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In the classical Turing test, participants are challenged to tell whether they are interacting
with another human being or with a machine. The way the interaction takes place
is not direct, but a distant conversation through computer screen messages. Basic
forms of interaction are face-to-face and embodied, context-dependent and based
on the detection of reciprocal sensorimotor contingencies. Our idea is that interaction
detection requires the integration of proprioceptive and interoceptive patterns with
sensorimotor patterns, within quite short time lapses, so that they appear as mutually
contingent, as reciprocal. In other words, the experience of interaction takes place
when sensorimotor patterns are contingent upon one’s own movements, and vice
versa. I react to your movement, you react to mine. When I notice both components,
I come to experience an interaction. Therefore, we designed a “minimal” Turing
test to investigate how much information is required to detect these reciprocal
sensorimotor contingencies. Using a new version of the perceptual crossing paradigm,
we tested whether participants resorted to interaction detection to tell apart human
from machine agents in repeated encounters with these agents. In two studies, we
presented participants with movements of a human agent, either online or offline,
and movements of a computerized oscillatory agent in three different blocks. In each
block, either auditory or audiovisual feedback was provided along each trial. Analysis of
participants’ explicit responses and of the implicit information subsumed in the dynamics
of their series will reveal evidence that participants use the reciprocal sensorimotor
contingencies within short time windows. For a machine to pass this minimal Turing
test, it should be able to generate this sort of reciprocal contingencies.

Keywords: Turing test, interaction, sensorimotor contingencies, reciprocity, perceptual crossing

INTRODUCTION

Alan Turing proposed a famous test in order to study whether machines can exhibit intelligent
behavior (Turing, 1950). In the so-called “Turing test,” participants were challenged to tell whether
they were interacting with another human being or with a machine. The interaction took place by
means of exchanging computer screen messages between the human and the machine, both located
in separate rooms. If participants cannot tell apart whether they are communicating with a machine
or a human being, Turing reasoned, it must be because the machine exhibits intelligence.
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However, the distant verbal conversation of the Turing test
is a sophisticated form of interaction, quite different from more
basic and typical social exchanges that normally take place among
people. These basic forms of interaction are mainly face-to-face
and embodied, context-dependent and based on the detection
of reciprocal sensorimotor contingencies (Gomila, 2002). In our
view, interaction detection in these cases requires the integration
of proprioceptive and interoceptive patterns with sensorimotor
patterns, within quite short time lapses, so that they are
experienced as mutually contingent, as reciprocal. In other words,
the experience of interaction takes place when sensorimotor
patterns are contingent upon one’s own movements, and vice
versa. I react to your movement, you react to mine. When I notice
both components, within appropriate time windows, I come to
experience an interaction.

Interaction detection makes possible intersubjective
experience. Intersubjectivity is the ability to engage in the mutual
recognition of mental states without explicitly representing them
(Trevarthen, 1979). In second-person interactions, we experience
another person’s mind (i.e., agency) in a direct, immediate, non-
theoretical, and non-inferential way (Gomila, 2001, 2002; Pérez,
2013; Gomila and Pérez, 2017). This basic understanding is
claimed to be the primary form of social cognition in human
development (Reddy, 2008; Gomila, 2012); and contrasts with the
detached, offline, and inferential way of intentional attributions
required to interact in the classical Turing test.

Therefore, we designed a “minimal” Turing task to study
how much information is required to detect these reciprocal
sensorimotor contingencies and whether we resort to interaction
detection –in this basic sense– to tell apart a human from a
machine. Our minimal Turing test is inspired in a virtual and
simple framework known as the “perceptual crossing” paradigm
(Auvray et al., 2009). In the initial perceptual crossing scenario,
two participants had to recognize each other in a common
unidimensional, virtual space (a line 600 pixels long). They were
located in two different rooms, in front of a computer and, while
moving in this unidimensional virtual space, they encountered
three agents: the avatar of another human, a shadow avatar
of the human (also called a “mobile lure,” which repeated the
other participant’s movements in another part of the virtual
space) or a fixed object. Participants interacted by moving
the computer mouse along the line and by receiving tactile
stimulation when they crossed over one of the three agents.
However, participants could not see the line, their cursor or
the avatars that represented each type of agent at any time of
the task. They were asked to detect –by clicking– when the
tactile stimulation following a crossing had been produced by
another human agent.

The main result of the study was that participants did not
distinguish between the human and the shadow avatar: the
probability of a player clicking the mouse when encountering
the person or the mobile lure was not significantly different,
although the players’ partners were kept constant (Auvray et al.,
2009). However, the correct discrimination between both agents
emerged when the authors analyzed the interaction dynamics:
As both players were mutually searching for one another, the
encounters between the two participants were more frequent than

encounters between the participant and the lure, providing an
informational cue that might permit a more reliable interaction
detection (Auvray and Rohde, 2012).

The perceptual crossing paradigm has been modified in
different ways to study the dynamics of human social
interactions. Lenay et al. (2011), for example, extended the
results from Auvray’s experiment into a richer, two-dimensional
scenario, with similar results. On the other hand, Iizuka et al.
(2009) expanded the original procedure to test whether pairs
of individuals could figure out if an interaction was live or not
through a different interface. By moving their fingers left or right
in a tactile screen, participants received tactile vibrations when
they touched another object in the virtual space. Participants were
exposed either to a live interaction with another, always the same,
subject or with a recording of a previous live interaction, and
were asked to distinguish between them. Although they found
it a hard task at the beginning and failed to recognize the two
types of interactions, some pairs could develop a turn-taking and
signaling strategy that helped them to succeed. However, just 4
out of 10 pairs achieved such a strategy only after tens of trials
(Auvray and Rohde, 2012).

In fact, conscious recognition from the other partner
only emerged in a version of the perceptual crossing in
which participants received different sounds instead of tactile
stimulation (Lenay and Stewart, 2012). In this experiment, in
which each tone was associated with a type of object, participants
could identify the source of the stimulation. The perceptual
crossing paradigm has also been employed along the lines of
Turing, in robotic and simulation experiments to model the
dynamics of interaction detection (see Auvray and Rohde, 2012
for a review). On the other hand, a different strategy has been
to develop a visual Turing test, where the interaction is based on
joint attention (Pfeiffer et al., 2011).

Recently, an important modification of this framework was
implemented by Bedia et al. (2014) who started considering the
coupled dynamics of participants’ activities during the test. They
devised a program in which a human interacted either with
another human agent or with the computer along 10 rounds. The
computer could display a shadow avatar of one’s own behavior
or an agent with oscillatory movements. Similarly to the study
of Auvray et al. (2009), each participant moved the mouse along
an invisible line but he/she only heard a sound (instead of
receiving tactile stimulation) when he/she crossed over another
agent. At the end of each round, participants decided whether
they had interacted with a human or with the machine, like in
the Turing test.

Bedia et al. (2014) found, as in Auvray’s original study, that
the participants were not able of consciously distinguishing
between the human avatar and its shadow, and that there
was a difference in the pattern of interaction between both
conditions. In this case, they found that the probability of
having a new stimulation1 within 0.5 s after a crossing did
differentiate the type of agent involved. In other words, the
implicit detection of social contingencies was made evident
by a pattern of back and forth movements of both agents

1That is, the percentage of crossings that are followed by a second crossing.
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around the same point, to generate overcrossings within the
half-second time window. This pattern was uncovered by their
analysis of the temporal structure of the interaction between
two players. A fractal 1/f structure (called pink noise) at many
timescales of the history of collective interactions emerged only
within genuine social interactions (i.e., in the human vs. human
case). Moreover, the largest values of the multifractal spectrum
width also only appeared in human-human interactions. This
distinctive pattern, that exclusively came out in interactions
between two human beings, led researchers to argue that genuine
social engagement might be better characterized by a structure of
cross-scale interactions captured by analyzing fractal 1/f scaling
and multifractal spectrum (Bedia et al., 2014).

To sum up, previous research with the perceptual crossing
paradigm is somehow paradoxical: while it seems to provide
a right approach to study interaction detection through
social contingencies, it also comes short to prove that
our judgments of interaction are based on the reciprocal
contingencies detected. In most studies, participants failed
to consciously distinguish the shadow agent from the other
human participant in spite of evidence of their implicit
discrimination in the dynamics of the interaction. The only
study that found conscious detection of human interaction
through this paradigm (Iizuka et al., 2009) required long series
of interaction iteration between fixed pairs of participants, where
less than half of participating pairs succeeded. This suggests
that the strategies these pairs of participants developed were
idiosyncratic, due to the fact that they kept playing with the same
partner, rather than resorting to a basic process of reciprocal
contingency detection.

