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Purpose: The purpose of this study was to introduce an orthogonal experimental design
(OED) to improve the efficiency of building and optimizing models for freezing of gait
(FOG) prediction.

Methods: A random forest (RF) model was developed to predict FOG by using
acceleration signals and angular velocity signals to recognize possible precursor signs of
FOG (preFOG). An OED was introduced to optimize the feature extraction parameters.

Results: The main effects and interaction among the feature extraction
hyperparameters were analyzed. The false-positive rate, hit rate, and mean prediction
time (MPT) were 27%, 68%, and 2.99 s, respectively.

Conclusion: The OED was an effective method for analyzing the main effects
and interactions among the feature extraction parameters. It was also beneficial for
optimizing the feature extraction parameters of the FOG prediction model.

Keywords: orthogonal experimental design, optimization, freezing of gait, Parkinson’s disease, fog prediction

HIGHLIGHTS

- A novel method was developed to predict FOG in PD.
- An OED was first used to obtain the optimal feature extraction parameters.
- The main effects of the feature extraction parameters were analyzed first.
- Interactions among the feature extraction parameters were analyzed.

Abbreviations: ECG, electrocardiogram; FOG, freezing of gait; MPT, mean prediction time; MI, mutual information; ML,
machine learning; OED, orthogonal experimental design; preFOG, prefreezing of gait; PD, Parkinson’s disease; RF, random
forest; SCR, skin-conductance response.
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease
characterized by the degeneration of dopaminergic neurons
of the substantia nigra resulting in bradykinesia, rigidity,
tremor, and postural instability (Revuelta et al., 2015; Li et al.,
2019). Over 50% of the PD patients who have lived with the
disease for more than 10 years are affected by freezing of gait
(FOG) (Okuma, 2006). In addition, FOG may occur in 25%
of patients with early PD (Moore et al., 2008). FOG is defined
as not being able to start or continue walking and feeling as
if the feet have been “glued” or “magnetized” to the ground
(Handojoseno et al., 2012). This condition causes both physical
and psychological distress. Approximately 60% of PD patients
experience falls each year, and they also have to endure multiple
falls caused by complications and fall-related injuries (Wood
et al., 2002; Moore et al., 2008; Allcock et al., 2009; Latt et al.,
2009; Contreras and Grandas, 2012).

The response of FOG in PD to pharmaceutical treatment is
limited (Okuma, 2006). However, previous works have shown
that cueing-based training has specific effects on gait, freezing,
and balance (Lim et al., 2005). Many works have aimed to develop
small wearable devices that can detect FOG episodes (Han et al.,
2003; Moore et al., 2008, 2013; Bachlin et al., 2009; Jovanov
et al., 2009; Mazilu et al., 2012; Pepa et al., 2015; Zach et al.,
2015). Gait recognition is a gait assessment tool that uses a
machine learning (ML) algorithm. Researchers have attempted to
develop a wearable system to improve the accuracy of identifying
FOG events. To optimize the system, multiple aspects were
investigated, including different sensors and their locations, a
subset of the features extracted, different gait recognition models,
and hyperparameters. Bächlin et al. (2009) used a threshold
algorithm based on the freezing index and signal power to
recognize FOG. Their model was more sensitive when sensors
were worn on the hips. Mazilu et al. (2012) showed that the mean
latency of FOG detection increased linearly with the window size,
but the classification performance increased quickly and then
stabilized. Using an ML algorithm such as random forest (RF), a
single sensor was sufficient for FOG detection, and the placement
of this sensor had little effect on the detection. Ensemble methods
such as boosting and bagging are more appropriate than other
methods (Mazilu et al., 2012). Mikos et al. (2017) found that
features maximized their mutual information (MI) at different
window lengths. The efficient parameter optimization method
in gait recognition has not been fully studied. We found that
when the dataset is very large, optimizing the hyperparameters
is a very time-consuming process, so an efficient parameter
optimization method needs to be discussed. Some works have
studied the effects of feature extraction parameters, while the
interaction among parameters has not received enough attention.
We propose a statistical experimental design, i.e., an orthogonal
experimental design (OED), to optimize the hyperparameters
and analyzes the interaction.

