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In a Mental Imagery Brain-Computer Interface the user has to perform a specific mental

task that generates electroencephalography (EEG) components, which can be translated

in commands to control a BCI system. The development of a high-performance MI-BCI

requires a long training, lasting several weeks or months, in order to improve the ability

of the user to manage his/her mental tasks. This works aims to present the design of

a MI-BCI combining mental imaginary and cognitive tasks for a severely motor impaired

user, involved in the BCI race of the Cybathlon event, a competition of people with severe

motor disability. In the BCI-race, the user becomes a pilot in a virtual race game against

up to three other pilots, in which each pilot has to control his/her virtual car by his/her

mental tasks. We present all the procedures followed to realize an effective MI-BCI, from

the user’s first contact with a BCI technology to actually controlling a video-game through

her EEG.We defined amulti-stage user-centered training protocol in order to successfully

control a BCI, even in a stressful situation, such as that of a competition. We put a specific

focus on the human aspects that influenced the long training phase of the system and

the participation to the competition.

Keywords: brain-computer interface, mental imagery, MI-BCI, event-related desynchronization/synchronization

(ERD/ERS), long training, impaired subject, BCI competition, cybathlon

1. INTRODUCTION

Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) control an external device by specific
EEG components generated by mental imagery tasks performed by the user (Pfurtscheller and
Neuper, 2001). Sensorimotor rhythms (SMRs) modulate the power of the ongoing EEG signal over
sensorimotor areas (i.e., mu-rhythm and beta-rhythm) (Yuan and He, 2014). They occur during
mental imagery tasks, such as mental arithmetic or mental rotation (Faradji et al., 2009) and motor
imagery (Neuper et al., 2006) (Wang et al., 2020). This modulation of power in given frequency
bands and spatial locations can be used to identify the mental task that caused this change in the
brain rhythms. The power decrease is called an event-related desynchronization (ERD), while a
power increase is called event-related synchronization (ERS) (Pfurtscheller and Da Silva, 1999).

There are many applications which use MI-BCIs, such as neurorehabilitation (Van Dokkum
et al., 2015), control of external devices (Cincotti et al., 2008), virtual reality (Leeb et al., 2007),
and gaming (Kauhanen et al., 2007). However, there are some limitations affecting the diffusion of
such systems in real life setups. Among them there is the high intra- and inter-subject variability,
preventing their common use in daily life (Saha and Baumert, 2019). The experimental setting, the
psychological state and neurophysiological parameters all have an influence on the SMRs, which
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thus vary over time and across subjects, affecting the performance
of MI-BCI systems. Another important parameter impacted
by this variability is the design of a MI-BCI for an impaired
subject. The system necessarily requires a definition phase
in order to find the tasks most adapted to the subject,
considering his/her neurological response but also his/her
possibility to carry out specific tasks and then a training is
fundamental to use the SMR-based BCI system. Moreover,
to further improve the skill of modulating sensorimotor
rhythms (Wolpaw and Wolpaw, 2012), a substantial training is
required. Nevertheless, the basic mechanism of SMR learning
is not clear. Many studies investigated on the motor learning
process that promote plasticity in the sensorimotor networks
and improve both motor and perceptual skills (Ostry and
Gribble, 2016) proving that BCI skill acquisition effectively
allows to improve the BCI performance also in impaired
subjects. Yet, subject-specific training sessions may be required
because the induction of plasticity varies significantly across
subjects (Saha and Baumert, 2019).

Our work was focused on the design of a MI-BCI combining
mental imagery and cognitive tasks for a severely motor impaired
user, in preparation for the 2nd edition of the Cybathlon
BCI race event, during a practice competition, the BCI Series,
which took place as a satellite event preceding the BCI Graz
conference in September 2019. The Cybathlon (Riener, 2016)
is an international competition for people with severe motor
disability who, equipped with assistive technology, compete in
different events, such as the BCI race. In the BCI race, the user
of the system becomes a pilot in a virtual race against up to three
other pilots, in which each pilot controls his/her virtual car by
his/her mental tasks. The virtual car is controlled on the race
track through four different commands (go straight, turn right,
turn left, and switch on the lights). By default, the car moves at
constant speed on the track. A wrong control command sent by
the BCI system is sanctioned by a reduction in speed, making the
vehicle proceed slower on the track.