In this paper, our main goal is to show that humans do
detect interaction through social contingencies. Our second
goal is to explore the reasons of the paradoxical results of
previous research. In our view, it has to do with the fact that
the standard perceptual crossing paradigm includes the three
kinds of agents –human, mobile lure, fixed– in each trial, and
unimodal feedback only.

As a matter of fact, the motivation to include the shadow agent
in the design was meant to parallel the experiment originally
devised by Murray and Trevarthen (1985) to study infants’ ability
to detect the interaction with an adult. In their pioneer study,
they examined the quality of the social interaction between 2
and 3 month-old-infants and their mothers employing a double-
video communication system. The baby and the mother were in
different rooms and their behaviors were recorded. The infant
faced a monitor, which displayed the behavior of his mother,
and the mother saw, on her screen, her baby’s behavior. Authors
found that babies could distinguish, through their expressive
behavior, when they were interacting with their mother from the
condition in which they were shown exactly the same sequence
but recorded from a previous trial. They reasoned that, in the
former condition, babies were responding in real time thus
perceiving the mothers’ behavior contingently upon their own,
while in the latter, babies lacked the power to influence the
images. In the non-contingent scenario, intersubjectivity failed as
infants could not engage in the reciprocity of facial expressions
with their mothers and, as a result, they showed puzzlement,

negative emotional reactions, and reduced eye contact2. In the
perceptual crossing paradigm, the mobile lure was introduced
to include this offline condition: an agent that behaves just like
an interacting agent in its global trajectory, but non-contingently
upon the behavior of the partner, as its movement depends on
that of the human avatar. However, in the perceptual crossing
paradigm all conditions are present in each trial, instead of
distinguishing online and offline blocks (the only exception is
Iizuka et al., 2009).

Therefore, in order to better match Murray and Trevarthen
(1985) design what is needed is, first, a condition that closely
resembles the offline condition implemented by those authors.
This requires an agent with a trajectory identical to one exhibited
by an interactive event correctly recognized as such by both
participants, but recorded, so that this trajectory is not deployed
contingently upon the moves of the participant. If participants
decide whether they are interacting with a human on the
grounds of the reciprocal sensorimotor contingencies detected,
they will judge the offline condition as non-interactive. On the
assumption that only human agents can interact in this paradigm,
participants will judge that their partner is a human whenever
they experience these reciprocal contingencies. And they will
judge that their partner is a bot, whenever they do not. For this
reason, in our “minimal Turing test” we included trials for each
condition, instead of mixing them up.

However, things can be not that simple. For if the participant
adopted a passive strategy, one of observing how the other avatar
moves, the offline agent could elicit the illusion of interaction, as
the pattern of feedback would be identical to a real interaction
and participants could experience some reciprocal contingences
when interacting with this recorded trajectory and judge that it
is a human. Participants should adopt an active strategy in order
to perceive the others’ movements as contingent to their own and
vice versa. Hence, we tried to provide instructions to participants
that fostered this active stance.

On the other hand, Murray and Trevarthen’s (1985) design
involved audiovisual contingencies. Previous research with the
perceptual crossing paradigm already showed that auditory
feedback was more discriminant than tactile stimulation to
detect the relevant contingencies. But it may also be the case
that the difficulty in consciously distinguishing real interaction
from interaction with the mobile lure was because auditory
information is not robust enough. Therefore, in our study we
also wanted to explore the question of whether the minimal
sensory contingencies need to involve more than one modality; in
particular, whether audiovisual information is required for robust
interaction detection, as in Murray and Trevarthen’s (1985)
study. In addition, we also wanted to explore whether participants
improve their performance in the auditory feedback block after
undergoing the audiovisual block. Thus, we first presented only
auditory information about the interaction, then audiovisual
stimulation and finally just auditory feedback again, to check
whether participants’ performance improved along the task.

2Other studies have also acknowledged that babies seem to use social contingency
to recognize an interactive partner (Bigelow et al., 1996; Nadel et al., 1999; Bigelow
and Decoste, 2003; Stormark and Braarud, 2004; Field et al., 2005; Okanda and
Itakura, 2005)
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In summary, in our minimal Turing test, we modified Bedia
et al. (2014) version of the perceptual crossing paradigm to
test participants separately in each condition, and through these
different feedback blocks. In the first study, participants were
exposed either to movements of a human agent, which could
be online or offline, or to the movements of a computerized
oscillatory agent in three different blocks. In each block, either
auditory or audiovisual feedback was provided along each
trial, to inform participants when they crossed over another
agent. Following previous studies, we first analyzed participants’
recognition about the nature of the other agent by paying
attention to their explicit answers. Secondly, we investigated the
implicit information subsumed in the interaction dynamics of
each participant’s series, like the correlations between the series
of two interactors, the time between two crossings, the window
of crossings (density of crossings), and the fractal indices, in
order to find out whether they tried to solve the task through the
crossing patterns they detected. Finally, we asked the participants
about their experience with the task. In a second, follow-up
study, we simplified the task by eliminating the oscillatory bot,
just to focus on the interaction dynamics. We hypothesized
that participants are able to detect the social contingencies
and to use them to respond to the Turing test question, but
wanted to explore which informational conditions turn out
to be discriminant enough. Were the information available to
the participant insufficient, they would adopt an observational
attitude to answer the test question.

STUDY 1

Materials and Methods
Participants
A total of 70 participants (55 females) took part in this
experiment. Their ages ranged from 20 to 48 years (M = 23.15
and SD = 4.62). They were recruited from a Psychology class
at the University of the Balearic Islands. Participants received
credit points for participating in the study. In the lab, they were
arranged in groups of six people (11 groups) or in groups of four
people (only one group).

Experimental Procedure
Each participant entered into a cubicle, wore headphones and
sat in front of a computer. As we have six cubicles in the lab,
the maximum number of participants that could do the test at
the same time was six. Inside the cubicle, they could not see nor
hear the other participants. They were instructed on the goal of
the study: they had to move their computer mouse in a shared
perceptual environment and they were going to hear a sound
whenever they crossed over another agent. They had to detect,
in each round of the experiment, whether they have interacted
with a human or with a computerized agent (for an example of
the procedure, see Supplementary Material).

The shared perceptual environment was a virtual, one-
dimensional space 800 pixels long (a line) with both ends
connected, forming a torus to avoid the singularities induced by
the edges, as in Auvray’s original study. Although all movements

were available with the computer mouse, only movements from
left to right (and vice versa) were considered by the software.
When the cursor of a participant crossed the cursor of another
agent –either a human or a computerized agent– a collision
was perceived because they received an audible stimulus lasting
500 ms. Such audible stimuli were the only environmental
perception during some block of trials while the computer screen
was black along the whole round. In other block of trials,
participants could also see the line and the avatars of each agent.

Specifically, participants started with a training phase in which
they could see the line on the screen together with their own
avatar (that represented their movements) and the partner’s
avatar on it. They performed 4 training rounds and each lasted
15 s. After that, participants received three blocks of experimental
rounds. Each block consisted of 9 rounds and each round lasted
30 s. In the first block, participants could not see the line nor
the avatars on the screen and just received auditory stimulation
when they crossed over another agent. During the second block,
participants received audiovisual information in each of the 9
rounds –as in the training phase. Finally, participants received a
third block with only auditory feedback (identical to block one).

We decided to provide audiovisual stimulation in the training
phase so participants could familiarize with the setup more
easily, as they had two sources of environmental stimulation.
Block 1 and block 2 were thought to measure how different
amount of information would affect such discrimination. Block
3 finally aimed to check whether participants could improve their
performance after the second, audiovisual, block.

In each round of the task, participants could encounter one of
three possible agents.

1. A “human online agent,” that is, one of the participants
from another cubicle. As the task consisted of many trials,
the participant was randomly assigned to any other human
participant from the group of six to just focus on reciprocal
contingency detection as a basic process, and avoid the
development of idiosyncratic strategies.

2. A “human offline agent” that consisted in a recording
of a previous human-human interaction in which both
participants recognized each other as humans. The human
offline agent was randomly chosen from an array of series
in which two human players previously interacted and
correctly recognized each other. Those series were collected
from a pilot study and here presented offline.

3. An “oscillatory agent” that exhibited “a sinusoidal behavior
(describing a sinusoidal trajectory of 0.5 Hz and 200 pixels
of amplitude), predictable and deterministic” (as in Bedia
et al., 2014, 4).

