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While an increasing number of behavioral studies suggest the importance of statistical
learning in acquiring orthographic regularity across writing systems, no direct neural
evidence supports this claim. The present study used event-related potentials (ERPs)
to investigate the time course and the neural correlate of statistical learning of positional
consistency in Chinese orthography. Visual ERPs were recorded, while Chinese adults
performed an orthographic statistical learning task involving artificial characters varying in
high, moderate, and low levels of positional consistency. The negative ERP deflection at
the N1 time window, typically linked with orthographic regularity processing, was found
in orthographic statistical learning with the low and moderate consistencies eliciting
larger neural responses than the high consistency in the time window of 150–210 ms
over occipital–temporal brain areas. These results suggest that orthographic statistical
learning begins within the first 210 ms and that the N1 might be its neural indicator.

Keywords: event-related potentials, statistical learning, orthographic learning, Chinese, N1

INTRODUCTION

An increasing number of recent studies show that statistical learning is not only useful for
spoken language acquisition (for a review, see Erickson and Thiessen, 2015) but also plays a role in
orthographic learning, which is the process of acquiring word-specific orthographic representations
essential for reading and writing (for a review, see Castles et al., 2018). In particular, statistical
learning, or the ability to extract and integrate statistical properties of environmental input, such as
frequency and variability, has been shown to be a powerful tool that helps Chinese children learn
a large number of visually complex characters in the process of becoming literate (e.g., Arciuli and
Simpson, 2011; Yin and McBride, 2015; He and Tong, 2017). However, as statistical learning has
only been investigated behaviorally in these previous studies, the neural mechanism of statistical
learning of orthographic regularities remains unexplored. Thus, in the present study, we employ
event-related potentials (ERPs) to examine the electrophysiological correlate of statistical learning
of positional consistency of radicals, a key aspect of Chinese character orthography.

Since over 80% of Chinese characters are semantic–phonetic compound characters that
comprise semantic and phonetic radicals, the positional consistency of these radicals is a critical
statistical property that can be used to identify the legal positions of radicals (Shu et al., 2003). The
positional consistency of these radicals indicates how frequently a radical occurs in a given location
within characters, and it can vary from 0% to 100%. That is, some radicals only appear in a specific
location when forming a Chinese character. For example, the radicals
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always appear
on the left, and never in any other position. Thus, the positional consistency for these radicals on
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the left is 100%, while it is 0% for the other locations. However,
not all radicals follow an all (100%) or none (0%) consistency
regularity. Most radicals appear in different positions when
combined with other components to form characters. For
example, the radical can appear on the left (e.g., , ,
, , , , ), right (e.g., , ), top (e.g., , ), bottom

(e.g., , , , , ), or inside (e.g., ). Thus, the positional
consistency for the radical varies across different characters.
The existence of this distributional information of a radical’s
position raises two questions: (1) Does the statistical information
of a radical’s position become encoded during the learning
process? and (2) What electrophysiological indicator is linked
with this process?

In fact, a few studies have demonstrated that young
Chinese children are able to extract the statistical distributional
information of radicals (e.g., Tong and McBride, 2014; Yin and
McBride, 2015; He and Tong, 2017) and use that information
in their subsequent character recognition and encoding (e.g., He
and Tong, 2017). For example, Tong and McBride (2014)
used an orthographic regularity elicitation paradigm in which
participants were asked to invent novel characters using
untaught structural units of characters (i.e., stroke patterns) and
demonstrated that even preschool children were sensitive to the
positional constraints of structural components of characters
and that their ability to use the positional constraints of
stroke patterns improved as their reading experience increased.
Furthermore, He and Tong (2017) employed a modified classical
statistical learning paradigm, i.e., artificial orthography learning,
in which a set of Chinese-like logographic characters was
created using an ideographic script (i.e., Dongba) and a syllabic
script (i.e., Geba). After a short exposure to a subset of
novel logographic characters, school-aged children were able to
distinguish characters containing radicals in legal positions from
those containing radicals in illegal positions (He and Tong, 2017).

However, these previous behavioral studies primarily make
use of reaction time or response accuracy as indices of
statistical learning. These measures are often indirect and
rarely straightforward since they may result from a compound
function of perception, cognition, attention, and motor control
(e.g., Daltrozzo et al., 2017). Thus, variations in reaction time and
accuracy may be difficult to attribute to variations in a specific
cognitive process (Landi and Perfetti, 2007), such as statistical
learning. In the present study, by relying on electrophysiological,
rather than behavioral, responses to stimuli, we examine
the neural processing of statistical learning of positional
consistency of radicals, both in terms of robustness and speed
of the responses. Also, since the ERP approach provides a
continuous recording of brain activity with millisecond temporal
resolution (Molfese et al., 1999), and since ERPs are time
locked to the onset of stimuli, we were able to disentangle
statistical learning processes that cannot be predicted from
behavioral data alone, such as when statistical learning occurs
(Howard-Jones et al., 2016).