In this paper, we present the sequence of procedures we
followed to realize an effective MI-BCI, from the selection of the
pilot to the actual control of the video-game in the BCI Cybathlon
series, with a particular focus on the long training phase. We
defined a multi-stage user-centered training protocol in order to
successfully control a BCI, even in a stressful situation, such as
that of a competition.

2. PILOT SELECTION

Pilot selection started by asking Dr. Mariane Bruno of the Pasteur
University Hospital in Nice, France, to present to us some of her
patients with the disabilities listed by the Cybathlon competition,
who would be both motivated and physically able to sustain the
competition and its constraints (a long training, plus traveling to
the competition site). Three motor-impaired women entered in
this selection process. The selection process itself consisted in a
few sessions of the Graz BCI protocol (Pfurtscheller and Neuper,
2001) as implemented in OpenViBE (Renard et al., 2010). This
protocol tests the ability of the subject to achieve left and right

hand motor imagery. The data was collected at the hospital in
two half-day sessions and the signals were further analyzed offline
using time-frequency plots to check visually that there was some
signal to discriminate between the tasks.

One subject was excluded due to high spastic muscular
activity, which generated too much artifactual EMG signal. Based
on those data, two subjects were contacted to go further and have
more training sessions, but one of them finally withdrew, because
training for the competition appeared too strenuous. All further
training was done with the only remaining subject, our pilot.

Our pilot is a 32 year-old woman, with limb girdle muscular
dystrophy since the age of 7. She has no cognitive disability but
severe motor disabilities. She does not control the movement of
arms and feet, and can only perform a clamping movement with
her hands, very limited on the left one. She controls her electric
wheelchair with the index finger of the right hand, but she needs
to be assisted for all daily activities, as for instance eating and
drinking. Nonetheless she has no language disability and she has a
strong personality. Moreover, she participated to different sports
competitions for disabled people but did not have any experience
with BCI. She has quite a competitive spirit, which is important
to keep the motivation and sustain the long training sessions that
we organized in the 3 months before the Graz Cybathlon event.

3. TRAINING PROTOCOL

To efficiently train our pilot, we deployed a multi-stage training
strategy, that consisted in an investigation phase to determine the
subject-dependent specific mental and cognitive tasks, followed
by a training phase using those specific tasks.

3.1. Investigation Phase
The investigation phase is fundamental to define the most
suitable MI tasks for the subject. Indeed, the mental tasks
must fulfill three criteria: the subject must be able to perform
each task and be comfortable with it, the individual mental
task must produce a recognizable brain pattern and it must
not cause undesirable side effects, like spasms, discomfort or
stress (Schwarz et al., 2016).

We collected data over several sessions in 1 month, from the
middle of June to the middle of July 2019. This phase took time
because this experience was new both for the user, who had never
used a BCI system before, and for our team. Indeed, it was the
first time we worked with a disabled person, which obviously
requires specific attention. Therefore, a preliminary phase was
necessary to create collaborative relationship between the team
and the user, to allow the user to become more familiar with
the hardware and also to allow the team to understand how to
effectively manage this type of experience, defining a suitable
experimental protocol (Lotte et al., 2013; Schwarz et al., 2016;
Perdikis et al., 2018).

The experiments took place in a room located in the pilot’s
living center “Centre René Labreuille” in Le Cannet, France.
During each session, the EEG signal of the subject was recorded
from a ANT-Waveguard cap with a Refa8 amplifier (512 Hz
sampling rate). To lower the impedance between the electrodes
and the subject’s skin below 10 k�, a conductive gel was applied
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FIGURE 1 | Example of an experimental paradigm applied in the investigation phase. We tested different time intervals of 5 s of tasks and 10 s of rest, 3 s/5 s,

3 s/10 s in order to determine the time interval that elicited prominent brain patterns.

to the ground (FPz) and to the 13 electrodes placed in positions
F7, Fz, F3, F4, F8, T7, C3, Cz, C4, T8, P3, P4, Pz. Two EMG
electrodes were placed on the user’s hands to check for the
presence of involuntary movements.