As we stated in the instruction, participants were asked
to say whether they have interacted with a human or with
a computerized agent. In fact, the computer could randomly
present either the human offline agent or the oscillatory bot.
Therefore, they were unaware of the nature of the computerized
agents. The underlying assumptions were that if they experienced
an interaction they would respond “person,” that the offline agent
would not generate the experience of interaction, and that if the
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experience of interaction failed to emerge, they would decide
from an observational stance.

In the training phase, we only used two types of agents: the
human online and another non-reactive bot, which increased its
position with a velocity of 30 pixels per second during the whole
round. We intentionally employed a different computerized
agent that the ones that will appear on the test because we
only aimed at introducing the movements of the “machine bots”
without showing them the same behavior that were to appear in
the task, to avoid any possible habituation or anticipation effect.

In each round of the experiment, participants moved
their avatar (by moving their computer mouse) along the
unidimensional space, and they heard a sound when they crossed
over the other agent or when the other agent crossed over
them. At the end of each round, participants had to answer
the following question “Who have you interacted with in the
last round?” by clicking on one of the answers: “person” or
“machine.” Using only auditory information (blocks 1 and 3) or
using audiovisual information (training phase and block 2), they
had to decide, at the end of each round, whether they interacted
with a person or a computerized agent. After they answered,
they received feedback about their choice (correct/incorrect).
After completing all the procedure, participants were asked about
their experience.

Coding
On the one hand, we coded participants’ explicit responses at the
end of each round as well as the total number of crossings.

Participants’ responses
We coded participants’ correct answers at the end of each
round, that is, whether they correctly guessed the nature of
the other agent. A correct answer was considered when they
replied “person” after interacting with the human online agent,
and “machine” in the rounds when they interacted with both
computerized agents (human offline and oscillatory agent).

Number of crossings
We calculated the total number of crossings that each participant
executed per round (i.e., the “active crossings,” referring only to
those crossings produced by the participant).

On the other hand, we coded different implicit measures in the
dynamics of the interaction.

Fractal indices
A fractal index was obtained as in Bedia et al. (2014). In a nutshell,
we first took the time series of the distance between the two
agents in a round. We then computed the agents’ relative velocity
(i.e., the first derivative of the distance between the participant
and the other agent) to extract whether they are approaching or
distancing themselves at each moment of time. Then we used
a detrended fluctuation analysis (DFA) algorithm (Peng et al.,
2000) to compute the statistical self-affinity in the data series of
distance variations (more detail description of the method can be
found in the Supplementary Material; also see Bedia et al., 2014).
The result is a Beta index (β) that characterizes distinct processes.
Values of β close to 0 feature uncorrelated processes (correspond
to white noise), values close to 2 exemplify rigid and deterministic

processes (brown noise) and values of β close to 1 characterize
flexible and adaptable processes (pink noise), that is, processes
that are not totally organized but neither totally disorganized.

These background noises refer to intrinsic sources of
variability, the intrinsic dynamics of mind and body, and the
internal workings of a living being (Van Orden et al., 2003). The
interest of this measure is that pink noise has been encountered
in biological, physical and cognitive systems and is proposed as
a signature of dynamic complexity (Gilden, 2001). These systems
are sustained by interaction dominant dynamics; which consist
of multiplicative interactions that imply coordination between
the different timescales in the system (Van Orden et al., 2005).
In the present study, pink noise would only emerge when the
participant interacted with the human online, since the mutual
detection of sensorimotor contingences would give rise to flexible
and adaptable behavior from the partner. Brown noise would
emerge when the participant interacted with the oscillatory bot,
due to the deterministic movements of this agent; while white
noise would better characterize the offline agent since no mutual
detection of sensorimotor contingences can emerge along trials.

β was calculated for each series. As a result, we obtained a
distribution of “how many β” were for each value within the
interval (0, 2) for all the agents.

Time between two crossings and window of crossings
We estimated the time it takes to produce another crossing after
one took place. This means that, for each crossing in the series, we
determine the time until the following one occurs. For example,
if there have been crossings at 1000, 3000, 3600, 3800, 3900, 7000,
7300, and 9000 ms of one round, then, the time between crossings
would be 2000, 600, 200, 100, 3100, 300, and 1700 ms.

Relatedly, the window of crossing refers to the number of
crossings counting after one crossing is produced up to a certain
time after this crossing. In a sense, it is the density of crossings
(crossings/time; see Supplementary Material for an example of
this calculation). It was assumed that the detection of reciprocal
contingencies would require rapid back and forth movements
around the crossing point by the two partners.

Similarity between two series
We calculated the similarity between two series with the crossed-
correlation function. This function compares two temporal series
and returns a value. The bigger the value, the greater the similarity
between both trajectories.

We applied the crossed-correlation function for different time
gaps and window spans. A time gap implies comparing two
trajectories applying a temporal delay to one of them, to check
whether the similarity between both occurred within a specific
delay (like an echo). Window spans were chosen based on the
crossings. This means that, for each crossing in each round,
we took the positions of the two players from their series and
calculate their auto-correlation. The correlation of the round is
the average of the correlations among all their crossings. Again,
the reason of this measure was the expectation that in interactive
trials the trajectories of the agents would be similar and the
correlation would be higher.

Frontiers in Human Neuroscience | www.frontiersin.org 5 March 2020 | Volume 14 | Article 102

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00102 October 16, 2024 Time: 14:2 # 6

Barone et al. A Minimal Turing Test

Statistical Approach
The design of this experiment involved repeated measures per
participant and, in order to account for this characteristic,
linear mixed effect models was computed. In order to determine
our dependent variable (successful reply), we introduced many
predictors: type of agent (human online, human offline, or
oscillatory agent); type of block (block 1, block 2, and block 3),
participant’s age, gender, β, crossings, and correlation (similarity)
between two series.

To avoid a ‘multiple comparisons’ problem, we used
bootstrapping tools. In short, bootstrapping methods take data to
create new simulated models, providing more robust analyses as
well. It has been proved as a generalization of classical multiple
comparisons procedures (Berkovits et al., 2000) and its use in
some multiple contexts works better than classical methods when
it is required a large sample theory and to make the arguments
in small samples (Gelman et al., 2012). As noted by Westfall
(2011) the bootstrap provides a “simple, elegant generalization of
classical multiple comparisons procedures” (p. 1188).

Results
Participants’ Responses and Number of Crossings
Participants greatly succeeded in recognizing the oscillatory bot
as a machine in all blocks (binomial two-sided tests, ps < 0.001 in
the three blocks). Secondly, they recognized the human online as
a person in the first two blocks (binomial two-sided tests, block
1: p = 0.02, block 2: p < 0.001) but not in block 3 (p = 0.08).
When participants interacted with the human offline agent, they
consistently replied that it was a person (binomial two-sided tests,
all ps < 0.005; see Table 1).

The highest values of recognition appeared in block 2 when
participants could also see the avatars on the screen (70 and
95% of successes for online and oscillatory agents, respectively).
The comparison of performance in block 3 with block 1 (the
blocks providing only auditory information about the crossings)
revealed higher recognition of the oscillatory bot (from 66 to
70%) and of the offline agent (from 32 to 40%), while the number
of correct answers in the condition of the human online agent
barely decreased (from 59 to 56%), but any difference between
block 1 and block 3 was significant.

Table 1 also shows the mean number of crossings per block
and type of agent. For all type of agents, there were more
crossings in the first block than in the other blocks, suggesting an
exploratory strategy. In the first block, there were more crossings
when the partner was the human online agent than if it was
an offline agent or the oscillatory agent. In block 2, crossings
decreased in general, but much more when the partner was the
oscillatory agent. In block 3, crossings when the partner was
human online decreased, and increased for the other two kind
of agents. However, crossings did not significantly differ among
the types of agent in each block either.

Figure 1 shows the probability of success and crossings.

Fractal Indices
Figure 2 shows a graph with the distribution of the values of β

per agent and block. Values of β in human-human online rounds
were lower in our study, along the three blocks, than the value

TABLE 1 | Probability of success and total number of crossings in Study 1.

BLOCK 1 BLOCK 2 BLOCK 3

Correct answers

Online 0.59 0.70 0.56

Offline 0.32 0.28 0.40

Oscillatory bot 0.66 0.95 0.70

Number of crossings

Online 37.08 (38.7) 27.89 (27.85) 25.71 (24.74)

Offline 32.64 (29.72) 28.38 (26.70) 27.61 (26.22)

Oscillatory bot 32.61 (24.48) 20.80 (27.71) 29.92 (28.19)

Probability of correct responses about the nature of the other agent and mean (and
standard deviation) of crossings in each block and type of agent in Study 1.

reported in Bedia et al. (2014; β = 0.86). On the other hand, the
β-values in human-human offline series were similar to the β that
emerged in the human-shadow condition of Bedia et al. (2014;
β = 0.29). In fact, β-values from both human-human online and
human-human offline interactions were very similar in our study,
and closer to 0 which characterizes uncorrelated processes (white
noise) (see Figure 2, at the bottom). For a table with all the values
of β per agent and block, see Supplementary Material.

