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Introduction: Brain network modularity is a principle that quantifies the degree to which
functional brain networks are divided into subnetworks. Higher modularity reflects a
greater number of within-module connections and fewer connections between modules,
and a highly modular brain is often interpreted as a brain that contains highly specialized
brain networks with less integration between networks. Recent work in younger and
older adults has demonstrated that individual differences in brain network modularity
at baseline can predict improvements in performance after cognitive and physical
interventions. The use of brain network modularity as a predictor of training outcomes
has not yet been examined in children.

Method: In the present study, we examined the relationship between baseline brain
network modularity and changes (post-intervention performance minus pre-intervention
performance) in cognitive and academic performance in 8- to 9-year-old children who
participated in an after-school physical activity intervention for 9 months (N = 78) as well
as in children in a wait-list control group (N = 72).

Results: In children involved in the after-school physical activity intervention, higher
modularity of brain networks at baseline predicted greater improvements in cognitive
performance for tasks of executive function, cognitive efficiency, and mathematics
achievement. There were no associations between baseline brain network modularity
and performance changes in the wait-list control group.
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Discussion: Our study has implications for biomarkers of cognitive plasticity in children.
Understanding predictors of cognitive performance and academic progress during child
development may facilitate the effectiveness of interventions aimed to improve cognitive
and brain health.

Keywords: academic achievement, brain networks, brain network modularity, children, cognition, physical activity,
scholastic performance

INTRODUCTION

Cognitive processes such as executive functions (inhibition,
working memory, mental flexibility), attention, and memory
are known to play a role in successful goal-directed behavior
and scholastic performance (St. Clair-Thompson andGathercole,
2006; Bull et al., 2008). School performance can predict success
in later years (Kuncel et al., 2004; Kuncel and Hezlett, 2007), and
academic placement, and educational program effectiveness, and
school funding are often determined by children’s performance
on standardized academic tests. Thus, it is important to
determine biomarkers and correlates of academic progress as
well as lifestyle factors that positively influence cognitive function
and scholastic performance.

Scientists have developed interventions aimed to improve
executive function and scholastic performance during childhood
and across the lifespan. As the brain develops structurally and
functionally during childhood, this period of neurodevelopment
may be particularly sensitive to lifestyle factors and intervention.
For example, participation in physical activity is a promising
intervention to improve cognitive and brain health during
childhood and across the lifespan (Hillman et al., 2014; Donnelly
et al., 2016; Kramer and Colcombe, 2018; Chaddock-Heyman
et al., 2019). In particular, participation in physical activity
and higher levels of aerobic fitness is positively related to
cognitive function, scholastic performance, and brain health
in preadolescent children (for a review see Chaddock-Heyman
et al., 2014). Physically active and higher fit children outperform
less active and lower fit children on cognitive and scholastic tasks,
and the performance differences are paralleled by differences in
brain structure and brain function (for reviews see Chaddock-
Heyman et al., 2014; Donnelly et al., 2016).

Recently, scientists have begun to examine whether baseline
(pre-intervention) brain properties, such as properties of
brain networks, can predict improvements in performance
with physical and cognitive training interventions. Brain
networks are said to exhibit a modular organization, such
that they are comprised of modules or sub-networks. The
brain can be segregated into network modules based on
connectivity patterns among individual brain regions, or nodes.
Network modules reflect groupings of nodes that share high
connectivity among each other. Using a mathematical approach
called graph theory, a modularity metric is calculated based
on the degree of within-module connections compared to
between-network connections (Newman and Girvan, 2004).
Higher modularity reflects a greater number of within-
module connections and fewer connections between modules.
A highly modular brain can be interpreted as a brain that

contains highly specialized brain networks with less integration
between networks.

Individual differences in baseline brain network modularity,
measured during a resting-state functional MRI scan, have been
found to predict improvements (i.e., changes) in performance
after cognitive and physical interventions (Arnemann et al.,
2015; Gallen et al., 2016; Baniqued et al., 2018, 2019; for review
see Gallen and D’Esposito, 2019). In one study (Gallen et al.,
2016), healthy older adults with more modular brain networks
at baseline showed greater improvements on tasks involving the
synthesis of complex information after cognitive training, with
no predictive power of modularity in a control group (Gallen
et al., 2016). In addition, in young adults involved in cognitive
training with casual video games that engaged reasoning and
working memory processes, baseline network modularity was
positively associated with training-related improvements on
untrained tasks, with no associations in participants who did
not show training gains (Baniqued et al., 2019). Similarly, in
patients with traumatic brain injury (TBI), higher brain network
modularity at baseline was associated with greater improvements
on tasks of executive function after goal-oriented attention
and self-regulation training (Arnemann et al., 2015). Finally,
Baniqued et al. (2018) examined whether baseline brain network
modularity predicted cognitive improvements after a physical
activity intervention in healthy older adults. In older adults
who showed gains in aerobic fitness and cognitive function,
higher brain modularity at baseline predicted greater gains in
executive function from pre-intervention to post-intervention
(Baniqued et al., 2018). Together, these studies suggest that brain
modularity may hold predictable power across populations and
interventions aimed at enhancing cognition. In the four studies
in older adults, younger adults, and TBI patients, individuals with
a more modular brain network organization before training were
more likely to benefit from cognitive or physical intervention.