The following MI tasks have been tested and already used
in Schwarz et al. (2016) and Friedrich et al. (2013):

• MI of right hand (RH): close and open right hand, simulating
the clamping movement.

• MI of left hand (LH): close and open left hand, simulating the
clamping movement.

• Language (LAN): imagination of words that begin with a
specific letter.

• Auditory (MUS): imagining singing a song.
• MI of both feet: move both feet.
• Calculus: imagination of incrementally summing numbers.
• No control (NC): relax.

The tasks were combined in different experimental paradigms,
that were tried, in random order, during the first three sessions
(S01, S02, and S03). The subject had to perform the mental tasks
following the experimental paradigm that generally consisted
in the combination of one or two control tasks interleaved by
a no control task. In the no control task (NC), the user was
asked not to engage in any MI task, but to achieve a relaxed
state while gazing at a fixation cross on the screen. An example
of an investigation paradigm is detailed in Figure 1. We tried
different intervals between tasks in order to identify the interval
combination that created more prominent brain responses.
The paradigm was repeated 10 times in each run. Then, to
identify the brain pattern of each task, we computed time-
frequency plots to perform the event-related (de)synchronization
(ERD/ERS) analysis. From empirical observations, the MI
tasks of each investigation paradigm that did not produce
an distinguishable (de)synchronization (ERD/ERS) activation
on the EEG were considered not suitable for the user, and
only MI tasks that produced a distinguishable pattern have
been selected.

To create an efficient and adaptive BCI system, the selection
criteria of the four tasks are: being the most distinguishable on
the EEG and the easiest to realize for our pilot. For instance, some
tasks such as the calculus created a lot of stress for the subject,
the feet and left hand MI were also really complicated for our

subject and were consequently considered as unsuitable tasks at
this stage.

Finally, at the end of this investigation phase, the mental tasks
suitable for our pilot were RH, MUS, LAN. These tasks provided
a specific brain pattern in the pilot’s EEG, as it can be seen on
the ERD/ERS maps in Figure 2, and the subject was comfortable
performing them. In addition these three MI tasks, NC task was
considered as the fourth task suitable for our pilot.

3.2. Training Phase
The objective of the training phase was to train the subject to
perform the mental tasks selected in the investigation phase. In
this phase, the pilot had to perform many MI tasks without any
feedback, aiming both at improving her ability to manage the
tasks and at creating the training set to calibrate the BCI classifier.

The data were collected with the same hardware described in
the previous investigation phase (see Figure 3). The sessions took
place once a week from the middle of June to the end of August
2019 for a total of eight sessions.

Each training session lasted at least 2 h and 30 min,
considering a break interval of around 10 min between each
run, the time to set up the cap on the subject before the
data acquisition and also the time to remove the cap and the
gel after each session. Our pilot was really motivated at each
session, but at the end of the session she was usually tired, in
particular for sessions happening in the morning and during a
very hot period. During some sessions the subject reported lack of
concentration due to external noise, fatigue or hot temperature,
in this case it was fundamental to take a break and to recover
a more comfortable ambiance with all the team, improving her
motivation and reducing her state of fatigue.

At the beginning (sessions S04 and S05), the experimental
protocol consisted in 5 runs with the combination of 4
commands, but the subject reported that it was hard because it
required a lot of concentration. Therefore, from sessions S06 to
S07, the protocol consisted in 4 runs (RH-NC, RH-MUS-NC,
RH-LAN-NC, and RH-MUS-LAN-NC) and we collected 10 trials
per task and run.