Time Between Two Crossings and Window of
Crossings
Figure 3 illustrates the distribution of crossings according to
the time interval. Graphs on the top show the mean number
of crossings, produced after one crossing of reference, in a
definite amount of time (considering the previous crossing as a
reference). As expected, most crossings took place in between 0.1
and 1 s after the previous crossing (the center of the Gaussian
distribution is between 102 and 103 ms).

Graphs at the bottom measure how the crossings were
distributed along the round. They represent the accumulated
sum of the graphs on top and show that most of the crossings
from a round -after one crossing of reference- were distributed
in a window span of 1 s (after the initial crossing), generating
“gusts of crossings.” In the time interval from 1 to 10 s, the
number of accumulated crossings was lower (the sigmoid curve
reached a plateau).

The online agent, in Block 1, accumulated more crossings –
after one of reference– in the time window of 100 ms than the rest
of the agents. The accumulated crossings, after a previous one,
sharply decreased in block 3 for the online agent, suggesting a
change in how participants moved the cursor.

Figure 4 reports the distribution of crossings as we increase
the window span, between 500 and 1500 ms. In general, the
number of crossings diminished for the online agent from block
1 to block 3 (in line with the findings from the previous graph).
In block 1, when a participant crossed over the online agent, the
following crossings increased up to seven within the 1500 ms
window span while, in block 3, they added up to four more
crossings. The opposite pattern followed the distribution of
crossings for the offline and oscillatory agents, since the crossings
after the first one occurred slightly increased from block 1 to
block 3 (from five to six crossings in the 1500 ms window span).
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FIGURE 1 | Successes and crossings per type of agent and block in Study 1. (A) Probability of success in each block per type of agent. The horizontal dashed line
represents chance level (50%). (B) Mean number of crossings in each block per type of agent. Error bars depict 95% confidence intervals.

FIGURE 2 | Distribution of β in Study 1. On the top: distributions for the values of β (in black online agent, in blue offline agent, in red the oscillatory bot). On the
bottom, representation of the means and variances as boxplots.
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FIGURE 3 | Distribution of the number of crossings according to the window span in Study 1. The distribution has a Gaussian shape. The x-axis (time) is shown on a
logarithmic scale in order to see the relation between short times (milliseconds) and longer ones (dozens of seconds, which is the length of a round). On the top:
number of crossings after one crossing of reference in relation to the time they are produced, for each block and type of agent. On the bottom: number of
accumulated crossings as a function of time.

FIGURE 4 | Distribution of the number of crossings as we increase the window span in Study 1. The graphs show how many crossings are produced in the window
span from one crossing until a specific amount of time.
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FIGURE 5 | Correlation indices for different windows span and delay times in Study 1. Each row refers to a type of agent (human online, human offline and oscillatory
bot) and each column refers to either block 1, block 2, or block 3. Inside each graph, the horizontal axis is the delay applied (from –1 s to 1 s), with the central
column showing no delay at all. Vertical axis alludes to the window span, from 50 ms (at the top) to 2500 ms (at the bottom). Light colors indicate higher correlation
and dark colors indicate lower correlation. All the graphs show the same scale of colors; then, colors can be compared among graphs.

Similarity Between Two Series
Figure 5 shows the similarity between participants’ series. On
the one hand, light colors appeared at the top of the diagrams
indicating a high correlation in small window spans. The smaller
the windows span, the shorter the series were, and more similar
to each other. On the other hand, colors got darker from the top
to the bottom, which means that similarity gradually decreased as
the window span increased.

Comparing the three blocks, the greatest similarity occurred
in block 2 when the avatars were visible. But when considering
the type of agent, regardless of the block, there was a greater
similarity between the participant’s and the bot’s series than with
the other agents.

In bigger window spans, the similarity with the human
online series decreased: we can see that the colors at the
bottom in block 1 are darker (i.e., less similarity) than
the colors at the bottom in block 3. In big windows
span, however, the similarity with the human offline series
decreased along the study: the colors at the bottom of block
1 are lighter (i.e., more similarity) than the colors at the
bottom of block 3.

Since there was no difference across the distinct delays applied
(colors are uniformly distributed for diverse time gaps), we can
employ the values with no delay. It means that we took the
correlation index for window span with no delay applied to the
trajectories in the statistical model we will present in section
“Statistical Analysis” (for a table with all the correlation indices
see the Supplementary Material).

Figure 6 takes the correlation values between two trajectories
with no delay applied and shows how these indices change
when different window spans are considered. On the one hand,
Figure 6A shows that the highest correlations were found with
the bot both in blocks 1 and 3. While in block 1 the correlation
with the online agent was inferior than the correlation with the
offline agent, in block 3 correlations with online were higher
than the offline. On the other hand, Figure 6B indicates that the
correlation values were higher in block 3 than in block 1 for the
human online in all temporal scales. A similar pattern emerged
with the oscillatory bot, with clearly higher correlations in block
3 in windows spans bigger than 1.5 s. The offline agent presented
the opposite pattern since correlations decreased in block 3 in
comparison to block 1.

Statistical Analysis
We first analyzed all the rounds. Many of the predictors of
our model (age, gender, β and density of crossings) did not
discriminate when the participant gave the correct answer
(all p-Values > 0.05). Correlation indices between series with
windows at 500 and 1200 ms seemed to discriminate participants’
correct answer [Corr500, t(1815) = −2.14, p = 0.03; Corr1200,
t(1815) = 1.8, p = 0.06]. However, the p-Value for the correlations
for the second window span was not significant.

Secondly, we analyzed the results according to the type
of agent and each block. Results, however, did not show
any significant variable that predicts the correct response (all
ps > 0.05) (see Supplementary Material for the detailed results).
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FIGURE 6 | Correlations in auditory blocks and per type of agent in Study 1. (A) Correlation indices in block 1 (left) and block 3 (right) per type of agent as a function
of the window span. (B) Correlation indices per online agent (left), offline agent (medium) and oscillatory bot (right) in block 1 and block 3.

Debriefing
After the procedure was over, participants answered three
questions:

– Describe briefly how you played the game.
– How have you decided that the agent was a human?
– How have you decided that the agent was a machine?

We grouped the responses into three categories:

(1) Reciprocity-based decisions: the participant explicitly said
to ground her response on the reciprocity of movements,
and/or the contingency between her movements and the

other player’s movements to decide her reply. They said, for
example, that they searched the partner and then waited to
see whether it reciprocated.

(2) Partially reciprocal decisions: the participant said to take
reciprocity into account sometimes, but not always, and/or
not in a consistent way. For instance, one said that she
judged the agent was human because it responded to the
participant’s actions and because it moved randomly.

(3) Non-reciprocal responses: the participant said her decision
was based on other features related to the pattern of
sounds, the total number of crossings during a trial or the
velocity of the movements.
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In this study, only 11% of the participants’ responses
corresponded to category 1, 16% to category 2, and
73% to category 3.

Discussion
In our first study, participants explicitly differentiated the
interaction with the human agents –online and offline– from the
interaction with the oscillatory agent. Although they correctly
identified the oscillatory bot as a machine, they treated the online
and the offline agents as two instances of the same type of
agent. When they interacted with either of them, they explicitly
answered that they had interacted with a person. In a way, they
were right, as the offline sequence was the replay of the previous
online movements of a person. This suggests that responses were
based on an observational stance rather than on the detection
of the social contingencies available. Thus, the decisions took
into account preferentially the degree of complexity of the
sequence, responding “machine” when it exhibited a regular and
predictable patters, and “person” when it did not. This hypothesis
is reinforced by the fact that they performed alike across the three
blocks. The audiovisual feedback of block 2 made no difference.

Interestingly, the different measures of an implicit interaction
detection did not show that participants moved differently in
the online vs. offline human conditions. Neither the features of
the trajectories, the amount of crossings, nor the fractal analysis
revealed a difference between online vs. offline agents across the
blocks. Although the β for the interaction with the offline agent
is similar to the index found in Bedia (a value that features
uncorrelated processes), comparable indices were obtained for
the other agents, again suggesting that our participants were
trying to tell the nature of the other agent on the grounds of its
global temporal pattern of sounds rather than on its contingency
upon the participant moves.