To date, several studies have employed the ERP approach
to investigate the electrophysiological correlates of statistical
learning in speech or artificial grammar learning (for a review
see Daltrozzo and Conway, 2014). For example, Kooijman

et al. (2005) found that a N400-like component was elicited
when 10-months-old prelinguistic infants were sensitive to the
boundary of words in continuous speech. Also, Teinonen et al.
(2009) showed that even sleeping newborn infants are able to use
statistical patterns of speech input to detect the word boundaries
in a continuous stream of syllables containing no morphological
cues. This sensitivity was reflected by a late negativity in the
N400 time window of 340–390 ms (Teinonen et al., 2009).
Similarly, an ERP study in adults revealed that the initial syllable
of pseudowords elicited a larger N100 than the medial and final
syllables for both before and after training phases in fast learners,
but not in slow learners, with a similar effect occurring in the
N400 component (Sanders et al., 2002).

These ERP studies on statistical learning in language
acquisition and processing motivated us to examine the neural
mechanism of statistical learning of orthographic regularities
in Chinese. Specifically, we examined the time course and
neural correlate of statistical learning of positional consistency
in Chinese adult learners. This would allow us to examine where
and when orthographic statistical learning occurs. The statistical
property was manipulated by varying the consistency levels
(i.e., high, moderate, and low) of target radicals embedded in
artificial pseudocharacters. Although no empirical studies have
directly examined the neural process of statistical learning of
orthographic regularities, there have been studies focusing on
the consistency effect in Chinese visual word recognition. For
example, Lee et al. (2007) used the ERP technique to investigate
the neural locus of the consistency effect of phonetic radicals of
Chinese characters in a homophone judgment task. The authors
reported that the low-consistency characters produced a greater
N170 amplitude in the temporal–occipital region and a greater
P200 amplitude in the frontal region than the high-consistency
characters, and that high-consistency characters elicited a greater
N400 amplitude than low-consistency characters. The N170 and
N400 are two different ERP components that associate with
different information process during word recognition. The
N170 is a negative-going ERP component peaking at around
200 ms after stimulus onset with localization over the left
occipital–temporal cortex in skilled readers (e.g., Rossion et al.,
2002; Maurer et al., 2008; Tong and McBride, 2018). The N170 is
found to associate with orthographic processing or visual word
form analysis. In contrast, the N400 component is a negative
component that is related to semantic and expectancy of a
given word to end a sentence (Kutas and Hillyard, 1980) or
reflects a later stage of lexical processing (Lee et al., 2007).
Different from previous studies, the present studymainly focused
on orthographic learning of the positional regularity rather
than on how the positional consistency influences visual word
recognition. In addition, different tasks may determine the
degree of top–down semantic information processing involved in
visual word recognition (Maurer et al., 2005; Eberhard-Moscicka
et al., 2015). For example, in the repetition detection task used
in the present study, the participants were required to make
responses only to nontarget stimuli based on a visual analysis
of presented stimuli; in this way, the top–down influences from
semantics could beminimized. Thus, we expect that the statistical
learning of positional regularities of radicals would occur in
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an early time window with topographic distribution over the
posterior brain areas (i.e., N170 time window).

MATERIALS AND METHODS

Participants
We recruited 29 Chinese speaking undergraduate or graduate
students aged between 18 and 26 years from a local university
to participate in the experiment. Two participants’ ERP data
had excessive artifacts and two participants’ accuracy in the
learning phase was lower than 50%. They were excluded from
analysis. All the 25 participants (eight males) included in the
analysis were Chinese Mandarin native speakers and had never
performed similar experiments before. All the participants were
right-handed and had normal or corrected-to-normal vision.
Sixty Yuan (approximately 9 U.S. dollars) was given to each
participant to express our gratuity to their participation.

Materials and Design
The core learning stimuli were 30 pseudocharacters adopted and
modified from a recent study by He and Tong (2017). These
pseudocharacters were created using real Geba and Dongba
characters once used by the Naxi minority in Western China
(Li, 2014) but which have never been exposed or taught to the
participants.

The 30 pseudocharacters were created by combining six
target radicals with five control radicals. The control radicals
carried no positional preference among items. However, the
target radicals were manipulated to carry different positional
consistencies. In six target radicals that the participants had to
learn, three target radicals appeared in one position (i.e., top),
whereas the other three appeared in the opposite position
(i.e., bottom). The target radicals for each assigned position
varied in consistency: high (100%), moderate (80%), and low
(60%). These levels were selected according to the statistical
properties of the Chinese characters. For example, to create 100%
consistency, the target radical appeared on the top in all five
pseudocharacters. At 80% consistency, the radical

 

appeared
on the top in four pseudocharacters and on the bottom in one

pseudocharacter. At 60% consistency, the radical

by

ed

ed

appeared
on the top in three pseudocharacters and on the bottom in
two pseudocharacters.