To our knowledge, the use of brain network modularity as
a predictor of training outcomes has not yet been examined
in children. In the present study, we examined the relationship
between baseline (pre-intervention) brain network modularity
and changes (post-intervention minus pre-intervention) in
cognitive and academic performance in 8- to 9-year-old children
who participated in an after-school physical activity intervention
for 9 months compared to children randomized to a wait-list
control group. We hypothesized that children in the physical
activity intervention with higher baseline modularity would
show greater gains in cognitive and scholastic performance
compared to those with lower modularity. That is, children in the
intervention may be able to better capitalize on higher levels of
brain modularity to derive greater benefit from physical activity
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intervention. We did not have any specific predictions about
baseline brain network modularity and performance changes in
the wait-list control group.

MATERIALS AND METHODS

Children were recruited from schools in East-Central Illinois.
Eligible participants were required to: (1) be 7- to 9-
years-old; (2) have an absence of school-related learning
disabilities (i.e., individual education plan related to learning),
adverse health conditions, physical incapacities, or neurological
disorders; (3) qualify as prepubescent (Tanner pubertal timing
score; Taylor et al., 2001); (4) report no use of medications
that influence central nervous system function; (5) demonstrate
right-handedness as measured by the Edinburgh Handedness
Questionnaire (Oldfield, 1971); (6) complete a mockMRI session
to screen for claustrophobia in an MRI machine; and (7) sign
an informed assent approved by the Institutional Review Board
of the University of Illinois at Urbana-Champaign. A legal
guardian also provided written informed consent following
the Institutional Review Board of the University of Illinois
at Urbana-Champaign. The guardian was asked to provide
information regarding participants’ socioeconomic status (SES),
as determined by: (1) participation in the free or reduced-price
lunch program at school; (2) the highest level of education
obtained by the mother and father; and (3) number of parents
who worked full-time (Birnbaum et al., 2002). Participants
also completed the Woodcock–Johnson III paper-and-pencil
test to assess intelligence quotient (IQ) and cognitive function
(Woodcock, 1997).

The Institutional Review Board of the University of Illinois
at Urbana-Champaign approved the present study. MRI scans
were obtained at the Biomedical Imaging Center of the Beckman
Institute of the University of Illinois, both pre-intervention and
post-intervention (The post-intervention scans are not included
in the present study). Children completed the cognitive tasks
and scholastic performance assessment on a separate day, both
pre-intervention and post-intervention, and testing occurred in a
quiet, sound-attenuated room in a one-on-one setting. Children
were compensated $15/h for MRI testing and $10/h for the
neuropsychological testing.

Please see Figure 1 for an illustration of the study design.
Five hundred ninety children were assessed for eligibility
for the FITKids2 study, and 198 were excluded due to no
response (N = 37), loss of interest (N = 43), or failure of the
inclusion criteria (N = 118). Three hundred ninety-two children
passed prescreening, 92 children declined participation and
28 children had incomplete baseline data for primary outcomes.
Two-hundred and seventy-two children were randomized into
the FITKids2 physical activity intervention, and 188 children
completed the resting state MRI scan at baseline (pre-
intervention). Twenty-eight children were excluded following
quality control checks of functional scans. Functional scans were
excluded if more than 20% of volumes exhibited framewise
displacement (FD) above 0.2 mm or if mean relative motion
was greater than 0.5 mm. Cognitive and modularity measures
greater than or less than three standard deviations from themean

were also excluded (N = 2 outlier exclusions for baseline brain
network modularity, N = 1 for Cognitive Efficiency, N = 2 for
Thinking Ability, N = 3 for Verbal Ability, N = 1 for Reading;
results remain the samewhen outlier data points were included in
the sample).

The present study included a total of 150 children–78 children
in the physical activity intervention (45 girls and 33 boys,
mean age = 8.7 years, age range 7.8–9.9 years, grades 2–4) and
72 children in the wait-list control group (37 girls and 34 boys,
mean age = 8.6 years, age range 7.9–9.9 years, grades 2–4). See
Table 1 for participant information.

Woodcock–Johnson Battery of Cognitive
Tasks
Children completed subtests from the Woodcock–Johnson
III Tests of Cognitive Abilities (WJ III; Woodcock, 1997).
Individual cognitive tests were administered to participants, and
combinations of the individual tests form clusters that represent
general categories of broad cognitive abilities. The cognitive
performance clusters include Executive Processes, Thinking
Ability, Cognitive Efficiency, and Verbal Ability.

The cognitive cluster of Executive Processes includes tasks
of cognitive flexibility and rule switching (Concept Formation),
sequential reasoning and spatial scanning (Planning), and
attention and interference control (Pair Cancelation). During
the Concept Formation task, participants were asked to identify
rules and concepts that created geometric shapes. The Concept
Formation task provides a measure of cognitive flexibility,
rule application, and rule switching. During the Planning task,
participants were asked to trace unique shapes without retracing
or picking up the pencil. The Planning task provides a measure
of sequential reasoning, spatial scanning, and speed in visually
surveying a spatial field. During the Pair Cancellation task,
participants were asked to circle two target shapes when the
shapes appeared in a sequence (for 3 min). The Pair Cancellation
task measures attention, concentration, and interference control.

