predictors in the analyses.

Study Inclusionary Criteria
The following preregistered inclusionary criteria were used to
select the final sample for the current study. To be included in
the study participants had to:

1. have completed both runs of the Sound Judgment and
Meaning Judgment tasks at 5-to-6 years old (with no more
than 6-months between runs per task; n excluded = 79)

2. have no more than 10% of total volumes and no more
than six consecutive volumes within a run interpolated (n
excluded = 11)

3. have obtained adequate performance on the fMRI tasks as
indexed by at least 50% accuracy on the control and ‘‘easy’’
(Rhyme and High) conditions and no evidence of response
bias (i.e., no greater than a 40% accuracy difference between
the Unrelated condition, requiring a ‘‘no’’ response, and the
‘‘easy’’ condition, requiring a ‘‘yes’’ response; n excluded = 27)

4. be primarily right-handed as indexed by performing greater
than two out of five tasks (write, draw, turn-over, open, and
throw) using their right-hand (n excluded = 0)

5. achieve a standard score of >79 on the Kaufman Brief
Intelligence Test–2nd Edition (KBIT-2; Kaufman and
Kaufman, 2004; n excluded = 1)

6. have completed the Letter-Word Identification task at 5-to-
6 years old and 7-to-8 years old (n excluded = 7)

7. have completed the Elision and Word Classes subtest at 5-to-
6 years old (n excluded = 0)

Analytic Approach
All analyses were conducted using the lm.beta (Behrendt,
2014), ppcor (Kim, 2015), and BayesFactor (Morey and Rouder,
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FIGURE 1 | Schematic depiction of the two regions-of-interest (ROIs): (A) posterior middle temporal gyrus (pMTG); and (B) posterior superior temporal gyrus
(pSTG). The first slice in each row represents the anatomical mask within which each participant’s ROI was selected. The color gradient displayed within the other
slices represents the spatial overlap among the ROIs across participants. Each color represents the number of participants for which a particular voxel was included
within an ROI (see the scale to right).

2018) packages in R (R Core Team, 2019). To evaluate the
study hypotheses, four multiple linear regression models were
estimated and compared. First, a null, intercept-only, model was
estimated (see Formula 1). Then, a Brain model was estimated in
which reading growth on the Letter-Word Identification subtest
was predicted from measures indexing neural specialization
within the pSTG and pMTG (see Formula 2). Next, a Behavior
model was estimated in which reading growth was predicted
from performance on the Elision and Word Classes subtests (see
Formula 3). Finally, a Brain-and-Behavior model was estimated
in which reading growth was predicted from both the fMRI-
and behavior-based measures of phonological and semantic
processing (see Formula 4). Bayes factors (BFs) were used to
compare the strength of evidence for each experimental model
relative to the null model. Bayesian inference methods were
selected to be used in this study as they provide direct evidence
for the presence or absence of an effect (i.e., evidence for either
the null or the alternative hypothesis). For example, if the relative
comparison between the Brainmodel and the null model resulted
in a BF of 10, this would indicate that the observed data were
10 times more probable under the Brain model as compared to
the null model. Alternatively, if the comparison resulted in a BF
of 0.1, this would indicate that the observed data were 10 times
more likely under the null model relative to the Brain model. In
the current study, BFs of 10–15 were taken as ‘‘strong’’ evidence,
15–20 were taken as ‘‘very strong’’ evidence, and greater than
20 were taken as ‘‘decisive’’ evidence that the observed data
are more probable under the experimental model over the null
model (Jeffreys, 1961). Across the experimental models, the
best fitting model was determined by evaluating the Bayesian

Information Criterion (BIC) values associated with each model,
with the best fitting model exhibiting the smallest BIC value.
Within each experimental model, semi-partial correlations were
used to determine the unique variance explained by each brain
or behavior predictor. The significance of the semi-partial
correlations was evaluated against a p< 0.05 threshold.