Furthermore, by utilizing such a wearable system, timely
rhythmic cues can be provided after FOG is detected. These
systems have advantages in shortening the duration of FOG
and, by providing immediate (at least hundreds of milliseconds)

rhythmic cues as a response to the FOG signal, will further
improve these systems. Therefore, FOG prediction is necessary
to solve the response problem and further avoid intervention
failure. An unsupervised feature learning decision tree can
be used to perform FOG prediction (Mazilu et al., 2013).
Mazilu et al. (2015b) explored the association of gait with
electrocardiogram (ECG) and skin-conductance response (SCR)
features and then fit the data to a multivariate Gaussian
distribution, which can be used for FOG detection. In previous
studies, parameters such as the window size and the defined
duration of precursor signs of FOG (preFOG; all the references
to preFOG in this article mean preFOG in PD) are based on
experience (Mazilu et al., 2013, 2015b). However, the principles
of objectification, multipurpose use, and simplification (OMS)
have been the trend in the development of a novel behavioral
assessment for PD (Asakawa et al., 2016a,b, 2019).

In this study, an RF model evaluated with an episode-
based strategy was developed to predict upcoming FOG. This
model can be adopted by wearable devices to activate an early
intervention to avoid some of the FOG episodes.

MATERIALS AND METHODS

Methodology Overview
The proposed methodology for building a model to predict FOG
based on OED consists of three parts, as shown in Figure 1A: (a)
data collection, (b) optimization of the parameters with the OED,
and (c) verification of the optimized parameters. This article was
focused on optimizing feature extraction parameters with the
OED, and the details included seven steps, as shown in Figure 1B:
(a) experimental setup, (b) data processing, (c) feature extraction,
(d) feature preprocessing, (e) model training, (f) window-based
evaluation, and (g) evaluation results analysis.

Data Collection
The study participants were diagnosed with PD by movement
disorder specialists according to the Movement Disorder Society
(MDS) diagnostic criteria (Postuma et al., 2015). The eligibility
criteria for the participants were a Hoehn–Yahr stage between
2 and 3 in FOG OFF state, not having cognitive dysfunction
according to the Mini-Mental State Examination (MMSE), not
having serious vision or hearing impairment, and not having
any disease affecting walking ability. Participants were excluded
if they had secondary PD causes, such as inflammatory, drug-
induced, vascular, and toxin-induced Parkinsonism. Participants
with other neurodegenerative diseases, such as progressive
supranuclear palsy and multiple system atrophy, were also
excluded. All the participants were familiar with the process
and signed consent forms. Patients with severe PD (Hoehn–
Yahr stage > 3.0) were not included due to safety issues. The
characteristics of the patients are presented in Table 1. This
study was approved by the ethics committee of the Ruijin
Hospital, affiliated with the Shanghai Jiao Tong University
School of Medicine.

Data were collected from 24 participants in a laboratory
setting designed to provoke FOG with a walking protocol,
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FIGURE 1 | Flowchart of the proposed methodology. (A) Main experimental workflow. (B) Details of the parameter optimization process by means of the orthogonal
experimental design (OED). (C) Schematic overview of the positions of the sensors.

which included gait initiation, walking with 360- and 180-degree
turns, walking in straight lines, passing narrow corridors, and
walking through the crowded hospital halls between December
2016 and April 2017 (Mazilu et al., 2015a). Two nurses
accompanied the participants during all the test procedures to
prevent falls. The inertial measurement unit (IMU; BMI160,
Bosch, Germany) generated nine signals sampled at 100 Hz
as output. The nine signals represented the measurements
of triaxial sensors: an accelerometer with sensitivity of 4,096
least significant bit (LSB)/g, a gyroscope with sensitivity of
16.4 LSB/deg/s, and a magnetometer. The data collection system
contained seven wearable IMUs attached to different parts of
the body (Figure 1C). Moreover, the participants underwent
FOG evaluation with the sensors in all procedures. The entire
experiment was recorded on video with an iPhone 6s Plus

TABLE 1 | Characteristics of the included patients.

Male Female p-value

Number (%) 8 (57.14) 6 (42.86) –

Age, years, mean (SD) 71.83 (11.67) 69.20 (5.89) 0.642

Age of Onset, years, mean (SD) 5.00 (2.61) 6.40 (4.34) 0.549

Hoehn–Yahr Stage, N (%)22.53
3 (37.50)
3 (37.50)
2 (25.00)

2 (33.33)
2 (33.33)
2 (33.33)

1.000

MDS–UPDRS score, mean (SD) 51.17 (5.56) 52.00 (7.81) 0.847

FOGQ score, mean (SD) 8.83 (1.17) 8.80 (0.84) 0.957

FOGQ, Freezing of Gait Questionnaire; MDS, movement disorders society; SD,
standard deviation; UPDRS, Unified Parkinson’s Disease Rating Scale.