On the other hand, the similarity between the two trajectories
was greater in block 2 than in the other blocks, suggesting
that the visual information available increased the matching
of movements to those observed, but not enough to influence
participants’ response for that block. We found a greater
correlation between the trajectories of agents at the 500 ms
window span, suggesting that it is around this half second that
contingencies may generate the experience of interaction, even
if the participants’ responses were not based on such experience,
but on a periodical trajectory of the other agent.

In summary, participants’ explicit responses in our first study
were not based on the perceived contingency of the interaction,
but presumably on the pattern of the other agent’s movements
(“if it is predictable and periodic, it is a machine; if not, it
is a human”). As a matter of fact, the evidence indicates that
they were not even able to implicitly discriminate between the
online and offline conditions –in contraposition to previous
results with the perceptual crossing paradigm. The reason for
this, we submit, is that the offline condition can generate
the experience of interaction, as the participant may respond
contingently on the crossings detected. In addition, the fact
that we provided two response options, “person” or “machine,”
pragmatically suggested to our participants that there were just
two kinds of agents, inducing them to adopt an observational

strategy over an interactive one; while, in fact, we presented
three different kinds of moving agents in the set up. Similarly,
the feedback provided after each trial, with so many errors, may
have fostered the adoption of the “periodic pattern = machine,
non-periodic = human” heuristic. The only possible way for
participants to judge the offline cases as “machine” ones was
by noticing their lack of responsivity to the participant moves,
but either they did not look at this kind of information at
all or the information available was not enough to detect
such contingencies.

STUDY 2

In order to explore this post hoc hypothesis, we designed a second
study. To better address the participants’ attention to the pattern
of interaction, we introduced modifications to the experimental
paradigm. First, we only employed two types of agents: the
human online and the human offline. In this way, given that the
two kind of trajectories the participant could met were equivalent
in complexity and unpredictability from an observer point of
view, the only way to respond correctly would be by looking
for reciprocal contingencies: moving and checking whether the
other agent’s movement was reactive to one’s own movement. In
particular, whether the pattern of back and forth movements of
both agents around the same point emerged, and whether the
participants could use this interaction pattern to respond to this
new version of the “Turing test.”

Secondly, we modified the way of giving the interrogation at
the end of each round. Instead of choosing between two responses
(person or machine), participants will decide the nature of
the agent they have just interacted by selecting a point on a
Likert scale. In this way, confidence in the response could be
measured. No feedback about their answer was provided to
prevent the development of strategies through trial and error
along the procedure.

Materials and Methods
Participants
We tested 50 participants, recruited from a Psychology class,
at the University of the Balearic Islands. Participants received
credit points for participating in the study. In the lab, they were
arranged in groups of 4 people (12 groups) and only one group
of 23. Two participants were excluded from the analysis because
they had already participated in the first experiment. Our sample,
then, consisted of 48 participants (9 males). Their ages ranged
from 20 to 40 years (M = 23.45 and SD = 4.93).

Experimental Procedure
The procedure was similar to Study 1. After each participant
entered into the cubicle and wore the headphones, 4 training
trials were administered. During the training phase, the
participant could see his/her avatar and his/her partner’s avatar
on a line on the screen. Each trial lasted for 15 s. At the end of each

3Although our lab counts with 6 cubicles, one computer was broken. Then, we
arranged the experiment in groups of 4 people considering that the setup is
programed to work with an even number of participants.
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round, they had to detect whether they interacted with a human
online or with a human offline. They replied by selecting one
point on a 7-point Likert scale which represented how sure they
were about the nature of the other agent. For instance, if they were
completely sure that they had interacted with the human online,
they chose one extreme of the scale that represented the response
“I am completely sure it was online.” If they were completely sure
that they had interacted with the human offline, then they chose
the other extreme of the scale that depicted the opposite reply;
that is, “I am completely sure it was offline.” In case they did
not know the nature of the other agent, they chose the middle
of the scale. Participants could also choose other two possibilities
between the middle and each extreme of the scale. They did not
receive feedback after each trial.

Each participant was tested along 6 rounds in block 1 (in
which auditory feedback was provided), 6 rounds in block 2
(with audiovisual feedback) and 6 rounds in block 3 (again,
only supplying auditory feedback). In each block, participants
interacted with either a human online or a human offline agent
in rounds that lasted 30 s. Like in the training phase, they had to
decide, at the end of each round, whether they interacted with a
human online or offline.

Coding
Like in Study 1, we coded participants’ responses, the total
number of crossings, fractal indices, the time between two
crossings, the window of crossings, as well as the similarity
between each pair of trajectories (the participant and the
corresponding counterpart). In this case, participants’ responses
were considered as correct ones when they replied “online” after
interacting with the human online agent, and “offline” in the
rounds when they interacted with the human offline agent.

Statistical Approach
We again computed linear mixed effect models with the following
predictors: type of agent (human online or human offline);
type of block (block 1, block 2 and block 3), participant’s age,
gender, β, crossings, and correlation (similarity) between each
pair of trajectories.

Results
Participants’ Responses and Number of Crossings
In block 2, participants correctly identified the online agent
(binomial two-sided test, p < 0.001). For the offline agent,
although the probability of success was 0.53, it was not different
from chance level (binomial two-sided test, p = 0.5). In all other
blocks, participants’ probability of success was not different from
chance level for any type of agent (binomial two-sided tests, all
ps > 0.56) and there was no difference in performance between
block 1 and block 3 (see Table 2).

Considering only the online agent, the probability of success
increased in block 2 (when participants could see the avatars on
the screen) compared to block 1 and it decreased again in block
3. For the offline agent, the recognition rate was at chance level
(between 0.49 and 0.53) in all blocks.

On the other hand, Table 2 also shows the mean number
of crossings that participants performed per block. In general,

TABLE 2 | Probability of success and total number of crossings in Study 2.

BLOCK 1 BLOCK 2 BLOCK 3

Correct answers

Online 0.5 0.73 0.47

Offline 0.49 0.53 0.49

Number of crossings

Online 42.92 (25.85) 25.65 (21.25) 36.99 (27.10)

Offline 38.88 (29.12) 27.59 (25.17) 30.57 (22.70)

Probability of correct responses about the nature of the other agent and mean (and
standard deviation) of crossings in each block and type of agent in Study 2.

participants produced more crossings in block 1, for both types
of agents, than in the rest of the blocks and they caused the
fewest crossings in block 2. Participants collided more with the
online than with the offline agent in both auditory blocks. In
block 2, however, the mean number of crossings was similar for
both agents. The probability of success and crossings are shown
in Figure 7.

Fractal Indices
Figure 8 shows a graph with the distribution of the values of
β per agent and block. Values of β for human-human online
rounds were again lower than the values reported in Bedia et al.
(2014; β = 0.86), while the values of β for the human offline agent
were similar to the values of the shadow in Bedia et al. (2014;
β = 0.29). Once more, β were practically identical in online and
offline rounds and closer to 0 which characterizes uncorrelated
processes (white noise; see Figure 8, bottom). For a table with all
the values of β per agent and block, see Supplementary Material.

Time Between Two Crossings and Window of
Crossings
Similar to Study 1, most crossings took place between 0.1
and 1 s after the previous crossing, as the center of the
Gaussian distribution is between 102 and 103 ms (see Figure 9A,
top). Also, most of the crossings from a round –after one
crossing of reference– were distributed in a window span of
1 s (after the initial crossing), generating “gusts of crossings”
(Figure 9A, bottom). In the time interval from 1 to 10 s, the
number of accumulated crossings was lower (the sigmoid curve
reached a plateau).

In blocks 1 and 3, more crossings occurred in the online agent
condition than in the offline one, for the time interval lesser than
1 s. In block 2, the accumulated crossings –after one of reference–
sharply decreased for both kinds of agents, in comparison to
block 1, suggesting a greater role for the visual information.

Figure 9B shows the distribution of crossings as we increase
the window span, between 500 and 1500 ms. In general, the
number of crossings remained similar for the online agent from
block 1 to block 3. In both blocks, when a participant crossed
over the online agent, the following crossings summed up to
four within the 1500 ms window span. This pattern was very
similar for the offline agent in block 1 while it was slightly inferior
in block 3: the offline reached at about 3 crossings, after one
occurred, during the 1500 ms window span.
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FIGURE 7 | Successes and crossings per type of agent and block in Study 2. (A) Probability of success in each block per type of agent. The horizontal dashed line
represents chance level (50%). (B) Mean number of crossings in each block per type of agent. Error bars depict 95% confidence intervals.