Formula 1 (Null Model). ReadingGrowthi = β0 + εi

Formula 2 (Brain Model). ReadingGrowthi = β0 + β1

SpecializationpSTGi
+ β2SpecializationpMTGi

+ εi

Formula 3 (Behavior Model). ReadingGrowthi = β0 + β1

Elisioni + β2WordClassesi + εi
Formula 4 (Brain-and-Behavior Model).
ReadingGrowthi = β0 + β1SpecializationpSTGi

+ β2SpecializationpMTGi
+ β3Elisioni + β4WordClassesi + εi

To evaluate whether an increase in region-appropriate
processing or a decrease in region-inappropriate processing was
driving any observed relation between neural specialization and
reading growth two additional regressionmodels were estimated.
Specifically, two contrasts indexing phonological processing
[(Onset and Rhyme) > Control] and semantic processing [(Low
and High) > Control] were estimated using the average beta
values for each condition within the previously identified top
100 activated voxels in the pSTG and pMTG. Estimates based on
these contrasts were then used to predict reading growth in two
separate regression models. BFs were used to evaluate the model
likelihood and BIC values were used to compare model fit across
the two language processing models.
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RESULTS

Descriptive statistics for all behavioral and fMRI measures are
displayed in Table 1. Overall participants showed a significant
increase in reading performance as measured by the Letter-Word
Identification task from T1 to T2 (BF > 20.00; t(29) = 14.77,
p < 0.001). Given that the aim of this study was to explore
behavioral and neurobiological factors that support growth in
reading skill, it is important to note that while there were
individual differences in reading skill across both time points
the majority of participants were already reading at least some
whole words at T1 (e.g., average T1 score = 29; exclusively whole
word items on the Letter-Word Identification subtest start on
item 15). Paired t-tests revealed very strong to decisive evidence
that participants performed faster and more accurately on the
Rhyme and High conditions as compared to the Onset and
Low conditions, thus validating the categorization of the stimuli
into the four sets [Sound Judgment task for response times:
BF > 20.00, t(29) = −3.85, p < 0.001; for accuracy: BF > 20.00,
t(29) = 5.83, p < 0.001; Meaning Judgment task for response
times: BF > 20.00, t(29) = −4.50, p < 0.001; for accuracy:
BF = 15.78, t(29) = 3.34, p = 0.002]. However, medium to large
correlations were observed between measures of performance
on the ‘‘Related’’ conditions within each task, supporting the
decision to collapse across the Rhyme/Onset and High/Low
conditions for the analyses [Sound Judgment task for response
times: BF> 20.00, r(28) = 0.86, p< 0.001; for accuracy: BF = 8.33,
r(28) = 0.48, p = 0.007;Meaning Judgment task for response times:
BF > 20.00, r(28) = 0.93, p < 0.001; for accuracy: BF > 20.00,
r(28) = 0.59, p< 0.001].

Preregistered Analyses
Contrary to the predictions motivating the current study, the
results from the regression analyses revealed little to no evidence
that measures of semantic or phonological processing were

predictive of later gains in reading skill [Brain model: BF = 0.56;
F(2, 27) = 1.76, p = 0.191, R2 = 0.12; Behavior model: BF = 1.08;
F(2, 27) = 2.79, p = 0.079, R2 = 0.17; Brain-and-Behavior model:
BF = 0.68; F(4, 25) = 2.10, p = 0.111, R2 = 0.25]. Given that
there was little evidence for the experimental models relative
to the null model, analyses regarding comparisons between the
models (Hypothesis 2), comparisons between the semantic and
phonological measures (Hypothesis 3), and follow-up analyses
for the brain-basedmeasures (Hypothesis 4) were not conducted.

Exploratory Analyses
Following the preregistered analyses, a set of exploratory analyses
were conducted in which three changes were made to increase
the power and specificity of the analyses. First, T1 age was added
as a predictor to account for the variability in age observed
across participants (see Supplementary Materials for analyses
with additional contextual variables). Second, the criteria for
behavioral performance were relaxed to allow for the inclusion of
more participants. Specifically, all criteria were reduced by 10%,
i.e., at least 40% accuracy on the control and ‘‘easy’’ (Rhyme and
High) conditions, and no greater than a 50% accuracy difference
between the Unrelated and ‘‘easy’’ conditions was required to
be included in the exploratory analyses. This change resulted
in the inclusion of 10 additional participants (performance
on the behavioral and fMRI measures was consistent between
samples; see Table 2). Finally, the operationalization of reading
growth was adjusted to better reflect growth relative to one’s
initial skill level. This was accomplished by dividing each
participants’ raw difference score by their initial T1 performance,
i.e., (T2− T1)/T1.

Consistent with the preregistered analyses, a series of four
multiple linear regression models (see Formulas 5–8) were
estimated and compared to evaluate the study hypotheses. The
regression analysis in which neural specialization was used
to predict growth in reading skill resulted in no evidence in

TABLE 1 | Descriptive statistics for the behavioral and fMRI tasks (preregistered sample).