The cognitive cluster of Thinking Ability represents
fluid reasoning, visual-spatial thinking, and processing of
non-language information via short term memory (via
performance on tasks of Visual Auditory Learning, Spatial
Relations, Sound Blending, and Concept Formation). During
the Visual Auditory Learning task, participants were orally
presented words that were associated with visual symbols and
then asked to translate the visual symbols. The Visual Auditory
Learning task measures recall of verbal labels for visual symbols.
During the Spatial Relations task, participants were asked to
rotate a shape via imagination and/or select the components of
shape. The Spatial Relations task measures the ability to visualize
and adjust spatial shapes and forms. During the Sound Blending
task, participants were asked to name a complete word after
listening to the individual syllables and phonemes that form
the word, thereby providing a measure of phonetic coding. The
Thinking Ability cluster also includes task performance on the
task of Concept Formation.

The cognitive cluster of Cognitive Efficiency represents
perceptual speed, short term memory, and the ability to
store and recode information (via performance on tasks of
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FIGURE 1 | Study design.

Visual Matching and Numbers Reversing). During the Visual
Matching task, participants must quickly find and circle
two identical numbers in a row of six numbers in 3 min,
thereby providing a measure of perceptual speed. During the
Numbers Reversed task, participants were asked to repeat a
span of random numbers in reverse order, thus providing a
measure of the ability to temporarily store and recode orally
presented information.

The cognitive cluster of Verbal Ability is reflected by
performance on a task of Verbal Comprehension, which
consists of picture vocabulary, synonyms, antonyms, and
verbal analogies.

Scholastic Performance
The scholastic performance was assessed with subtests from
the Kaufman Test of Educational Achievement, Second
Edition (Kaufman and Kaufman, 2004). Standardized scores
(Mean = 100, SD = 15) for reading (word recognition and
reading comprehension) and mathematics (math concepts and
applications and math computation) were determined. Kaufman
Test of Educational Achievement, Second Edition subtests have
very high internal consistencies, inter-rater reliabilities, and
internal validity (r = 0.91–0.97).

Reading achievement was determined by performance
on tasks of word recognition and reading comprehension.
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Specifically, the word recognition subtest involved pronouncing
words of gradually increasing difficulty. The reading
comprehension subtest involved reading words and pointing to
the corresponding picture, acting out the action of words, and
answering questions about reading passages.

Mathematics achievement was determined by performance
on tasks of math concepts, math applications, and math
computation. The math concepts and application subtest
consisted of basic math concepts such as comparing numbers
and rounding numbers, as well as problems requiring algebra,
calculus, and trigonometry (88 items). The math computation
subtest was a paper-and-pencil test involving the addition,
subtraction, multiplication, and division of whole numbers and
fractions (72 items).

Aerobic Fitness Testing
Children completed a VO2max test to assess aerobic fitness. The
aerobic fitness of each child was measured as maximal oxygen
consumption (VO2max) during a graded exercise test (GXT). The
GXT employed a modified Balke Protocol and was administered
on a LifeFitness 92T motor-driven treadmill (LifeFitness,
Schiller Park, IL, USA) with expired gases analyzed using a
TrueOne2400 Metabolic Measurement System (ParvoMedics,
Sandy, Utah). Children walked and/or ran on a treadmill at a
constant speed with increasing grade increments of 2.5% every
2 min until volitional exhaustion occurred.

Oxygen consumption was measured using a computerized
indirect calorimetry system (ParvoMedics True Max 2400) with
averages for VO2 and respiratory exchange ratio (RER) assessed
every 20 s. A polar heart rate (HR) monitor (Polar WearLink +
31; Polar Electro, Finland) was used to measure HR throughout
the test, and ratings of perceived exertion (RPE) were assessed
every 2 min using the children’s OMNI scale (Utter et al., 2002).
Maximal oxygen consumption was expressed in ml/kg/min and
VO2 max was based upon maximal effort as evidenced by: (1) a
plateau in oxygen consumption corresponding to an increase
of less than 2 ml/kg/min despite an increase in workload; (2) a
peak HR ≥185 beats per minute (American College of Sports
Medicine, 2006) and an HR plateau (Freedson and Goodman,
1993); (3) RER ≥1.0 (Bar-Or, 1983); and/or (4) a score on the
children’s OMNI RPE scale ≥8 (Utter et al., 2002).

Physical Activity Training Intervention and
Wait List Control Group
The physical activity intervention occurred for 2 h after
each school day from September until May for 150 days of
the 170-day school year. The program, Fitness Improves
Thinking in Kids 2 (FITKids2; NICHD grant HD069381,
www.clinicaltrials.gov, Identifier: NCT01619826) was based
on the Child and Adolescent Trial for Cardiovascular Health
(CATCH) curriculum (McKenzie et al., 1994) and aimed at
improving aerobic fitness through engagement in a variety
of developmentally appropriate physical activities. The
environment was non-competitive and integrated activities
such as fitness activities, motor skill practice, and organized
games similar to tag (Castelli et al., 2011).