In the last sessions, we tried to reintroduce the LH motor
imagery task. Indeed, the subject at this moment improved her
control on the RH task and we wanted to test whether or not
the control of LH task would also have improved. Hence, from
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FIGURE 2 | Average ERD/ERS maps calculated for MI of right hand (RH), auditory imagination (MUS), and word association (LAN). For each task, the pattern of

activation is recognizable by dashed boxes in the frequency-time plot and the scalp topographies indicate the distributions of ERD/ERS at specific times and

frequencies.
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sessions S08 to S13, the protocol consisted in 5 consecutive
runs (RH-MUS-NC, RH-LA-NC, RH-MUS-LA-NC, RH-LH-
NC, and RH-LH-LAN-NC). The objective was to find the 4-class
combination with the highest performance. An illustration of the
4-class experimental paradigm is exemplified in Figure 4. The
total duration of the 4-class experimental paradigm is around
39 s, in which the user had to perform each control task for 5 s,
where the control task is represented by a small icon (an arrow
pointing to the right, a music score,...) superimposed on images
extracted from the game. These images were selected to show the
moment at which the subject would have to perform the task,
in order to get the subject accustomed to perform the right task
at the right moment. The rest interval, corresponding to the no
control task (NC), has a total duration of 12 s. After 5 s of this rest
interval, a green cross appeared on the screen for 2 s.

In order to detect the ERD and ERS in the EEG associated to
the individual mental tasks, the EEG signal was bandpass filtered
with a Butterwoth bandpass filter of 4th order in six different
frequency bands (8–12, 16–20, 20–24, 28–32, 32–36, 36–40 Hz).

FIGURE 3 | Experimental setup of the MI-BCI system. The pilot is wearing the

EEG cap and EMG electrodes are placed on her hands.

The ERD/ERS appear around 0.5 s after the beginning or the
end of the mental task and last between 1.5 and 3 s. Therefore,
we considered epochs of 2.5 s from the mental imagery onset,
with steps of 0.5 s, in order to build a BCI system that reacts
as fast as possible to the pilot’s intent during the online game.
The size of the window was empirically selected, observing the
time-frequencies plot of the preprocessing data. It is important
to underline that it is not possible to define a priori the size
suitable for all the users, because it is a user-related parameter. A
feature vector was constructed by computing the average power
in each frequency band in two successive windows, in order
to capture both ERD and ERS events. This feature vector was
provided to a LDA classifier to classify the different tasks, for each
task 400 samples have been considered. The LDA classifier was
trained using 70% of the band-power features as training set, the
remaining 30% data were used as a validation set.

A multi-class confusion matrix was computed to assess the
performance reached by each task for the different experimental
paradigms. In particular, to analyze the performance of
the individual tasks per session, we considered the F-
score (Equation 1), that is a statistical measure to evaluate
the test’s accuracy considering both the precision and the recall.
Precision is the number of True Positives (TP) divided by all
positive predictions (TP+FP) returned by the classifier, and recall
is the number of True Positives (TP) divided by the number of
all samples that should have been identified as positive (TP+FN).
F-score is more suitable for multi-class problems than the overall
accuracy because it is not dependent on True Negatives (TN),
that can overestimate the performance of the system (Sokolova
and Lapalme, 2009).

F-score = 2 ·
precision · recall

precision+ recall
(1)

Figure 5 shows the F-score achieved by the individual tasks
across sessions. As a general remark, it can be noticed that,
independently of the experimental paradigm, the user could
better manage the NC task than the RH, MUS and LAN ones.
Indeed, the F-score of the NC task (across all sessions and

FIGURE 4 | Experimental 4-class paradigm applied in the training phase. The user had to perform each control task (RH, MUS, LAN) for 5 s. Each task was

associated to an image made by combining the task icon with an image extracted from the game at the proper time instant. The rest interval, corresponded to the no

control task (NC), has a total duration of 12 s. After 5 s of this rest interval, a green cross appeared on the screen for 2 s to improve the concentration of the pilot.
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FIGURE 5 | F-score values reached by each training paradigm across sessions.
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FIGURE 6 | Confusion matrix of the two 4-class paradigms tested during the training phase, from sessions S08 to S13. Each confusion matrix reports the absolute

values (numbers in black) and relative percentages (color scale) to evaluate the performance of the LDA classifier. All values on the diagonal represent the correctly

classified trials. At the bottom the overall classification accuracy is given.

paradigms) was always above 0.8. This is a nice property as
straight lines, which were associated to NC, tend to dominate in
the race circuits.

