AUTHOR=Coplan Jeremy D. , George Roza , Syed Shariful A. , Rozenboym Annalam V. , Tang Jean E. , Fulton Sasha L. , Perera Tarique D. TITLE=Early Life Stress and the Fate of Kynurenine Pathway Metabolites JOURNAL=Frontiers in Human Neuroscience VOLUME=15 YEAR=2021 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2021.636144 DOI=10.3389/fnhum.2021.636144 ISSN=1662-5161 ABSTRACT=
Early life stress (ELS) precedes alterations to neuro-immune activation, which may mediate an increased risk for stress-related psychiatric disorders, potentially through alterations of central kynurenine pathway (KP) metabolites, the latter being relatively unexplored. We hypothesized that ELS in a non-human primate model would lead to a reduction of neuroprotective and increases of neurotoxic KP metabolites. Twelve adult female bonnet macaques reared under conditions of maternal variable foraging demand (VFD) were compared to 27 age- and weight-matched non-VFD-exposed female controls. Baseline behavioral observations of social affiliation were taken over a 12-week period followed by the first cerebrospinal fluid (CSF) sample. Subjects were then either exposed to a 12-week repeated separation paradigm (RSP) or assigned to a “no-RSP” condition followed by a second CSF. We used high-performance liquid chromatography for kynurenine (KYN), tryptophan, 5-hydroxyindoleacetic acid, kynurenic acid (KYNA), and anthranilic acid (ANTH) as a proxy for quinolinic acid determination. At baseline, social affiliation scores were reduced in VFD-reared versus control subjects. CSF log KYNA and log KYNA/KYN ratio were lower in VFD-reared versus control subjects. CSF log KYNA/KYN was positively correlated with CSF log ANTH in VFD only (