Within a daily lesson, children participated in moderate to
vigorous physical activity (recorded by E600 Polar HR monitors;
Polar Electro, Finland, and Accusplit Eagle 170 pedometers,
San Jose, CA, USA) for 30–35 sustained minutes and then
intermittently up to 90 min, thus exceeding the national physical
activity guideline of 60+ minutes of moderate to vigorous
physical activity per day (Centers for Disease Control and
Prevention, 2012; U.S. Department of Health and Human
Services, 2018). Overall, children spent ∼50% of the time during
the intervention engaged in moderate to vigorous physical
activity (i.e., >70% of HR max, based on pre-test maximal HR
from an incremental exercise test).

Each lesson began with the children completing stations
that focused on a specific health-related fitness component
(e.g., cardiorespiratory endurance, muscular strength). The
activities were aerobically demanding and designed to encourage
children to improve on previous performances by gradually
increasing the number of repetitions or amount of resistance
at a station. Although the stations were organized by health-
related fitness components, each activity also required a
motor or manipulative skill (e.g., dribbling a basketball
around cones for 30-s, performing a sit-up, throwing a ball
overhead). After the sustained participation and active rest
rotations, the children consumed a healthy snack and were
introduced to a themed educational component related to
health promotion (e.g., goal setting, self-management). Each
lesson concluded with the children participating in non-
elimination, small group games, and activities such as dance
or sports activities with modified rules selected from the
CATCH curriculum. On the weekends, the children were
encouraged to continue their participation in physical activity
with their families, and physical activity worksheets were
utilized during school holidays to log continued engagement.
Average attendance across the 9-month intervention was 83.2%
(SD = 14.12%).

The wait-list control group completed all facets of the
baseline and post-intervention similar to those children who
were randomized into the after-school physical activity program.
As an incentive to stay in the study, children in the wait-list
control group were allowed to participate in the physical activity
program during the following school year (without involvement
in any testing).

NEUROIMAGING METHODS

Imaging Data Acquisition
T2*-weighted resting state images were acquired with a fast
echo-planar imaging (EPI) sequence with blood-oxygen-level-
dependent (BOLD) contrast [TA (acquisition time) = 4 min
6 s, TR = 2 s, TE = 25 ms, flip angle = 90◦, 36
3.0 mm-thick slices acquired in ascending order, Grappa
acceleration factor = 2, 92 × 92 matrix resolution, voxel size
2.6 × 2.6 × 3.0]. Participants were asked to lay still with eyes
closed during the resting state scan.

To assist with registration, high-resolution structural MR
scans were acquired using a 3D MPRAGE (Magnetization
Prepared Rapid Gradient Echo) T1-weighted sequence with
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0.9 mm isotropic resolution [TR = 1,900 ms; TE = 2.32 ms;
TI = 900 ms (repetition/echo/inversion times)]. All images were
collected on a Siemens Magnetom Trio 3T whole-body MRI
scanner with a 12-channel receiver head coil (Siemens Medical
Solutions; Erlangen, Germany).

Imaging Data Analysis
Preprocessing
All imaging processing and analyses were carried out with a script
library containing tools from FSL 5.0.4 (Functional Magnetic
Resonance Imaging of the Brain’s Software Library1), AFNI2,
FreeSurfer3, and MATLAB (The MathWorks, Natick, MA, USA;
Voss et al., 2016; Weng et al., 2017).

For the resting-state fMRI data, a six-degree-of-freedom
rigid-body head motion correction was applied to the fMRI data
via AFNI’s 3dvolreg function, which produced six parameters of
head motion (root-mean-squares of translational and rotational
movement: X, Y, Z, pitch, roll, and yaw directions) for
subsequent regression of spurious variance. Non-brain tissue
was removed using BET, and spatially smoothing using a
6.0 mm three-dimensional Gaussian kernel of full-width at
half-maximum was applied.

Then, after normalizing each global 4D dataset by the median
intensity, we used an ICA-based method for further cleaning
of motion-related artifacts (ICA-AROMA; Pruim et al., 2015).
For baseline (pre-intervention) scans, ICA-AROMA yielded
28.5 ± 4.8 total independent components from the data, and
it classified 16.7 ± 5.0 components as motion-related artifacts
which were regressed out of the data (58.1 ± 12.8% of total
components). ICA-AROMA removes motion-related variance
from the BOLD data, and denoised volumes retain data from all
time points.

Next, the denoised data were temporally filtered using AFNI’s
3dBandpass to ensure that the fMRI data fell within the frequency
band of 0.008 < f < 0.08 Hz. This helps reduce unwanted noise
such as high-frequency physiological signals (e.g., cardiac pulse)
and low-frequency scanner drift. The frequency band was chosen
to best represent the spontaneous, low-frequency fluctuation of
the BOLD fMRI signal in the brain (Leopold et al., 2003; Salvador
et al., 2005).