We can furthermore notice that the performance reached in
runs with three classes is generally more stable than the one
obtained with four classes. Indeed, if we consider the 3-class
paradigm RH-MUS-NC, the subject was able to manage all the
three tasks across sessions. On the contrary, if we consider the 4-
class paradigm RH-MUS-LAN-NC, the user managed better the
NC and LAN tasks than the RH and MUS. This trend perfectly
reflects the difficulty of the subject to perform runs with four
tasks, as she declared. This is the reason why we designed the
progressive training protocol detailed previously, in order to
gradually manage 4-task control without requiring too much
concentration and effort.

This strategy allowed the pilot to improve the classification
performance for the 4-class combination RH-MUS-LAN-NC.
Indeed, as shown in the fourth plot of Figure 5, we can notice
an average improvement of performance from sessions S08 to
S11 for the tasks RH and MUS, that the subject managed with
difficulty at the beginning of the training.

Finally, to evaluate the 4-class combination, the confusion
matrix across sessions S08 to S13 were computed (see Figure 6).
The results reached with the RH-MUS-LAN-NC are clearly
better as shown by the better contrasted diagonal. Indeed, the
RH-LH-LAN-NC paradigm not only displays a poor detection
of the LH task, but also seems to induce some disturbance in the
RH-NC discrimination. Accuracies are also reported to compare
the classification among the 4-class combinations. It is computed

as the sum of the correctly identified classes (TP+TN) over the
all the classified classes (TP+TN+FP+FN). In our four classes
case, it is the sum of the diagonal terms of the confusion matrix
divided by sum all its terms. The results show a difference of 5%
between the two paradigms, with an accuracy value equal to 53%
for RH-MUS-LAN-NC and 48% for RH-LH-LAN-NC.

Therefore, the RH-MUS-LAN-NC paradigm which reached
the highest performance was selected as the paradigm to apply
in our closed-loop gaming BCI. Finally, the user agreed on
this choice because she declared to be much more comfortable
with the RH-MUS-LAN-NC combination than with the RH-LH-
LAN-NC one.

3.2.1. Closed-Loop BCI Game
Figure 7 shows an illustration of the closed-loop BCI game.
Basically, the EEG signal is acquired from the 13 channels
(the same as in the training phase) and is bandpass filtered.
In parallel, the EMG signal is processed in order to detect
possible hand movement artifacts. Epochs corresponding to
EMG artifacts are removed. Then, each retained epoch is
tested for eye blink artifacts. EMG and EEG artifact rejection
is detailed in the following paragraph. Each processed epoch
provides a feature vector which is classified by the LDA classifier
trained using the training dataset. Finally, the classification
outputs are mapped to the video-game commands. In particular
NC task was applied to move the car along the straight
portions of the race track, RH task to turn the car right,
MUS task to turn the car left and LAN task to switch on
the lights.
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FIGURE 7 | Outline of the closed-loop BCI system.

Software difficulties were encountered in our initial
implementation which made the BCI system unstable after
a few minutes because of an excessive memory consumption
which induced unsustainable latencies. As these difficulties arose
only with the Windows operating system, we decided to run the
BCI system on a Linux OS instead. But as the EEG acquisition
software required a driver only available on Windows OS, we
had to rely on two computers keeping a Windows computer to
acquire the EEG and EMG signals. The two computers were
linked using a TCP/IP connection. This required some network
hardware and configuration, which added significant complexity
to our system (and brought additional stress to our team
during the live event in Graz). In the end, everything worked as
expected, but much time which could have been better devoted
to training the pilot in situ was lost. We learned the lesson that
an effective BCI system must also be simple to setup, and are
now working toward that goal.

The OpenViBE (Renard et al., 2010) scenario developed to
control the game is detailed in Figure 8.

3.2.2. Artifact Rejection Framework
To follow the Cybathlon BCI race regulations, we deployed an
artifact rejection framework into the BCI system that includes
both electromyogram (EMG) artifact rejection and eye-blink
artifact rejection. The artifact rejection subsystem detects eye-
blinks and/or EMG artifacts on the signals and prevents the BCI
system to send any control command to the pilot’s virtual car for
a predefined time interval.

For the EMG artifact rejection, two adhesive surface electrode
pairs were placed on both pilot’s hands between the thumb and
index fingers. We adopted this configuration because the only
motor tasks achievable by the user were to close and open both
hands, as in a clamping movement. These motor tasks were
the real movements corresponding respectively to the RH and
LH tasks.