(A1699, Apple Inc., CA, United States), which was aligned with
the signals on the timeline.

Currently, there is no detailed diagnostic criteria of FOG. To
make it accurate, videos describing FOG in terms of the MDS-
Sponsored Revision of the Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) score were adopted. The FOG episodes
were labeled offline by two independent gait experts who were
blinded with respect to group allocation. If the labels of videos
were inconsistent, the raters discussed labeling the gait as either
FOG or not FOG. In total, 88 non-FOG episodes and 89 FOG
episodes were captured. A FOG gait sequence in a patient video
is shown as an example in Figure 2. The clinicians also labeled the
start of other walking events, i.e., gait initiation, turns, and stops.

Twenty-four patients with FOG volunteered for this study.
However, videos were excluded if the patient was blocked during
recording and if the sensors fell off. Finally, 14 videos were
included. The average inter-rater reliability was 0.928.

Data Preparation
In addition to FOG and normal locomotion, the walking periods
before FOG episodes were considered a third class called preFOG.
It was hypothesized that there was a detectable deterioration
of gait in this phase that precedes FOG (Mazilu et al., 2013).
Different durations of the preFOG episodes were assumed.
PreFOG episodes can be retrieved only through data mining
from segments of data preceding FOG episodes, as shown in
Figure 3A.

The accelerometer signals used in this study had burst outliers
either larger than the 97.5th percentile or smaller than the 2.5th
percentile. These outliers were replaced with the median value
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FIGURE 2 | The event sequence of a video labeled with FOG, preFOG, and normal segments.

FIGURE 3 | (A) Segmentation and pre-freezing of gait (preFOG) labeling. (B) Example of the training and evaluation data. In total, 10 patients’ data were used in
training and 10-fold cross-validation, and four patients’ data were used in testing.

of the whole time series (Xia et al., 2018). The signals were also
detrended by a high-pass filter.

The video and inertial signals were synchronized. The
timestamps of the sensors were shown on the screen and were
recorded in the first frame of the video. The signal data labeled
with FOG were removed. To prepare the data instances for
feature extraction, a sliding window was used to segment the
whole time series into many overlapping data slices. The window
size, which determines the length of the data segment, was fixed
in advance in previous works. For the step size of the sliding
window, it was evident that a smaller value of this parameter can
generate more data instances. The signal data were segmented
into slices by the means, as shown in Figure 3A.

According to statistical and digital signal processing
knowledge and previous research (Zhang, 2017), the information
on the raw signal features is listed in Table 2; in total, 924
(seven IMU sensors× 3D accelerometer and 3D gyroscope× 22
features) features were obtained (Pham et al., 2017). These
features were then used to train a classification model. Due to
the large difference in the scales of the data, the extracted feature
data were standardized for model training.

Experimental Setup
The window size, sliding step length, and preFOG duration
involved in the extraction of features can be optimized to enhance
the classifier’s performance. The window size, sliding step length,
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TABLE 2 | Information on the features extracted from the signal.

Expression Remarks Expression Remarks

F1 = max (x) Maximum value of the signal F12 =
xmax√

1
Ns

∑Ns
i = 1 x(i)2

Crest factor

F2 = min(x) Minimum value of the signal F13 =
x√

1
Ns

∑Ns
i = 1(x(i)−x)2

Reciprocal coefficient of variation

F3 =
1

Ns

∑Ns
i = 1 |x(i)| Mean of the absolute value of the signal F14 =

1
Ns

∑Ns
j = 1 [

x(j)√
1

Ns

∑Ns
i = 1 [x(i)−x]2

]
3

Skewness coefficient

F4 = max (x)−min(x) Signal range F15 =
1

Ns

∑Ns
j = 1 [

x(j)√
1

Ns

∑Ns
i = 1 [x(i)−x]2

]
4

Kurtosis coefficient

F5 =

√
1

Ns

∑Ns
i = 1 x(i)2 Root mean square F16 =

xmax
1

Ns

∑Ns
i = 1 x(i)2 Clearance factor

F6 =
1

Ns

∑Ns
i = 1 x(i) Mean of the signal F17 =

xmax
1

Ns

∑Ns
i = 1 |x(i)|

Impulse factor

F7 =

√
1

Ns

∑Ns
i = 1 (x (i)− x)2 Standard deviation F18 =

1
Ns

∑Ns
i = 1 (1x(i)−1x)4

[
1

Ns

∑Ns
i = 1 (1x(i)−1x)2

]
2 Energy operator

1x 1
Ns

∑Ns
i = 1 1x (i)

if the data point is not an endpoint,
1x (i) x (i)2

− x (i + 1)× x(i − 1)

else,
1x (i1) x (1)2

− x (2)× x (Ns)