Following temporal filtering, the mean time series was
extracted from three sources of non- neuronal variance: white
matter signal from a region in white matter structure, the
cerebrospinal fluid signal from a region in the lateral ventricle,
and the global signal derived from a whole-brain mask.
These nuisance signals were used as covariates to control for
artifacts in the brain that may confound functional connectivity
outcomes. With these three nuisance signals, the six head motion
parameters obtained from the rigid body motion correction
were band-passed with the same temporal filter applied to the
fMRI data and included as nuisance regressors (Hallquist et al.,
2013). Together, the nine band-passed nuisance regressors (white
matter, CSF, global, and motion parameters) were entered into

1http://www.fmrib.ox.ac.uk/fsl
2http://afni.nimh.nih.gov/afni
3http://surfer.nmr.mgh.harvard.edu

a multiple regression as independent variables predicting the
resting-state fMRI data as a dependent variable using FSL’s
FEAT tool.

Individual EPIs were registered to high-resolution structural
T1 space using the boundary-based registration (BBR) algorithm
(Greve and Fischl, 2009). First, high-resolution structural images
were skull-stripped using FSL’s Brain Extraction Technique
(BET) algorithm (Smith, 2002). Each skull-stripped anatomical
image was visually inspected for errors. Then, registration of the
EPIs from individual high-resolution structural space to standard
MNI space was accomplished by FNIRT nonlinear registration
with the default 10 mm warp resolution (Andersson et al.,
2007a,b). The two resulting transformations were concatenated
and then applied to the original functional image to create a
functional image in standard MNI space; a reverse transform
was used to register the seeds from standard MNI space to each
participant’s native functional space.

Network Modularity Analysis
Our primary aim was to characterize modularity, a brain
network measure that compares the number of connections
within modules to the number of connections between modules.
Modules were identified in a data-driven fashion using
Newman’s spectral community detection (Newman, 2006). This
approach identifies the optimal modular partition for each
subject at each connection threshold.

For each participant, the preprocessed resting-state fMRI
data was parcellated into 400 ROIs based on the Schaefer
2018 atlas (Schaefer et al., 2018). Then a 400 × 400 correlation
matrix was generated by correlating the time-series between
every possible pair of ROIs using Pearson’s coefficient and
applying a Fisher z-transformation. Following previous reports,
the resulting correlationmatrices were thresholded and binarized
over a range of connection density thresholds (2–10% at 2%
increments; Power et al., 2011, 2012; Gallen et al., 2016; Baniqued
et al., 2018, 2019). Modularity was calculated from unweighted
and undirected brain graphs using themodularity_und tool from
the Brain Connectivity Toolbox4. The middle 6% threshold was
used for our primary analyses, and we verified the effects at the
other thresholds.

Statistical Analysis
A 2 (Group: intervention, wait-list) × 2 (Time: baseline, post-
intervention) repeated measures analysis of variance (ANOVA)
was conducted to explore the effect of time and the physical
activity intervention on each cognitive outcome and aerobic
fitness. Separate repeated-measures ANOVAs was conducted
for each cognitive outcome. The repeated measures ANOVAs
were conducted to confirm that cognitive performance improved
from pre-intervention to post-intervention in our child sample,
and to test whether the physical activity intervention had a
greater effect on cognitive performance and aerobic fitness
compared to the wait-list control group (a group of typically
developing children over 9months). Nevertheless, themain focus
of the manuscript was to understand whether brain network

4https://sites.google.com/site/bctnet/measures
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modularity at baseline predicted intervention-related changes
(improvements) in cognitive and scholastic performance.

Given our hypotheses, linear regressions were employed
to test associations between brain modularity at baseline
(pre-intervention) and change in cognitive performance and
scholastic performance. Separate regressions were performed for
children assigned to the physical activity intervention group
and children assigned to the wait-list control group. Cognitive
performance change scores were computed as the difference
in post-intervention and pre-intervention (or baseline) scores
for each participant. T-scores and standardized betas (β) are
presented. The alpha level for all tests was set at p < 0.05. 95%
confidence intervals (CI) were reported.

RESULTS

Brain network modularity at baseline was not significantly
associated with age (r = −0.007, p = 0.93), sex (r = 0.004,
p = 0.959), SES (r = 0.022, p = 0.79), IQ (r = −0.001, p = 0.991),
pubertal timing (r = 0.027, p = 0.745), aerobic fitness (VO2max;
r = 0.008, p = 0.922), or baseline performance for any cognitive
outcomes (all p> 0.17).

Changes in Aerobic Fitness, Cognitive
Performance, and Scholastic Performance
Across Time and Intervention
To begin, we explored the effects of time and the physical activity
intervention on aerobic fitness and cognitive outcomes. There
was no main effect of Time (p = 0.848) or Group × Time
interaction (p = 0.961) for aerobic fitness.