Letter-Word Identification†

Elision† Word Classes† Time 1 Time 2 Time 2 − Time 1 (Reading Growth)

Mean (SD) 17.4 (6.0) 19.3 (5.2) 29.8 (11.1) 47.3 (8.4) 17.5 (6.5)
Min 9 7 13 29 4
Max 32 26 54 63 29
Max Possible 34 40 76 76

Sound Judgment‡

Onset Rhyme Related (Onset and Rhyme) Unrelated Control

Mean (SD) 1,529 (345)/62.5 (19.2) 1,399 (242)/81.1 (13.8) 1,464 (284)/71.8 (14.3) 1,479 (306)/74.9 (14.2) 1,697 (463)/91.1 (9.7)
Min 1,078/16.7 1,015/50.0 1,068/39.6 1,024/41.7 787/62.5
Max 2,853/95.8 2,254/100.0 2,553/93.8 2,454/100.0 2,550/100.0

Meaning Judgment‡

Low High Related (Low and High) Unrelated Control

Mean (SD) 1,483 (261)/73.6 (16.4) 1,394 (286)/81.7 (9.6) 1,439 (269)/77.6 (11.7) 1,560 (295)/75.7 (15.2) 1,658 (428)/91.0 (7.0)
Min 953/33.3 802/62.5 877/54.2 1,160/33.3 774/70.8
Max 2,235/95.8 2,238/100.0 2,236/97.9 2,270/95.8 2,459/100.0

Note. † = Raw Scores; ‡ = Response Times (ms)/Accuracy (%).
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TABLE 2 | Descriptive statistics for the behavioral and fMRI tasks (exploratory sample).

Letter-Word Identification†

Elision† Word Classes† Time 1 Time 2 (Time 2 − Time 1)/Time 1 (Reading Growth)

Mean (SD) 17.7 (6.0) 18.6 (5.3) 29.4 (10.5) 47.4 (8.3) 0.7 (0.4)
Min 9 7 13 29 0.1
Max 32 26 54 63 1.8
Max Possible 34 40 76 76

Sound Judgment‡

Onset Rhyme Related (Onset and Rhyme) Unrelated Control

Mean (SD) 1,514 (318)/63.6 (18.4) 1,425 (242)/80.0 (14.3) 1,470 (267)/71.8 (14.3) 1,494 (297)/75.0 (13.4) 1,650 (458)/91.7 (8.9)
Min 1,078/16.7 1,015/50.0 1,068/39.6 1,024/41.7 787/62.5
Max 2,853/95.8 2,254/100.0 2,553/95.8 2,454/100.0 2,550/100.0

Meaning Judgment‡

Low High Related (Low and High) Unrelated Control

Mean (SD) 1,480 (240)/75.5 (14.7) 1,405 (267)/82.3 (9.7) 1,443 (246)/78.9 (10.6) 1,542 (277)/72.8 (16.4) 1,640 (428)/91.6 (7.1)
Min 953/33.3 802/58.3 877/54.2 1,160/33.3 774/70.8
Max 2,235/95.8 2,238/100.0 2,236/97.9 2,270/100.0 2,459/100.0

Note. † = Raw Scores; ‡ = Response Times (ms)/Accuracy (%).

favor of the experimental model (BF = 0.51; F(3, 36) = 1.95,
p = 0.139, R2 = 0.14; BIC = 57.96). Strong evidence was found
in favor of a model in which reading growth was predicted
from the behavioral measures (BF = 14.77; F(3, 36) = 5.63,
p = 0.003, R2 = 0.32; BIC = 48.60). However, the strongest
evidence was found for the Brain-and-Behavior model, in
which growth in reading skill was predicted from both neural
specialization and performance on the behavioral measures
(BF = 23.68; F(5, 34) = 4.95, p = 0.002, R2 = 0.42; BIC = 49.48).
Within the Brain-and-Behavior model, only the phonological
measures emerged as significant predictors of reading growth
(βElision = −0.54, p < 0.001; βWordClasses = 0.03, p = 0.831;
βPhonSpec = 0.31, p = 0.028; βSemSpec = −0.04, p = 0.789; see
Figures 2, 3).