1x (Ns) x (Ns)
2
− x (1)× x(Ns − 1)

F8 =
1

Ns

∑Ns
i = 1 (x(i)−x)3

[

√
1

Ns

∑Ns
i = 1 (x(i)−x)2

]

3 Skewness depicts the symmetry of the signal
distribution

F19 =
1

Nfft

∑Nfft
j = 1 X(j) Mean frequency

X(j): amplitude at the corresponding frequency

F9 =
1

Ns

∑Ns
i = 1 (x(i)−x)4

[

√
1

Ns

∑Ns
i = 1 (x(i)−x)2

]

4 Kurtosis depicts the steepness of the signal
distribution

F20 =

∑Nfft
j = 1 f(j)×X(j)∑Nfft

j = 1 X(j)
Center frequency

f (j): frequency
X(j): amplitude at the corresponding frequency

F10 =
1

Ns

∑Ns
i = 1 (x (i)− x)2 Variance of the signal F21 =

√ ∑Nfft
j = 1 f(j)2

×X(j)∑Nfft
j = 1 X(j)

Root mean square of the frequency
f (j): frequency

X (j): amplitude at the corresponding frequency

F11 =

√
1

Ns

∑Ns
i = 1 |x(i)|2

1
Ns

∑Ns
i = 1 |x(i)|

Waveform factor F22 =

√ ∑Nfft
j = 1 (f(j)−fFC)2

×X(j)∑Nfft
j = 1 X(j)

f (j): frequency
X(j): amplitude at the corresponding frequency

fFC: F20

Ns, length of the signal; x, mean of the signal; xmax , maximum signal; Nfft, length of the spectrum signal.

and preFOG duration were based on the sensor’s sampling rate.
Each unit measurement means one sampling point, and the
duration is 10 ms. The feature selection hyperparameters and the
RF classifier were not the focus of this study. The Taguchi OED
and RF were introduced into this study to build the models.

The OED is a type of general fractional factorial design
(Cavazzuti, 2012). It is based on a design matrix proposed
by Genichi Taguchi and allows the consideration of a selected
subset of combinations of multiple factors at multiple levels.
Taguchi orthogonal arrays (OAs) are balanced to ensure that
all levels of all factors are considered equally. For this reason,
the factors can be evaluated independently of each other
despite the fractionality of the design. In the Taguchi OA
design, only the main effects and two-factor interactions are
considered, and higher-order interactions are assumed to be
non-existent. In addition, designers are asked to identify (based
on their knowledge of the subject matter) which interactions
might be significant before conducting the experiment. The full
factorial design of the three factors (window size, step length,
and preFOG duration) with four levels consisted of 64 runs,
while an L16(43) OED scheme was chosen based on the OED.
The different levels of window size, step length, and preFOG
duration were chosen according to previous works. The details
of the L16(43) scheme are shown in Table 3 and visualized
in Figure 4.

RF is an ensemble ML algorithm that combines a number
of classification or regression trees and is based on the
bagging technique. The RF algorithm is a powerful model

TABLE 3 | Detailed orthogonal experimental design (OED) for optimizing the
feature extraction parameters.

DOE name ID Window size Step PreFOG duration

T01 1 128 5 150

T02 2 128 10 250

T03 3 128 20 500

T04 4 128 30 600

T05 5 256 5 250

T06 6 256 10 150

T07 7 256 20 600

T08 8 256 30 500

T09 9 400 5 500

T10 10 400 10 600

T11 11 400 20 150

T12 12 400 30 250

T13 13 500 5 600

T14 14 500 10 500

T15 15 500 20 250

T16 16 500 30 150

DOE, Design of experiment; preFOG, pre-freezing of gait.
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FIGURE 4 | L16(43) orthogonal experimental design (OED).

and is used in many studies for the classification of FOG
and other activity-related problems (Orphanidou et al., 2018).
Common hyperparameters determine the accuracy of the RF
classifier, such as the number of estimators (n_estimators),
the maximum number or ratio of features (max_features), the
maximum depth (max_depth), the minimum number of samples
(min_samples_split), and the minimum number of samples
needed by each leaf node (min_samples_leaf).