There was a main effect of Time for the cognitive
outcomes, with children in the physical activity group and
wait-list control group showing improvements in cognitive
and scholastic performance from pre-intervention (baseline) to
post-intervention, as predicted (except for reading achievement;
Table 1; Main effects of Time: Executive Processes: F = 36.441,
p < 0.001; Cognitive Efficiency: F = 23.764, p < 0.001; Thinking

Ability: F = 35.564, p< 0.001; Verbal Ability: F = 7.595, p = 0.007;
Mathematics: F = 9.022, p = 0.003; Reading: F = 2.566, p = 0.111).

The Group (physical activity intervention, wait-list
control) × Time (baseline, post-intervention) interaction
did not reach significance for any of the cognitive outcomes,
which suggests that the physical activity group did not show
significantly greater gains in performance than the control group
(Group × Time interactions: Executive Processes: F = 0.811,
p = 0.369; Cognitive Efficiency: F = 1.969, p = 0.163; Thinking
Ability: F = 0.319, p = 0.573; Verbal Ability: F = 1.340, p = 0.249;
Mathematics: F = 0.136, p = 0.712; Reading: F = 2.211, p = 0.139).

Because of our a priori hypotheses predicting associations
between baseline brain network modularity and gains in
cognitive performance with an intervention, we explored
associations between baseline brain network modularity and
cognitive progress (change) by group.

Baseline Modularity and Change in
Cognitive Performance Clusters via
Woodcock–Johnson
In children involved in the 9-month after-school physical activity
intervention, higher brain network modularity at baseline was
positively associated with a change in Executive Processes
(β = 0.260, t = 2.328, p = 0.023,N = 77; CI: 0.0374366, 0.4817229;
Figure 2).

In addition, in children in the physical activity group, higher
brain network modularity at baseline was positively associated
with a change in Cognitive Efficiency (β = 0.390, t = 3.647,
p < 0.001, N = 76, CI: 0.1770542, 0.6035671; Figure 3). There
were no significant associations between baseline modularity and
change in Thinking Ability (β = 0.134, t = 1.160, p = 0.250,
N = 76, CI: −0.09592174, 0.3631804) or change in Verbal Ability
(β = −0.019, t = −0.161, p = 0.873, N = 76, CI: −0.2502647,
0.2129114).

Brain network modularity at pre-test did not positively
predict cognitive performance changes in children in the wait-list
control group (Executive Processes: β = 0.062, t = 0.520,

TABLE 1 | Mean (SD) for physical activity and waitlist control groups at baseline (pre-intervention) and post-intervention.

Physical activity Control

Baseline Post Baseline Post

Age (years) 8.7 (0.5) – 8.6 (0.5) –
Gender 45 girls, 33 boys – 37 girls, 34 boys –
IQ (General) 109.2 (15.4) – 110.9 (13.0) –
Pubertal timing 1.4 (0.5) – 1.3 (0.4) –
SES 1.9(0.8) – 1.9 (0.7) –
VO2max (ml/kg/min) 42.4 (7.3) 42.5 (7.3) 43.0 (7.1) 43.0 (6.4)
VO2max percentile 35.8 (30.2) 35.5 (29.6) 38.0 (30.4) 37.5 (28.9)
Reading achievement 110.5 (13.9) 110.6 (14.0) 113.1 (14.4) 115.5 (16.0)
Mathematics achievement* 108.3 (16.2) 110.6 (17.9) 111.1 (16.2) 114.0 (17.0)
Executive processes (WJ)* 107.0 (10.4) 111.6 (9.8) 109.7 (9.8) 113.1 (9.9)
Thinking ability (WJ) 113.9 (12.9) 119.2 (12.4) 115.7(12.8) 120.0 (13.6)
Cognitive efficiency (WJ)* 98.8 (16.7) 102.3 (17.8) 98.9 (15.5) 105.2 (16.1)
Verbal ability (WJ) 107.9 (12.4) 109.1 (12.6) 109.3 (11.5) 112.1 (11.5)
Modularity (6%) 0.488 (0.062) – 0.474 (0.065) –

Note: Woodcock–Johnson III paper and pencil tasks (Woodcock, 1997); SES—Socioeconomic Status (Low: < 2; Moderate: 2–3; High, >3). *p < 0.05. Association between baseline
network modularity and change in performance in children involved in the physical activity intervention (uncorrected).
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FIGURE 2 | Association between baseline brain network modularity and change in executive function by group. Significant association in children involved in the
physical activity intervention (uncorrected).

p = 0.605,N = 71, CI:−0.1772713, 0.3021183; Figure 2; Cognitive
Efficiency: β = −0.319, t = −2.794, p = 0.007, N = 71, CI:
−0.5464083,−0.09114016; Figure 3; Thinking Ability: β = 0.066,
t = 0.548, p = 0.585, N = 70, CI: −0.1750920, 0.3078135;
Verbal Ability: β = 0.081, t = 0.672, p = 0.504, N = 71, CI:
−0.1587927, 0.3199714). For Cognitive Efficiency in the wait-list
control group, the effect was in the opposite direction than
expected; that is, baseline brain network modularity negatively
predicted change in performance, despite gains in performance
from pre-intervention to post-intervention in the control group
(Figure 3). Thus, this result was not in a meaningful direction
for interpretation.