Formula 5 (Null Model). ReadingGrowthi = β0 + εi

Formula 6 (Brain Model). ReadingGrowthi = β0 + β1T1Age
+ β2SpecializationpSTGi

+ β3SpecializationpMTGi
+ εi

Formula 7 (Behavior Model). ReadingGrowthi = β0

+ β1T1Age + β2Elisioni + β3WordClassesi + εi
Formula 8 (Brain-and-Behavior Model).
ReadingGrowthi = β0 + β1T1Age
+ β2SpecializationpSTGi

+ β3SpecializationpMTGi

+ β4Elisioni + β5WordClassesi + εi

To examine the robustness of this effect, the analysis was
repeated using average beta values estimated from individualized
ROIs based on the top 150, top 200, and top 25% of voxels as the
brain-based predictors. The results of these additional analyses
were directly in line with the exploratory results. That is, across
all models, the model with the highest BF was the Brain-and-
Behavior model (Top 150: BFBrain = 0.55, BFBehavior = 14.68,

BFBrain-and-Behavior = 24.73; Top 200: BFBrain = 0.55,
BFBehavior = 14.68, BFBrain-and-Behavior = 23.72; Top 25%:
BFBrain = 0.59, BFBehavior = 14.68, BFBrain-and-Behavior = 24.42).
Within the Brain-and-Behavior models, only the phonological
measures (performance on the Elision subtest and phonological
specialization within the pSTG) were significant predictors of
reading growth.

Given that there was evidence for the predictive utility of
phonological specialization, follow-up regression analyses were
conducted to better understand the observed relation between
neural specialization and reading growth. Two additional
regression models were estimated in which gains in reading were
predicted from either average beta value, within the previously
identified top 100 activated voxels in the pSTG, associated with
the Sound Judgment task [(Onset and Rhyme) > Control]
or the Meaning Judgment task [(Low and High) > Control].
Consistent with the other exploratory models, T1 age was
included as a predictor in both models. The results of
these regression analyses produced little to no evidence for
the experimental models [Sound Judgment task: BF = 0.34;
F(2, 37) = 1.24, p = 0.301, R2 = 0.06; Meaning Judgment
task: BF = 0.47; F(2, 37) = 1.69, p = 0.199, R2 = 0.08].
An additional analysis was conducted in which the average
beta value within the pSTG was estimated for each task
individually and then compared. Given that the previously
created ROIs were based on a phonological specialization
contrast (e.g., Sound Judgment task > Meaning Judgment
task), new individualized ROIs were created based on the top
100 activated voxels within the pSTG for each task separately
[i.e., Sound Judgment task: (Onset and Rhyme) > Control;
Meaning Judgment task: (High and Low) > Control]. Then,
average beta values were estimated for each condition within
the newly identified ROIs and the task-specific contrasts were
re-calculated. A direct comparison between the average beta
value estimates for each task revealed strong evidence in favor
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FIGURE 2 | Relation between phonological neural specialization [(Onset and Rhyme) − Control > (High and Low) − Control] in posterior superior temporal gyrus
(pSTG) at 5-to-6 years old (Time 1) and growth in reading skill from 5-to-6 years old to 7-to-8 years (Time 2). The shaded region depicts a 95% confidence interval.

FIGURE 3 | Relation between phonological skill (as measured by performance on the Elision subtest) at 5-to-6 years old (Time 1) and growth in reading skill from
5-to-6 years old to 7-to-8 years old (Time 2). The shaded region depicts a 95% confidence interval.
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FIGURE 4 | The average beta value within the posterior superior temporal
gyrus (pSTG) associated with the Meaning Judgment task [(High and
Low) − Control] and the Sound Judgment task [(Rhyme and
Onset) − Control]. Error bars depict the standard error of the mean.

of the experimental model (in which there is a meaningful
difference between the tasks), BF = 13.90; t(39) = 3.24,
p = 0.002. Thus, while individual task activation within the
pSTG was not predictive of reading growth, there was a
significant difference between the recruitment of the pSTG
during the Sound Judgment and Meaning Judgment tasks (see
Figure 4).

DISCUSSION

Results from the preregistered analyses demonstrated little to no
evidence that variability in semantic or phonological processing
(measured either behaviorally or neurally) reliably predicted
individual differences in reading growth. Alternatively, results
from the exploratory analyses revealed decisive evidence in favor
of the hypothesis that individual differences in early phonological
processing will be predictive of later growth in reading skill.
Results from the preregistered and exploratory analyses are
reviewed in more detail below in light of the four hypotheses that
motivated the current study.