A set of parameters for feature extraction was fetched line by
line from Table 3, and then the data were prepared according to
the procedures shown in Figure 1B. The RF model was trained
with the feature data and evaluated with the window-based
strategy, and the evaluation results were stored in a table. The
feature extraction parameters were optimized, and their main
effects and interactions were analyzed.

After analysis, the optimized parameters were verified. The
feature data were prepared according to the procedure described

in the “Data Preparation” section with the optimized feature
extraction parameters. A subset of features was selected to train
the RF model according to the work by Zhang and Sawchuk
(2011). The top-K method generated feature subsets, and the best
subset was selected out according to the F1 score and kappa value.
The prepared data were used to train the RF model, which was
then evaluated with the episode-based strategy.

Evaluation and Metrics
The preFOG prediction model was evaluated using leave-one-
patient-out cross-validation, which meant a patient-independent
evaluation. The data were split into a training set and a test
set. The RF classifier was trained on feature data selected from
N − 1 patients in the training set and evaluated with the data
from the remaining patient, and some patients’ data were saved
as the test set to avoid overfitting, as shown in Figure 3B.
A window-based strategy was used for parameter optimization,
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and an episode-based strategy was used for verification of the
optimized parameters.

The F1 score was adopted to evaluate the performance of the
ML model with the setting configuration in the experiment. True
positives were defined as gaits correctly classified by our method.
False positives were defined as gaits that were identified as a
certain class type but were found to be false from the video record.
False negatives were gaits that were not identified as a certain
class type, but the video record agreed with that class type. True
negatives were those gaits for which both the applied method and
the video agreed on the classification of not a certain class type
(Djurić-Jovićić et al., 2013).

F1 − score =
2True Positives

2TruePositives+ FalseNegatives+ FalsePositives

Statistics Analysis
The Python (version 3.6.4) package scikit-learn (version 0.19.2)
was used for the ML step. A trial version of JMP (version 13.2.0)
and Minitab (version 18) were used to design the experimental
scheme and to analyze the collected data.

The associated p-values of large effects are often very small.
Visualizing these small values graphically can be challenging.
When transformed to the LogWorth [−log10(p-value)] scale,
highly significant p-values have large LogWorth values and non-
significant p-values have small LogWorth values. A LogWorth
of zero corresponds to a non-significant p-value of 1. Any
LogWorth above two corresponds to a p-value less than 0.01.

Interaction effects occur when the effect of one variable
depends on the value of another variable. Interaction effects
are common in regression analysis, ANOVA, and designed
experiments. In this paper, “window size∗preFOG duration”
represents the interaction between the window size and
preFOG duration.

RESULTS

The parameters related to feature extraction included the window
size, sliding step length, and preFOG duration. The preFOG
duration (LogWorth: 2.364, p-value < 0.01) had the largest
impact on the kappa value, followed by the window size
(Figure 5). The window size (LogWorth: 3.216, p-value < 0.01)
had the largest impact on the F1 score followed by the preFOG

duration (Figure 6). Thus, there was a certain interaction
between the window size and the preFOG duration defined in the
experiment because of the statistically significant effect from the
source item “window size∗preFOG duration” (Figure 6).

Generally, the increase in the window size had an obvious
positive effect on the F1 score, the increase in preFOG duration
had an obvious negative effect on the F1 score, and the sliding step
length did not affect our experiments (Figure 7). After analysis
in the Minitab, the best combination of parameters in feature
extraction was obtained and represented by a tuple (window size,
step, and preFOG duration): (500, 20, and 250).

As the feature dimension is relatively high, this work also
selects subsets of features and obtains the most important
set of features {“F03,” “F05,” “F07,” “F09,” “F10,” “F11,” “F12,”
“F13,” “F14,” “F15,” “F16,” and “F17”}. The OED was used
to optimize the hyperparameters of the RF classifier. The
optimal combination of parameters was presented as a tuple
(n_estimators, max_features, max_depth, min_samples_split,
and min_samples_leaf): (800, 0.1, 4, 4, and 4). In this tuple,
max_features is the maximum ratio of features that can be
used in a single subtree of the RF; “0.1” means a maximum of
924 × 0.1 = 92 features can be used.