The subject did two acquisitions, in which she performed
voluntary hand movements at regular intervals in order to
define an EMG threshold TEMG. The EMG rejection algorithm
was defined to reject epochs for which the average EMG
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FIGURE 8 | Openvibe scenario developed to control the BCI system.

signal amplitude exceeds by two standard deviations the
threshold TEMG, Thus no command can be sent to the game
during such epochs.

The objective of the eye-blink artifact rejection was to detect
the eye blinking on the EEG signals. In order not to overload the
pilot with sensors, the EOG artifact rejection subsystem detects
the presence of eye blinks on the frontal EEG electrodes F3
and F4, close to the left and right eyes. Artifact rejection was
performed processing the EEG signals in the 8–12 Hz frequency
band, in which the eye blinks of our subject was most prominent.
For each epoch, the means and standard deviations of the F3 and
F4 electrodes were computed. Time samples corresponding to
instants in which the amplitude of F3 (respectively F4) was not
in the range of the mean plus or minus three standard deviations
of F3 (respectively F4) were discarded from the computation of
the power features.

3.3. Cybathlon BCI Series
The Cybathlon BCI series event took place in Graz in September
2019. This BCI race offered the opportunity to showcase our
research and development and gave the pilot an experience of
a competition, in preparation for the Cybathlon 2020 event. Six
international teams participated to this event and all teams had
previously participated to Cybathlon 2016, except for NITRO 1
and NITRO-2 (our team). The race followed exactly the same

rules as the Cybathlon BCI race. The pilots were competing
together at most four at a time.

The criterion for winning the game was to complete the track
in the shortest possible time, not exceeding 4 min (in which
case, the distance along the track was used to rank pilots). The
competition consisted in two phases: qualifications and finals.
Two qualification races of three pilots were organized: the four
first pilots in the qualification ranking took part to the final race
A, the last two to the final race B.

The official results of the Cybathlon BCI series are shown
in Figure 9. One pilot was disqualified during the final race.
The pilots who reached the first and the second place finished
the whole track with a very good timing. We reached the fifth
position during the qualifier race and the last position during the
final race.

One factor that prevented us from classifying in a higher
position in the final race was the weakness of our hardware set
up. Considering the channels configuration, in terms of limited
number of electrodes of the EEG cap, we had a system with 13
channels, differently from all other teams that used 32 channels,
except for one that used a 16 channels EEG cap. Many studies
reported that the classification accuracy of a MI-BCI task can
improve when increasing the number of channels (Meng et al.,
2018). Moreover, differently from other teams, we had a complex
setup of two computers connected through a network, that could
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FIGURE 9 | Cybathlon BCI series ranking.

have also impacted the classification accuracy. Moreover, we
spent most of the test day trying to resolve network issues that
arose in the context of the competition environment, so we
had no time to train our pilot the day before the competition
or to recalibrate the system, in fact we used a data set created
combining all the training sessions to calibrate the system before
the competition. Even on the day of the competition, passing
the Tech-check (a test to see whether each team’s system is
able to communicate with the game infrastructure) proved to
be difficult and was achieved at the last minute. On the positive
side, once we ruled out the network problems, our system proved
functional and stable during the whole race, contrary to some
other teams which experienced some problems and had to repeat
a qualification run to obtain their final result. Another success
is that even if our pilot finished in last position, she led the race
in both the qualification and final races till the last few seconds.
Most probably, this was related to a concentration problem, as
the race took place in a crowded amphitheater with a lot of
cheering for the pilots, especially around the race end, and our
pilot had not been trained in such an atmosphere. Indeed this

can be considered the most important factor that impacted the
performance during the race because, to efficiently control a
MI-BCI system, a high level of concentration is required.

Nevertheless, the Graz experience was really useful for the
future improvement of the system. We had the possibility to test
our system in real life conditions, we understood the limits of
our system and on what we need to work on to become more
competitive for the Cybathlon race.