H1: Phonological and Semantic Processing
Will Predict Variability in Reading Growth
There is robust evidence that reading is supported by both
phonological and semantic skills (for a review see Kirby et al.,
2008). Contrary to this work, the preregistered analyses provided
no evidence that individual differences in these component skills
predicted future gains in reading. However, an examination of
the effect sizes for each experimental model revealed that the
Brain model (R2 = 0.12), Behavior model (R2 = 0.17), and
Brain-and-Behavior model (R2 = 0.25) all explained non-trivial
portions of the variance in reading gains.

In the exploratory analyses, the results revealed that the
outcome data were∼15–24 times more likely under the Behavior
and Brain-and-Behavior models as compared to the null model
(BFBehavior = 14.77; BFBrain-and-Behavior = 23.68). This finding
suggests that the observed variability in reading growth was more

likely to be driven by a model that included measures of language
processing than a null model, which included no predictors of
interest. While numerically the BIC value associated with the
Behavior model was slightly smaller than that of the Brain-and-
Behaviormodel (BICBehavior = 48.60; BICBrain-and-Behavior = 49.48),
conventional thresholds for evaluating model fit based on
BIC values suggests that the difference between the two
BIC values is not meaningful (Kass and Raftery, 1995; see
Supplementary Materials for analyses with alternative model
selection criteria). However, given the substantial difference
observed in the magnitude of the BFs associated with the two
models (BFBehavior = 14.77; BFBrain-and-Behavior = 23.68), the best
fitting model was taken to be the Brain-and-Behavior model,
which included both neural and behavioral measures of language
processing and explained 42% of the variance in reading gains.

H2: Neural Specialization Will Be a
Stronger Predictor Than Behavioral
Measures
The limited existing research in which both behavioral and brain-
basedmeasures have been used to predict growth in early reading
skills has consistently demonstrated that neural measures explain
unique variance over that of behavioral measures (e.g., Hoeft
et al., 2007, 2011; Maurer et al., 2009; Bach et al., 2013; Myers
et al., 2014; Borchers et al., 2019; Jasińska et al., 2020). In fact, in
at least one study, neural measures were found to be predictive of
reading growth even when behavioral measures were not (Hoeft
et al., 2011). While the preregistered analyses provided little
evidence that either brain or behavioral measures of phonological
and semantic processing were predictive of readings gains,
the results of exploratory analyses revealed decisive evidence
in favor of the predictive utility of individual differences in
phonological and semantic processing. However, inconsistent
with the study hypothesis, a direct comparison between the
experimental models revealed that the best fitting model was
not the Brain model but instead the Brain-and-Behavior model
(BFBrain = 0.51; BFBehavior = 14.77; BFBrain-and-Behavior = 23.68).

The fact that the Brain-and-Behavior model was found to
be the best fitting model suggests that in line with previous
investigations (e.g., Hoeft et al., 2007, 2011; Maurer et al., 2009;
Bach et al., 2013; Myers et al., 2014; Borchers et al., 2019;
Jasińska et al., 2020), both neural and behavioral measures
explain unique variance in reading growth. However, it should
be noted that when evaluating the Brain and Behavior models
separately, substantially more evidence was found in favor of the
Behavior model as compared to the Brain model. This finding
may reflect that the behavioral measures were better able to
capture the individual differences in language processing. This
would be consistent with the fact that the behavioral measures
were normed and standardized measures of language skill as
well as the fact that the brain measures focused exclusively on
activation within the temporal cortex, which is a critical region
for language processing, but only one region within a network of
regions known to contribute to language skill (for a review see
Binder, 2016).
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While both neural and behavioral measures of phonological
processing were found to predict individual differences in
reading gains, an evaluation of the coefficients associated with
each measure suggests that the two measures reflected different
relations between the constructs. That is, a positive relation
was observed between phonological neural specialization and
reading growth (βPhonSpec = 0.31), whereas a negative relation
was observed between performance on the behavioral measure
of phonological skill and reading growth (βElision = −0.54).
The positive relation found between phonological neural
specialization and reading gains may reflect preliminary evidence
for a neural mechanism through which phonological processing
facilitates growth in reading skill. Activation within the pSTG
during phonological tasks has been associated with lexical
access to phonological representations (Graves et al., 2008).
Therefore, greater specialization within this region may indicate
more refined phonological representations. Consistent with
the Interactive Specialization Theory (Johnson, 2011), the
positive relation found between specialization and reading
growth illustrates that this process of specialization and
refinement precedes and facilitates growth in early word reading
skills.