Baseline Modularity and Change in
Scholastic Performance
In children involved in the physical activity intervention, higher
brain network modularity at baseline was positively associated
with a change in mathematics achievement (β = 0.347, t = 3.221,
p = 0.002;N = 78; CI: 0.1323028, 0.5609004; Figure 4). There was
no significant association between baseline brain modularity and

change in reading achievement (β = 0.001, t = 0.009, p = 0.993,
N = 77, CI: −0.2290192, 0.2310368).

Brain network modularity at pre-test did not predict
scholastic performance changes in children in the wait-list
control group (Mathematics: β = 0.023, t = 0.193, p = 0.848,
N = 72, CI: −0.2366569, 0.2366569; Figure 4; Reading β = 0.074,
t = 0.618, p = 0.538, N = 72, CI: −0.1640388 0.3114265).

Confirmation of Effects
We confirmed that the associations between brain network
modularity at baseline and change in cognitive and
scholastic performance remained significant in the physical
activity group when controlling for age, sex, SES, IQ,
pubertal timing, aerobic fitness, baseline performance,
and in-scanner motion (mean of FD); Partial correlations
between baseline modularity and change in performance
for the children in the physical activity group: Executive
Processes r = 0.276, p = 0.023; Cognitive Efficiency:
r = 0.401, p = 0.001; Mathematics achievement: r = 0.379,
p = 0.001.
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FIGURE 3 | Association between baseline brain network modularity and change in cognitive efficiency by group. Significant association in children involved in the
physical activity intervention (uncorrected and corrected).

Bonferroni Correction
Note that when applying the Bonferroni correction for
multiple comparisons (p = 0.05/6 tests; p = 0.0083), baseline
modularity remained significantly associated with a change in
Cognitive Efficiency and mathematics achievement in children
involved in the physical activity intervention. Given the
exploratory nature of our study which aimed to understand
specific associations between brain network modularity and
intervention-related changes in performance, we discussed all
significant associations at both the Bonferroni-corrected and
uncorrected levels.

DISCUSSION

Higher modularity of brain networks at baseline predicted
greater improvements (changes) in cognitive performance
(via cognitive performance clusters of executive function
and cognitive efficiency) and scholastic performance (in

particular, mathematics achievement) in children involved in
an after-school physical activity intervention for 9 months.
The relationships between baseline modularity and changes
in performance were not present in a wait-list control group.
The associations remained significant when accounting for
age, sex, SES, IQ, pubertal timing, aerobic fitness, baseline
performance, and in-scanner motion, which suggests that brain
network modularity provides unique predictive information
about intervention-related cognitive and academic progress
during child development. Our results have important
implications for biomarkers of cognitive plasticity in
preadolescent children.

Our results generally support and extend previous research
which demonstrates that brain network modularity at baseline
predicts gains in cognitive performance in younger and older
adults after cognitive and physical interventions (Arnemann
et al., 2015; Gallen et al., 2016; Baniqued et al., 2018, 2019).
Our extension of this research to children suggests that
brain network modularity may predict cognitive changes
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FIGURE 4 | Association between baseline brain network modularity and change in mathematics achievement by group. Significant associations in children involved
in physical activity intervention (uncorrected and corrected).

via intervention in populations across the lifespan. We also
extend the predictive power of brain modularity to other
cognitive functions outside executive function, including
the cognitive cluster of cognitive efficiency (which involves
perceptual speed, short term memory, and the ability to
store and recode information) as well as mathematics
performance. Together, our data add to the framework of
brain network modularity as a biomarker of plasticity and
cognitive progress via interventions designed to improve
cognitive and brain health (Gallen and D’Esposito, 2019). That
is, global network properties and brain network architecture may
capture individual differences in neuroplasticity that promote
cognitive enhancement.

It is important to note that, unlike previous studies of
modularity predicting intervention-related cognitive gains in
young adults, older adults and TBI patients, relative to a control
group (Arnemann et al., 2015; Gallen et al., 2016; Baniqued
et al., 2018, 2019), physically active children in our study did
not show significantly greater improvements in cognitive and
scholastic performance compared to the wait-list control group,

a group of typically developing children (age 7–9 years) across
9 months (i.e., lack of Group × Time interaction). That is, in our
study, children in the physical activity intervention group and
children in the wait-list control group showed statistically similar
improvements in task performance across 9 months, perhaps due
to practice effects and/or developmental effects that obscured
potential benefits from the intervention. However, baseline
modularity was only associated with changes in cognitive and
academic performance in the physical activity group, not in the
wait-list control group. As Gallen and D’Esposito (2019) suggest,
modularity is a biomarker of intervention-related changes,
so baseline modularity may have little predictive power for
children not involved in a systematic multi-modal intervention.
Indeed, the FITKids2 intervention was a multi-modal physical
activity intervention, which included aerobically demanding
activities as well as motor skills and health promotional activities.
This intervention was different than the physical activity
intervention in older adults, which involved walking around
a track or dancing (Baniqued et al., 2018). Furthermore, the
older adults in Baniqued et al. (2018) showed improvements
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in aerobic fitness levels with the physical activity intervention,
unlike our study in which there were no significant effects
of the physical activity intervention on aerobic fitness. As
the physical activity dose provided in our intervention did
not significantly modulate aerobic fitness levels, this may also
help explain the lack of Group × Time interaction for all
cognitive outcomes.