FIGURE 8 | Distribution of β in Study 2. At the top: distributions for the values of β (in black online agent, in blue offline agent). At the bottom, representation of the
means and variances as boxplots.
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FIGURE 9 | Distribution of the number of crossings according to the window span in Study 2. (A) The distribution has a Gaussian shape. The x-axis (time) is shown
on a logarithmic scale in order to see the relation between short times (milliseconds) and longer ones (dozens of seconds, which is the length of a round). At the top:
number of crossings after one crossing of reference in relation to the time they are produced, for each block and type of agent. At the bottom: the number of
accumulated crossings as a function of time. (B) Distribution of the number of crossings as we increase the window span. The graphs show how many crossings are
produced in the window span from one crossing until a specific amount of time.

Similarity Between Two Series
Like in Study 1, correlations between series were very high
when considering small time windows (in other words, the
series of both interacting agents maximally resemble each other).
This similarity slowly decreased as bigger time window were
considered (see Figure 10). Also, like in Study 1, the greatest
similarity occurred in block 2 when the other agent’s movements
were visible to the participant.

Colors were similarly distributed in blocks 1 and 3, indicating
that correlation between trajectories were similar in both blocks,
regardless of the type of agent involved. This suggests that, after
the increase in correlation that occurred in the second block, the
indices returned to the levels of block 1.

Since there was no difference across the distinct delays applied
(colors were again uniformly distributed for diverse time delays),
we employed the values with no delay. It means that we took the

correlation index for the window span with no delay applied to
the trajectories in the statistical model we will present in section
“Statistical Analysis.”

Figure 11 also takes the correlation values between two
trajectories with no delay and represents how these indices
change when different window spans are considered. On the one
hand, Figure 11A shows that, while in block 1 the correlation
with the online agent was slightly lower than the correlation with
the offline agent, in block 3 the correlation indices were similar
for both types of agents. On the other hand, Figure 11B indicates
that correlations were higher in block 1 than in block 3 for both
online and offline agents in all window spans.

Statistical Analysis
We built a model containing several predictors. We found, on
the one hand, that block 2 discriminated participants’ correct
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FIGURE 10 | Correlation indices for different windows span and delay times in Study 2. Each row refers to a type of agent (human online and human offline) and
each column refers to either block 1, block 2, or block 3. Inside each graph, the horizontal axis is the delay applied (from –1 s to 1 s), with the central column
showing no delay at all. Vertical axis alludes to the window span and it ranges from 50 ms (at the top) to 2500 ms (at the bottom). Light colors indicate higher
correlation and dark colors indicate lower correlation. All the graphs show the same scale of colors; then, colors can be compared among graphs.

FIGURE 11 | Correlations in auditory blocks and per type of agent in Study 2. (A) Correlation indices in block 1 (left) and block 3 (right) per type of agent as a
function of the window span. (B) Correlation indices per online agent (left) and offline agent (right) in block 1 and block 3.
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TABLE 3 | Probability of success and total number of crossings.

BLOCK 1 BLOCK 2 BLOCK 3

Correct answers

Online 0.6 0.8 0.59

Offline 0.51 0.63 0.53

Number of crossings

Online 47.28 (27.64) 27.38 (13.99) 39.78 (30.28)

Offline 45.86 (51.14) 27.59 (29.58) 30.10 (25.60)

Probability of correct responses about the nature of the other agent and mean (and
standard deviation) of crossings in each block and type of agent.

answer [t(837) = 3.53, p < 0.001]. On the other hand, all
the other predictors (type of agent, age, gender, beta, density
of crossings and correlation indices) did not discriminate
when the participant gave the correct answer (ps > 0.05; see
Supplementary Material for the detailed results).

These results differ from what we found in Study 1: now the
audiovisual information provided in block 2 allowed participants
to correctly distinguish both kinds of agents.

Debriefing
As in Study 1, at the end of the procedure we asked the same three
questions about their experience in the test to the participants:

– Describe briefly how you played the game.
– How have you decided that the agent was online?
– How have you decided that the agent was offline?

This time, 65% of participants’ responses corresponded to
category 1 (“reciprocity-based” responses), 25% to category 2
(“partially reciprocity-based” responses), and 10% to category 3
(“non-reciprocity based” responses). We take this as evidence
that our second study managed to induce participants to rely on
interaction detection, even if the information available was not
discriminant enough, except for the audiovisual block.

Confidence in the Response
We also analyzed the performance in the rounds that participants
reported to feel completely sure of their response. We took
into account the extreme points of the 7-point Likert scale that
represented the responses “I am completely sure that I interacted
with the Online agent” (1) and “I am completely sure that I
interacted with the Offline agent” (7) and selected the rounds in
which participants gave that reply.

A total of 303 series, out of 860, qualified as maximally
confident ones. Most participants (45 out of 48) were represented
in this subset. In those trials, the participants correctly identified
the online agent (binomial two-sided test, p < 0.001) and the
offline agent (binomial two-sided test, p = 0.05) in block 2. Their
probability of success was not different from chance level for any
type of agent in blocks 1 and 3 (binomial two-sided tests, all
ps > 0.23). In general, the performance was different from chance
level only in block 2, although it was always over 0.5 in all blocks
(see Table 3).

Regarding crossings, self-confident participants produced
more crossings in block 1, in the two conditions, than in the
rest of the blocks. As in Study 1, they produced, on average,

fewer crossings in block 2 than in the rest of the blocks (see also
Table 3). In general, there were more crossings with the online
than the offline agent in blocks 1 and 3. In block 2 there were
the same number of crossings for both types of agents. Figure 12
shows the probability of success and the crossings for online and
offline agents in the three blocks.

The type of block had a significant effect on crossings,
χ2(7) = 16.39, p < 0.001, but not the type of agent, χ2(8) = 0.50,
p = 0.47. Most important, the block × agent interaction was not
significant, χ2(10) = 1.46, p = 0.48.

Discussion
The changes to our experimental paradigm introduced in
our second study were able to reveal the use of reciprocal
contingencies to detect an interaction and to explicitly respond
the question task, but only when the available information was
sufficient to do so: participants were able to correctly distinguish
whether they were interacting with another person when they
could see the other moving as they moved, but not when just
hearing a sound when a crossing took place. To put it another
way, participants responded at chance level when they could
not tell apart whether an interaction was taking place or not, as
it happened in the auditory condition. The perceptual crossing
paradigm, which only provides acoustic (or tactile) feedback of
the crossing, does not seem to provide enough discriminant
information to detect social contingencies.

This insufficiency is made clearer when it is realized that the
participant can adopt either an active or a passive strategy in
addressing the task. He/she may move along the axis trying to
cross over the other agent, to see what happens next (i.e., active
strategy), or he/she may wait for a crossing over to happen,
to see whether the other agent moved back, generating the
characteristic series of crossings around a point (i.e., passive
strategy). Moreover, they may combine both strategies in a single
trial. But given that the offline agent in the second study was
a trajectory that had already been correctly deemed as human,
they might have generated an illusion of interaction, as these
contingencies were in fact available in the participants –except
in the audiovisual condition, where the participants correctly
classified the agent, on the unique evidence available, the
interactive one. In this way, Study 2 also confirms our hypothesis
that interaction detection involves the detection of contingencies
within a short window span, inferior to 1 s –basically around
500 ms, as found in Study 1.

GENERAL DISCUSSION

In this article, we have shown that individuals can resort to
social contingencies to respond in a minimal Turing test. Based
on a new version of the perceptual crossing paradigm, we also
investigated in two studies how much information is required
to reliably detect the reciprocal sensorimotor contingencies
in social interactions and, therefore, recognize the nature of
the other agent.

In particular, we presented participants with movements of
a human agent, either online or offline, and movements of
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FIGURE 12 | Successes and crossings per type of agent and block for the self-confident sample. (A) Probability of success in each block per type of agent. The
horizontal dashed line represents chance level (50%). (B) Mean number of crossings in each block per type of agent. Error bars depict 95% confidence intervals.

an oscillatory agent in three different blocks. In each block,
participants received either auditory or audiovisual feedback
along each trial. Analysis of participants’ explicit responses and
of the implicit information subsumed in the dynamics of their
series revealed that participants use the reciprocal sensorimotor
contingencies of the interaction in very specific scenarios.