The observed negative relation between performance on the
behavioral measure of phonological processing and growth in
reading skills is inconsistent with what would be predicted
based on prior behavioral research. However, there is a critical
methodological difference between much of the prior work
and the present study that may be an important contributing
factor. In particular, much of the previous research showing
a positive correlation has explored the longitudinal relation
between early phonological skills and later reading skills
(e.g., Catts et al., 1999; Muter et al., 2004; Nation and
Snowling, 2004) rather than exploring the relation between
early phonological skills and growth in reading skills over
time. This methodological difference may be driving the
observed directional flip in the relation between phonological
skill and reading development in the present work. In fact,
when Elision performance was correlated directly with T2
Letter-Word Identification performance, a positive relation was
indeed observed (BF > 20.00; r(38) = 0.76, p < 0.001). The
negative relation found in the current study likely reflects
the fact that those who start with lower phonological (and
reading) skills at 5-to-6 years old have more room to improve
those skills from 5-to-6 to 7-to-8 years old. This hypothesis
is supported by the strong positive relation between Elision
and T1 Letter-Word Identification performance (BF > 20.00;
r(38) = 0.77, p < 0.001). An alternative interpretation of this
negative relation is that it was driven by the way in which
reading growth or language skill was operationalized. In the
exploratory analyses reading growth was indexed by dividing
each participant’s raw difference score by their initial T1 score.
This operationalization allowed for a measure of reading growth
that was relative to one’s initial reading performance. However,
one consequence of this approach is that those who start with
lower T1 reading skills accordingly have smaller values in the
denominator of their growth measure, and therefore will show
‘‘more’’ growth than individuals with the same amount of raw

growth but higher T1 reading skills.While this operationalization
of reading growth did likely contribute to the observed relation,
it is not the case that the direction of the relation was driven
entirely by this approach as a negative relation was also observed
between Elision performance and gains in reading when the
exploratory model was estimated with a raw difference score
measure of reading growth instead (βElision = −0.29). With
regards to the operationalization of language skill, in the
current study, phonological and semantic skill were indexed
behaviorally through raw scores on the Elision andWord Classes
subtests, respectively. While raw scores reflect an individual’s
skill level, these scores are not age-adjusted. It is possible that
the score profiles and patterns of growth within these skills
differ between younger and older participants and that this could
have influenced the results observed. To explore this possibility,
the exploratory analyses were re-analyzed using scaled scores
on the behavioral measures of phonological and semantic skill.
The results of this analysis were consistent with the reported
findings. That is, the best fitting model was found to be the
Brain-and-Behavior model, and, within this model, only the
phonological measures were significant predictors of reading
growth. Importantly, the results suggest that the use of raw
scores did not drive the observed pattern of findings as Elision
performance was still found to be negatively associated with
reading growth (βElision =−0.55).

H3: Phonological Processing Will Be a
Stronger Predictor Than Semantic
Processing
For young children and, in particular, when predicting measures
of word reading performance, phonological measures have been
found to be a better predictor than semantic measures (e.g.,
Muter et al., 2004; Schatschneider et al., 2004). Consistent
with this work, it was found, in the exploratory analyses, that
only phonological predictors significantly explained variance in
reading growth. This pattern of results provides support for
the broader hypothesis that phonological skills are particularly
important for the development of early word reading skills.
In addition, it extends previous work by demonstrating that a
process of neural specialization within the pSTG may contribute
to the relation between phonological processing and reading
development. However, given the fact that this finding was only
supported by the exploratory analyses, future replications are
needed in order to provide more substantial support for the
hypothesis that phonological specialization within the pSTG
facilitates growth in early reading skills. While variability in
semantic processing was not found to be predictive of reading
growth in the current study, it is anticipated that semantic
processing would emerge as a significant predictor if reading
growth was measured in an older group of readers and with
measures indexing more advanced reading skill, such as reading
comprehension (e.g., Muter et al., 2004).