Finally, we also learned a lot on the human side of the race.
Airplane travel, local accommodations, and land transport, while
having been planned thoroughly and well in advance, were a
source of stress for several pilots. We had to find solutions on
the fly for several transportation or usual daily life issues.

3.4. Discussion and Perspectives
The long training phase and the BCI series in Graz provided us
an enriching experience to understand the limits of our current
BCI system. We identified several factors that influence the
usability and the performance of our system and how these can
be improved in the future.
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We would like to underline that we had only 3 months to
design the system, adapt it as best as possible to the pilot and train
her, which is not a very long period for the preparation to this type
of competition.

We did a long phase of training but could only train her to
control the game itself for a few sessions (2 or 3) before the
competition. For sure, learning to use the system and learning to
“play” are two different tasks and therefore imply different levels
of concentration. For instance, on the day of the competition,
we noticed that during the last minutes, our pilot had more
difficulties to stay concentrated. Concentration skills during the
game could have been improved if we had more time to train the
pilot with the game. The version of the game that was provided
to teams at the time was not providing expected labels, thus data
collected while using the game could not be used as training data.
Consequently, pure game training time was limited.

There were many factors that influenced the stress
condition of the pilot, impacting her ability to concentrate
and consequently her performance. For instance, during both
investigation and training phases, the acquisition took place in a
standard room in a living center, as mentioned before. The room
was not equipped for EEG experiments and not shielded for
external sounds, consequently many times the training sessions
were disturbed by external sounds that distracted the subject.
Moreover, the whole training phase took place in summer and
therefore in very hot and humid conditions, this condition
decreased the pilot’s concentration time-span mainly because of
the inconvenience and discomfort of having to wear an EEG cap
with gel during a heat wave.

Also, during the BCI series in Graz, many factors influenced
her stress, such as competition stress, travel, and others logistic
problems. In fact, this experience highlighted the problems faced
by disabled people, particularly in terms of logistics (adapted
transport and infrastructure) and special needs (lifts, wheelchairs,
adapted taxis, and toilets, etc.). It also led us to realize the stakes
of the organization of such an event.

Another factor that probably induced an increase of the
overall stress of the pilot was the presence of many people and
of noise during the competition. Indeed, the competition took
place in an amphitheater room and each pilot was positioned
in front of the public, and during the competition a person
commented the race, whereas during all the training period,
we tried to keep environmental disturbances as low as possible.
Indeed, after the competition the pilot reported a state of
stress and disappointment due to the fact that she had high
difficulty to concentrate during the competition, due to the
comments and cheering. This is justifiable since the pilot had
to perform also cognitive tasks for which the concentration and
calm are key elements. This aspect should be considered for
future competition in order to put the subject in a comforting
situation during the competition, so that each pilot can give the
best performance.

In the BCI series in Graz, we noticed a great deal of variability
between pilots. For example, residual motor abilities were highly
variable from one pilot to another. Some pilots were able to fully
use their arms, others could notmove at all, some disabilities were
congenital while others were recent. It is challenging to create a

system that can be adapted to all situations. This confirms the
importance of personalizing BCI systems, to tackle the needs of
each user in any situation, such as a competition or real life.

The participation to this competition was a really exciting
challenge and provided us a very informative experience in the
development of a BCI for a disabled person. We understand
that the role of the user is fundamental in a SMR-BCI
system, confirming the need to develop user-centered systems in
particular for disabled people that present different needs, based
also on their disabilities.

After the BCI series, there were many aspects that we would
have liked to improve in our system. On the human side, training
the pilot to play the game with external disturbance (noise, and
a cheering public) and improve her concentration capability
would help her to maintain her maximum performance up till
the end of the track. It would have also been productive to
allow the pilots to train against each other in order to simulate
real competitions. On the system side, we need to simplify
our setup and remove the use of two computers linked by
a network.

4. CONCLUSIONS

In this work, we deployed a MI-BCI system for a motor impaired
user in the context of a BCI-game competition. A special
focus was put on the long multi-stage training necessary to
obtain an effective system. We presented and discussed our
strategy to design an experimental user-centered experimental
protocol. Moreover, we highlighted that the emotional state of
the user, in terms of stress and concentration, directly impacts the
performance of the system, in particular in a live competition.
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