With the optimized parameters, the RF model was trained
and evaluated with an episode-based strategy. Under application
conditions, FOG can be recorded as an episode, but normal gait
cannot be evaluated as an episode. Therefore, we chose the false-
positive rate, hit rate, and mean prediction time (MPT) for model
evaluation. The false-positive rate, hit rate, and MPT were used
as the indexes for evaluation of the prediction system. The false-
positive rate increased with the hit rate. The false-positive rate,
hit rate, and MPT were 27%, 68%, and 2.99 s, respectively.

DISCUSSION

Our key assumption was that FOG is not a sudden episode.
In the period before FOG occurs, the patient’s kinematic
features change. Based on this assumption, a prediction model
was constructed, and the OED was used to optimize the
hyperparameters to improve efficiency. To the best of our
knowledge, this is the first time that the OED has been
used for the ML-based prediction of FOG in PD. The
interactions among the feature extraction parameters and the

FIGURE 5 | Summary of the effects of the feature extraction parameters on the kappa value. The p-values show the statistical significance of the association
between the parameters and the kappa value. *Multiplication.
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FIGURE 6 | Summary of the effects of the feature extraction parameters on the F1 score. The p-values show the statistical significance of the association between
the parameters and the F1 score. *Multiplication.

FIGURE 7 | Main effect on the parameters involved in feature extraction on the F1 score.

performance were first analyzed. The OED makes analyzing
the effects of hyperparameters and finding the optimal ones
more cost effective.

The OED was introduced to acquire optimized parameters
involved in feature extraction. Having implemented the
experimental design, the interactions were analyzed, the
optimized parameters were obtained, and the efficiency of the
test was improved. The existence of interactions hinted that
it was necessary to tune the parameters simultaneously using
combinatorial experiments and not a one-factor experimental
design. Mikos et al. (2017) elucidated how the window size affects
the MI between the feature and the FOG classification, which is
a measure of the correlation between variables, and their works
showed optimal window lengths for FOG classification vary

across feature types. Mazilu et al. (2013) illustrated the effects
of preFOG duration on the prediction and illuminated gait
parameter changes prior to FOG (Ferster et al., 2015), but they
still used the empirical and a priori preFOG duration. Sixteen
runs from the OED were used to analyze the effects of parameters
such as the window size, preFOG duration, and sliding window
step length on the F1 score for preFOG identification, while the
full factorial design of three factors with four levels required 64
runs. The workload was low, and the optimal parameters were
obtained. The optimized preFOG duration and window size also
implied the length of the preFOG period. With the improvement
in the model training efficiency, more models can be trained
with the same data scale and computing resources. Therefore,
training personalized FOG prediction models for different
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individuals becomes possible. This is a possible direction to solve
the problem of the poor generalizability of the model to different
patients in real-world applications.

The classifier was evaluated by using a leave-one-patient-
out, episode-based strategy and obtained an MPT of 2.99 s
for FOG prediction with a false-positive rate of 27% and a hit
rate of 68%. The performance of the model was not excellent
in the patient-independent evaluation but was still comparable
to previous works. As in the previous work by Mazilu et al.
(2013) the FOG prediction performance was highly patient-
dependent. The optimal parameters were not suitable for all
patients, although our work solved these problems to some
extent. We also developed a model with a patient-dependent
method and obtained high performance with an F1 score of
0.89. In many ML models, the training and test data came from
different patients, the identically distributed assumption is often
violated, leading to poor performance. When the data from a
patient were split into training and test data, the two datasets were
often highly interdependent, leading to a good performance, but
the model was overfit.

There were some limitations to our research. First, we did
not include patients with a Hoehn–Yahr score greater than
three since most of these patients have difficulty moving and
are at risk of falling. The results might be affected if severe
patients were included. Second, our method should be evaluated
with the data of PD patients without FOG who were not
included in our study. Third, the number of patients included
in our study is small, weakening the experimental efficacy
and supporting evidence. Future studies will be dedicated to
improving the performance of the FOG prediction system by
eliminating these defects.

Overall, a prediction classifier beneficial for early
interventions for FOG was obtained. The OED was
helpful in optimizing the hyperparameters. Larger-scale
studies are needed.
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