The results of Study 1 showed that although participants
differentiated the human agents from the oscillatory agent and
correctly identified the latter one as a machine, they judged
both the online and the offline agents as persons, and their
performance did not improve in the audiovisual condition.
Analysis of the implicit measures during the interaction revealed
no specific pattern for each type of agent. According to these
results, participants may have used the periodicity of the other’s
movements to base their response instead of detecting the
interaction. The implicit measures of interaction agree with the
participant’s reports at the end of the procedure.

The instructions given in Study 1 failed to induce the
participants to look for the cues of interaction: while they
expected to interact either with a human or a machine, we
presented them with three different traces that corresponded to
three types of agents (online, offline, and the oscillatory bot).
In order to better induce the participant to pay attention to the
interaction cues, in Study 2 we eliminated the oscillatory bot and
changed the question to tell whether the other agents were online
or offline. We also adjusted the way participants replied at the

end of each round: they had to select, on a 7-point Likert scale,
how sure they were if the other agent was online or offline. The
results showed that participants correctly identified the online
agent in the audiovisual condition but they failed to recognize
the offline agent in all blocks, even when they could see the
avatars on the screen.

Only when we analyze the performance of the participants
who were completely sure of their reply, correct recognition of
both the online and the offline agents in the audiovisual condition
emerged. Therefore, our results show that participants can base
their responses on the coupled dynamics of interaction. However,
auditory signaling the crossing is not enough to tell apart real
interaction from a previously recorded, rightly recognized as
interactive, trajectories. This is congruent with previous studies in
the perceptual crossing framework. They relied on one modality
only (tactile stimulation or auditory feedback) and kept that
stimulation constant along the study and found the difficulty in
discriminating the avatar of the human agent from the mobile
lure. Associating different tones to each type of agent may be
more informative (Lenay and Stewart, 2012) but might also
induce participants to pay attention to the sounds themselves
instead to the pattern of the interaction.

Therefore, our study shows that participants are able to
use reciprocal sensorimotor contingencies of the interaction,
even if the minimal information available may require more
than one sensory modality. As a matter of fact, only when
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both auditory and visual cues are provided participants became
reliable in distinguishing the type of agent they are interacting
with. This finding is congruent with the intersensory redundancy
hypothesis (Bahrick and Lickliter, 2012) according to which
amodal properties are best perceived when simultaneous co-
occurrence of stimulation across different sense modalities takes
place. In our task, the temporal synchrony of the interaction
was detected in the audiovisual scenario when participants
simultaneously perceived visual and auditory information of
the interaction. Such intersensory facilitation happens because
“redundantly specified, amodal properties are highly salient and
[thus] detected more easily in bimodal synchronous stimulation
than [. . .] the same amodal properties in unimodal stimulation”
(Bahrick and Lickliter, 2012, 188).

Interestingly, we did not find a significant difference between
the first and the third block in any of the studies. The
audiovisual block 2 did not have an effect in the last block,
again suggesting the insufficiency of unimodal information for
interaction detection.

Our studies also confirmed the utility of the implicit measures
of interaction introduced by Bedia et al. (2014). The correlation
between the series of two players, showed that the series
resembled more to each other in the audiovisual condition at
the 500 ms window span. This means that the participants
tended to assimilate their trajectories to those of the agents
they were interacting with when they could see them. It is also
around this half-second that contingencies may generate the
experience of interaction. Interestingly, developmental studies
revealed that social contingency between different response
modalities of infants and their mothers can also be appreciated
in a similar window span equal to or less than 1 s long
(Dominguez et al., 2016; Español et al., under revision). On
the one hand, newborns’ and maternal vocalizations occurred
within a 1-s window (Dominguez et al., 2016) and, on the other
hand, maternal responsiveness through patterns of imitation
and affect attunement to the infant’s signals during the first
10 months also unfold during these short time windows (Español
et al., under revision). In general, the window span for cycles of
reciprocity using different response patterns does not seem to
vary through development.

However, fractal analyses did not result in any specific pattern
per type of agent. This null result may be partially explained
by the audiovisual condition. In the original study of Bedia
et al. (2014) “the emergence of a 1/f structure for genuine social
interaction is something that happens only in the shared space
between the two subjects, and the process cannot be reduced to
the individual dynamics of any of them” (p. 11). In our study,
the shared space was not maintained exactly constant along the
whole experiment since the feedback was different in each block.
This difference seems to be critical for this measure.

Finally, the introduction of the human offline agent may
have caused some difficulties in the procedure. If we compare it
with the previous shadow and lure bots from other perceptual
crossing experiments, the behavior of our offline agent was more
complex: it was able to create the illusion of interaction because it
was originally the outcome of a previous contingent interaction
between two humans. This additional complexity may have

confused the participants, making it very difficult to discriminate
between the online and the offline cases and struggling also the
way they interacted with each agent. Although previous research
showed that the detection of the offline agent is possible in
a tactile setup with pair of participants (Iizuka et al., 2009),
this achievement required tens of trials. We did not run the
study along such many trials to test whether recognition finally
emerged over extended periods of interactions, but we think that
it possibly does.

There is an additional limitation in our study: although a
participant interacted with one agent at a time, the behavior of
the human online agent did not correspond to the same human
participant along the trials. As we performed a group experiment
(groups of 4 or 6 participants in a row), each trial in which
a participant interacted with a human online was randomly
assigned to a group, so he/she never interacted with the same
counterpart in the online condition. That is, each participant
encountered up to 5 different people in Study 1, or up to 3 human
counterparts in Study 2. Previous experiments studied how the
detection of agency emerged in pair of participants as the other
human of this pair was the same person during the whole setup
(except for Bedia et al., 2014). As each person can display different
strategies and behaviors, this source of variation could increase
the difficulty of the task. More research is needed to delve into
each of these issues.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation,
to any researcher.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of ethical guidelines of the Research
Ethics Committee of the University of the Balearic Islands.
All participants gave written informed consent in accordance
with the Declaration of Helsinki. The protocol was approved
by the Research Ethics Committee of the University of the
Balearic Islands.

AUTHOR CONTRIBUTIONS

PB and AG conceived of the presented idea, designed the study,
and wrote the manuscript. MB worked out almost all of the
technical details of the analyses. PB carried out the experiments.
PB and MB performed the analyses and designed the figures and
tables. AG supervised the project.

FUNDING

This work was supported by the research project FFI2017-
86351-R of the Spanish Government (AEI/FEDER, EU). PB was

Frontiers in Human Neuroscience | www.frontiersin.org 18 March 2020 | Volume 14 | Article 102

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00102 October 16, 2024 Time: 14:2 # 19

Barone et al. A Minimal Turing Test

supported by a Ph.D. scholarship from the Spanish Government
(Grant No. BES-2014-067640). MB thanks the support of the
project TIN2016-80347-R funded by the Spanish Ministry of
Economy and Competitiveness.

ACKNOWLEDGMENTS

We thank the students who took part in both studies and the
participants of the socSMCs conference 2018 “Social cognition
in humans and robots” for their very valuable comments and

questions on the poster version of this manuscript. We also thank
David Gracia Larrodé and Tomás Gómez for their valuable help
in this project, as well as the two referees from this journal for
their questions and suggestions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2020.00102/full#supplementary-material

REFERENCES
Auvray, M., Lenay, C., and Stewart, J. (2009). Perceptual interactions in a

minimalist virtual environment. New Ideas Psychol. 27, 32–47. doi: 10.1016/j.
newideapsych.2007.12.002

Auvray, M., and Rohde, M. (2012). Perceptual crossing: the simplest online
paradigm. Front. Hum. Neurosci. 6:181. doi: 10.3389/fnhum.2012.00181

Bahrick, L. E., and Lickliter, R. (2012). “The role of intersensory redundacy in early
perceptual, cognitive, and social development,” in Multisensory Development,
eds A. J. Bremner, D. J. Lewkowicz, and C. Spence (Oxford: Oxford University
Press), 183–205.