H4: Neural Specialization Is Underpinned
by Changes in Region Processing
According to the Interactive Specialization Theory, neural
specialization should be characterized by both increased
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engagement during region-appropriate processing and decreased
engagement during region-inappropriate processing (Johnson,
2011). Thus, it was predicted that when task-based activity
was estimated within the specialized regions and used to
predict reading growth, a positive relation would be observed
for activity associated with the region-appropriate task and
a negative relation would be observed for activity associated
with the region-inappropriate task. While a direct comparison
between task-based activity within the pSTG showed a significant
difference between temporal recruitment during the Sound
Judgment vs. Meaning Judgment tasks, the regression analyses
relating task-based activity to reading gains provided no evidence
in favor of the experimental models. That is, while there was
evidence from the exploratory analyses that the degree of
differential engagement of the pSTG to the Sound Judgment vs.
Meaning Judgment task (i.e., phonological neural specialization)
was predictive of reading growth, activity associated with each
task individually was not predictive. This finding is inconsistent
with both the study predictions and the Interactive Specialization
Theory more generally, however it is consistent with the
limited previous research on early neural specialization. Weiss
et al. (2018) found that performance on phonological and
semantic behavioral tasks was correlated with measures of
neural specialization but not with task-specific activity in 5-to-
6-year-olds. Therefore, what appears to be critical for predicting
individual differences in early language and reading skills is
not task-specific activity, but rather the degree of differential
response patterns in the pSTG to region-appropriate vs. region-
inappropriate tasks.

Limitations and Future Directions
One of the primary limitations in the present study was
the lack of converging support between the preregistered
and exploratory analyses. The exploratory analyses were,
like the preregistered analyses, theoretically motivated,
however, the lack of consistency between the analyses
weakens the interpretability of the findings. Thus, while the
results of the current study provide preliminary evidence
for the Interactive Specialization Theory (Johnson, 2011)
and, more specifically, for the role of early phonological
neural specialization in the development of word reading
skills, the data are hypothesis generating rather than
confirmatory.

Additionally, one of the central tenets of the Interactive
Specialization Theory (Johnson, 2011) is that neural
specialization is driven by inter-regional interactions. More
specifically, it is hypothesized that over time, variations in
regional response biases (e.g., preferential response patterns
to particular types of stimuli), experience, and feedback drive
regions within a network to interact and compete. These inter-
regional interactions ultimately facilitate neural specialization
and the development of an optimal functional network. No
measures of network-level connectivity were included in the
present study and therefore the role of inter-regional interactions
could not be tested. However, recent work examining the
emergence of the phonological network from 5-to-8-year-olds
showed that the strength of connectivity within the phonological

network in pre-readers was predictive of later reading skills
in emergent readers (Yu et al., 2018). In addition, within the
domain of orthographic processing, early connectivity between
what will develop into the visual word form area and other
brain regions at 5 years old has been found to be predictive
of the precise location of this region at 8 years old (Saygin
et al., 2016; see also Pleisch et al., 2019). This work provides
promising evidence in favor of the interactive component of
the Interactive Specialization Theory. However, other studies
have shown that while patterns of network-level connectivity do
change over development and that the nature of this change is
predictive of skill development, these patterns of inter-regional
interactions are not necessarily predictive of regional activation
within the network (as would be predicted by the Interactive
Specialization Theory; Battista et al., 2018). Therefore, future
research examining the development of neural specialization
and the role of inter-regional interactions is necessary to
understand the mechanisms by which such specialization may
develop.

Finally, in the current study, each of the experimental
models was compared to a null, intercept-only model. While
the results of the exploratory analyses suggest that, in line with
the Interactive Specialization Theory (Johnson, 2011), individual
differences in phonological neural specialization at 5-to-6 years
old are predictive of growth in reading skills over time. A more
rigorous test of the Interactive Specialization Theory would
be to compare a specialization-based brain model to other
brain-based models of cognitive skill development. Thus, future
investigations should consider extending the current findings by
comparing the relative fit of alternative brain-based models as
opposed to comparing behavior- and brain-based models, as was
done in the present study.

Conclusion
Understanding the factors that support and constrain reading
development is critical given that reading represents a cognitive
skill that is highly academically-relevant (e.g., Vineyard and
Bailey, 1960) and essential to functioning in modern society (e.g.,
Raudenbush and Kasim, 1998; DeWalt et al., 2004). Thus, despite
the limitations in the present study, the findings from this work
provide important information regarding the neural processes
that support reading development. Consistent with previous
work, the results from the current study provide evidence that
individual differences in early phonological processing are an
important predictor of later growth in word reading skill. These
findings also extend this prior research and provide preliminary
support for the Interactive Specialization Theory (Johnson,
2011) by demonstrating that the observed relation between
phonological processing and reading growth may be supported
by a process of neural specialization for phonological processing
within the pSTG.
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