Computational models provide insight into the theoretical
interpretations of the benefits of a modular network organization
(Wig, 2017) as well as the association between modularity
and neuroplasticity. For example, greater network modularity
has been associated with better performance on memory tasks
(Stevens et al., 2012; Chan et al., 2014), and brain modularity
predicts rates of learning during working memory training
(Iordan et al., 2018). Theoretically, individuals with a modular
network organization may be able to apply small modifications
and reconfigurations of specialized modules in response to new
environments (e.g., interventions) to maximize performance
(Kashtan and Alon, 2005). One research team compared
functional connectivity during rest and during cognitive tasks
to examine how changes in functional connectivity between
rest and task contributed to cognitive performance (Schultz
and Cole, 2016). Interestingly, instead of larger changes in
functional connectivity reflecting optimization of networks
during cognitive challenges, higher performers showed smaller
changes in functional connectivity between rest and task,
and network update efficiency correlated with intelligence
(Schultz and Cole, 2016). These patterns suggest that small and
efficient network updates may result in improved performance.
As such, the results of the current study suggest that
higher network modularity may represent an effective brain
organization for predicting the progress of cognitive and
academic performance with physical activity training during one
school year.

More broadly, our results raise the possibility that brain
network assessments in children may be used as biomarkers
to guide the design and implementation of interventions to
maximize effectiveness and improve outcomes. Metrics of
modularity might be used to customize interventions, perhaps
by personalizing intensity, frequency, and duration of physical
activity for each child. For example, children with low baseline
brain network modularity might require a longer or more
vigorous physical activity intervention. Or, children with low
baseline brain network modularity may not be at an optimal time
point to benefit from an intervention. That is, it is possible that
brain network modularity, to some degree, may signify a critical
period of development when the developing brain is especially
susceptible to intervention.

Future research is needed to determine how to maximize
brain modularity at baseline to create optimal brain network
properties to help individuals benefit from interventions. That
is, what leads to increases in brain network modularity? It will
also be important to understand the mechanisms by which brain
modularity relates to changes in brain structure and function
as well as neuronal health and vasculature with interventions.
For example, in older adults, the upregulation of neurotrophic
factors is associated with greater exercise-related changes in

brain connectivity (Voss et al., 2013). Future studies might also
include a longer resting-state scan–yet our scan (4 min, 6 s)
was comparable to other brain modularity studies of varying
resting-state scan length (4 min: Gallen et al., 2016; 5 min:
Arnemann et al., 2015; 6 min: Baniqued et al., 2018, 2019).
Furthermore, does brain network modularity predict changes
in brain structure and brain function with interventions? Is
the brain network modularity a biomarker for children with
clinical disorders (e.g., Arnemann et al., 2015)? Do other
network metrics such as global and local efficiency relate to
changes in cognition? What subnetworks are contributing to
the associations? For example, modularity in the association
systems (e.g., default mode network, frontal-parietal network,
dorsal attention network) has been shown to contribute to
the association between modularity and intervention-related
improvements in older adults (Gallen et al., 2016).

It will also be important to understand the specific
cognitive processes predicted by modularity, as we do not
report associations between baseline brain network modularity
and changes in performance on tasks of thinking ability,
verbal ability, or reading achievement. Indeed, our study was
exploratory, as the first investigation to examine whether
brain network modularity was a predictor of intervention-
related changes in cognition and scholastic performance
in children. As previous investigations have explored one
cognitive outcome (executive function; Gallen et al., 2016;
Baniqued et al., 2018, 2019) we aimed to understand whether
modularity also predicted other cognitive abilities (e.g., cognitive
efficiency, thinking ability), as well as school performance
(e.g., mathematics, reading). Future studies should continue
to dive into the specific associations between modularity and
changes in intervention-related performance in populations
across the lifespan as well as continue to consider multiple
comparisons. Interestingly, the association between baseline
modularity and change in executive function in children involved
in the physical activity intervention was the one relationship
that did not pass multiple comparison correction (unlike the
significant associations between modularity and intervention-
related changes in executive function in older adults; Gallen et al.,
2016; Baniqued et al., 2018, 2019).

In conclusion, as trends indicate that children are becoming
increasingly inactive and overweight, and physical activity
opportunities are being reduced in schools, it is an important
time to understand the associations among brain organization,
cognitive and scholastic performance, and lifestyle factors
such as physical activity. Interventions are designed for
scientists and clinicians to better understand how to maximize
neurodevelopmental processes important for cognitive
performance and school achievement during childhood
and across the lifespan. Given the time and cost to develop
training interventions, it is important to develop biomarkers that
predict how individuals respond to training as well as individual
differences in cognitive and brain outcomes. It is of further
importance to understand critical periods in the lifespan in
which interventions may be especially effective. Here, we add
to the evidence suggesting that brain network modularity, a
measure of large-scale network organization, predicts change in
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cognitive function with an intervention, and we are the first to
extend this framework to children.
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