Bedia, M. G., Aguilera, M., Gómez, T., Larrode, D. G., and Seron, F. (2014).
Quantifying long-range correlations and 1/f patterns in a minimal experiment
of social interaction. Front. Psychol. 5:1281. doi: 10.3389/fpsyg.2014.01281

Berkovits, I., Hancock, G. R., and Nevitt, J. (2000). Bootstrap resampling
approaches for repeated measure designs: relative robustness to sphericity
and normality violations. Educ. Psychol. Meas. 60, 877–892. doi: 10.1177/
00131640021970961

Bigelow, A. E., and Decoste, C. (2003). Sensitivity to social contingency from
mothers and strangers in 2-, 4-, and 6-month-old infants. Infancy 4, 111–140.
doi: 10.1207/S15327078IN0401_6

Bigelow, A. E., MacLean, B. K., and MacDonald, D. (1996). Infants’ response to live
and replay interactions with self and mother. Merrill Palmer Q. 42, 596–611.
doi: 10.2307/23087472

Dominguez, S., Devouche, E., Apter, G., and Gratier, M. (2016). The roots of turn-
taking in the neonatal period. Infant Child Dev. 25, 240–255. doi: 10.1002/icd.
1976

Field, T., Nadel, J., Hernandez-reif, M., Diego, M., Vera, Y., Gil, K., et al. (2005).
Depressed mothers’ infants show less negative affect during non-contingent
interactions. Infant Behav. Dev. 28, 426–430. doi: 10.1016/j.infbeh.2005.03.003

Gelman, A., Hill, J., and Yajima, M. (2012). Why we (usually) don’t have to
worry about multiple comparisons. J. Res. Educ. Eff. 5, 189–211. doi: 10.1080/
19345747.2011.618213

Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychol. Rev. 108, 33–56.
doi: 10.I037//0033-295X.108.1.33

Gomila, A. (2001). La perspectiva de segunda persona: mecanismos mentales de la
intersubjetividad. Contrastes 6, 65–86. doi: 10.24310/Contrastescontrastes.v0i0.
1448

Gomila, A. (2002). La perspectiva de segunda persona de la atribución mental.
Azafea Rev. Filos. 4, 123–138.

Gomila, A. (2012). Verbal Minds. Language and the Architecture of Cognition.
London: Elsevier.

Gomila, A., and Pérez, D. (2017). “Lo que la segunda persona no es,” in La Segunda
Persona y Las Emociones, eds D. Perez, and D. Lawler (Ciudad Autónoma de
buenos Aires: SADAF), 275–297.

Iizuka, H., Ando, H., and Maeda, T. (2009). “The anticipation of human behavior
using ‘parasitic humanoid,’,” in Human-Computer Interaction. Ambient,
Ubiquitous and Intelligent Interaction, ed. J. Jacko (Berlin: Springer-Verlag),
284–293. doi: 10.1007/978-3-642-02580-8_31

Lenay, C., and Stewart, J. (2012). Minimalist approach to perceptual interactions.
Front. Hum. Neurosci. 6:98. doi: 10.3389/fnhum.2012.00098

Lenay, C., Stewart, J., Rohde, M., and Amar, A. A. (2011). “You never fail to
surprise me”: the hallmark of the other: experimental study and simulations

of perceptual crossing. Interact. Stud. 12, 373–396. doi: 10.1075/is.12.3.
01len

Murray, L., and Trevarthen, C. (1985). “Emotional regulation of interactions
between two-month-olds and their mothers,” in Social Perception in Infants, eds
T. Field, and N. Fox (Norwood, NJ: Ablex), 177–197.

Nadel, J., Carchon, I., Kervella, C., Marcelli, D., and Réserbat-Plantey, D. (1999).
Expectancies for social contingency in 2-month-olds. Dev. Sci. 2, 164–173.
doi: 10.1111/1467-7687.00065

Okanda, M., and Itakura, S. (2005). “Young infants’ sensitivity to social
contingency from mother and stranger: Developmental changes,” in Proceedings
of the 4th International Conference on Development and Learning (Osaka:
IEEE), 165–168. doi: 10.1109/DEVLRN.2005.1490971

Peng, C. K., Hausdorff, J. M., and Goldberger, A. L. (2000). “Fractal mechanisms
in neuronal control: human heartbeat and gait dynamics in health and
disease,” in Self-Organized Biological Dynamics and Nonlinear Control, ed.
J. Walleczek (Cambridge: Cambridge University Press), 66–96. doi: 10.1017/
cbo9780511535338.006

Pérez, D. (2013). Sentir, Desear, Creer: Una Aproximación Filosófica a Los Conceptos
Psicológicos. Buenos Aires: Prometeo.

Pfeiffer, U. J., Timmermans, B., Bente, G., Vogeley, K., and Schilbach, L.
(2011). A non-verbal turing test: differentiating mind from machine in gaze-
based social interaction. PLoS One 6:e27591. doi: 10.1371/journal.pone.002
7591

Reddy, V. (2008). How Infants Know Minds. Harvard: Harvard University Press.
Stormark, K. M., and Braarud, H. C. (2004). Infants’ sensitivity to social

contingency: a “double video” study of face-to-face communication between
2- and 4-month-olds and their mothers. Infant Behav. Dev. 27, 195–203. doi:
10.1016/j.infbeh.2003.09.004

Trevarthen, C. (1979). “Communication and cooperation in early infancy: a
description of primary intersubjectivity,” in Before Speech: The Beginning
of Human Communication, ed. M. Bullowa (London: Cambridge University
Press), 321–347.

Turing, A. M. (1950). Computing machinery and intelligence. Mind 59, 433–460.
doi: 10.1093/mind/LIX.236.433

Van Orden, G. C., Holden, J. G., and Turvey, M. T. (2003). Self-organization of
cognitive performance. J. Exp. Psychol. Gen. 132, 331–350. doi: 10.1037/0096-
3445.132.3.331

Van Orden, G. C., Holden, J. G., and Turvey, M. T. (2005). Human cognition and
1/f scaling. J. Exp. Psychol. Gen. 134, 117–123. doi: 10.1037/0096-3445.134.1.
117

Westfall, P. H. (2011). On using the bootstrap for multiple comparisons.
J. Biopharm. Stat. 21, 1187–1205. doi: 10.1080/10543406.2011.607751

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Barone, Bedia and Gomila. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 19 March 2020 | Volume 14 | Article 102

https://www.frontiersin.org/articles/10.3389/fnhum.2020.00102/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00102/full#supplementary-material
https://doi.org/10.1016/j.newideapsych.2007.12.002
https://doi.org/10.1016/j.newideapsych.2007.12.002
https://doi.org/10.3389/fnhum.2012.00181
https://doi.org/10.3389/fpsyg.2014.01281
https://doi.org/10.1177/00131640021970961
https://doi.org/10.1177/00131640021970961
https://doi.org/10.1207/S15327078IN0401_6
https://doi.org/10.2307/23087472
https://doi.org/10.1002/icd.1976
https://doi.org/10.1002/icd.1976
https://doi.org/10.1016/j.infbeh.2005.03.003
https://doi.org/10.1080/19345747.2011.618213
https://doi.org/10.1080/19345747.2011.618213
https://doi.org/10.I037//0033-295X.108.1.33
https://doi.org/10.24310/Contrastescontrastes.v0i0.1448
https://doi.org/10.24310/Contrastescontrastes.v0i0.1448
https://doi.org/10.1007/978-3-642-02580-8_31
https://doi.org/10.3389/fnhum.2012.00098
https://doi.org/10.1075/is.12.3.01len
https://doi.org/10.1075/is.12.3.01len
https://doi.org/10.1111/1467-7687.00065
https://doi.org/10.1109/DEVLRN.2005.1490971
https://doi.org/10.1017/cbo9780511535338.006
https://doi.org/10.1017/cbo9780511535338.006
https://doi.org/10.1371/journal.pone.0027591
https://doi.org/10.1371/journal.pone.0027591
https://doi.org/10.1016/j.infbeh.2003.09.004
https://doi.org/10.1016/j.infbeh.2003.09.004
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1037/0096-3445.132.3.331
https://doi.org/10.1037/0096-3445.132.3.331
https://doi.org/10.1037/0096-3445.134.1.117
https://doi.org/10.1037/0096-3445.134.1.117
https://doi.org/10.1080/10543406.2011.607751
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	A Minimal Turing Test: Reciprocal Sensorimotor Contingencies for Interaction Detection
	Introduction
	Study 1
	Materials and Methods
	Participants
	Experimental Procedure
	Coding
	Participants' responses
	Number of crossings
	Fractal indices
	Time between two crossings and window of crossings
	Similarity between two series

	Statistical Approach

	Results
	Participants' Responses and Number of Crossings
	Fractal Indices
	Time Between Two Crossings and Window of Crossings
	Similarity Between Two Series
	Statistical Analysis
	Debriefing

	Discussion

	Study 2
	Materials and Methods
	Participants
	Experimental Procedure
	Coding
	Statistical Approach

	Results
	Participants' Responses and Number of Crossings
	Fractal Indices
	Time Between Two Crossings and Window of Crossings
	Similarity Between Two Series
	Statistical Analysis
	Debriefing
	Confidence in the Response

	Discussion

	General Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