Procedure
All the participants were individually tested in a sound-
attenuated electroencephalographic (EEG) lab at the university.
The participants had to complete both parts of the experiment
comprised of a learning phase and a recognition test with a 2-min
break in between. The participants’ neural activity was recorded
only during the learning phase. The participants’ response
accuracy and reaction time, however, were recorded during both
phases. The procedure for the learning and recognition tests is
illustrated in Figure 1.

In the learning phase, a revised statistical learning paradigm,
which has been used successfully in prior studies (He and Tong,
2017), was adopted to assess the participants’ statistical learning
process. The stimuli were shown on the monitor using E-Prime
2.0 software (Psychology Software Tools, Pittsburgh, PA, USA).
The participants were exposed to each continuous sequence of
pseudocharacters in a fixed pseudo-randomized order at the
center of the monitor. Each stimulus was repeated 24 times in
the learning phase, with a total of 720 trials. At the beginning
of each trial, a fixation ‘‘+’’ lasting 500 ms appeared on the
monitor screen. Next, a blank screen appeared for 500 ms,
followed by a pseudocharacter with a duration of 800 ms.
After each stimulus presentation, a blank screen was shown
for 1,000 ms as an interstimulus interval (ISI). The participants
were asked to press the SPACEBAR key whenever two identical
stimuli were presented continuously. Ten practice trials were
administered in order to familiarize the participants with the
experiment.

In the recognition test, the participants were shown 30 stimuli,
half of which had appeared in the learning phase, while the other
half were novel stimuli serving as foils by reversing the positions
of the target and control radicals. The participants were required
to identify if they had seen the stimuli in the learning phase by
pressing corresponding keyboard buttons. The stimuli remained
visible until the participants pressed the key.

FIGURE 1 | Procedure for the learning and recognition tests.
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EEG Recordings and Data Analysis
We used the Brain Product 32-channel Ag/AgCl system (Brain
Products Inc) to record the participants’ EEG activity. The EEG
was recorded continuously at a sampling rate of 500 Hz with the
FCz electrode as the online reference. Electrode impedances were
kept below 5 k�. The EEG data were preprocessed with EEGLAB
(Delorme andMakeig, 2004). Continuous EEG data were filtered
with 0.05 Hz to 100 Hz as the online band-pass filter. The filtered
data were segmented into epochs from −100 ms to 600 ms and
time locked to the target stimuli with an offline band-pass filter
of 0.2 Hz to 30 Hz. The ICA approach was applied to reject
eye blinks. According to the average reference, the data were
corrected to a −100- to 0-ms baseline. The ERPs were averaged
within each condition.

Statistical analyses were performed on the amplitude
measured as the mean amplitude across the 150- to 210-ms
time window. We used the mean amplitude, rather than the
peak amplitude, and latency to index the ERP components
because the mean amplitude approach has many advantages
over the peak amplitude approach (Luck, 2014). For example,
the mean amplitude approach is suggested to be more reliable
than the peak amplitude approach because peak amplitude is
easily influenced by noise. In contrast, the mean amplitude
filters out noise at high and intermediate frequencies (Luck,
2014). In addition, peak occurs at different times at different
electrode sites, which is against the hypothesis that an ERP
component in the brain has the same timing at every electrode
side. Furthermore, the mean amplitude is insensitive to trail-to-
trial latency variability; in contrast, the peak amplitude is strongly
influenced by trial-to-trial latency variability (Luck, 2014). Four
electrodes (i.e., P7, O1, P8, and O2) were selected for statistical
analyses on the topographic map in the most negative field
over both hemispheres across experimental conditions. Repeated
measures analysis of variance (ANOVA), with experimental
conditions (low-, moderate-, and high-consistency levels),
hemispheres (left, right), and electrodes (P7, O1, P8, and O2)
as within-subjects factors, were performed in the selected time
window. The Greenhouse–Geisser adjustment to the degrees of
freedomwas used to correct for violations of sphericity associated
with a repeated measure.

RESULTS

Behavioral Data
As shown in Table 1, for the learning test, the participants’
response accuracy ranged from 68.3% to 100% with a mean of
88.3%, suggesting that all the participants attended to the stimuli

during the learning phase, and all the participants were retained
for the analysis of recognition test performance.

For the recognition test, the participants’ overall mean
recognition accuracy (mean = 70.21%) was significantly higher
than 50% chance (t(24) = 13.48, p < 0.001). One-sample t-
tests were conducted on the participants’ accuracy for each
level of consistency. The results revealed that the participants’
recognition accuracy in all the three consistency conditions was
significantly higher than the chance level (t(24) = 16.83, p< 0.001,
t(24) = 5.43, p < 0.001, t(24) = 4.66, p < 0.001), for high-,
moderate-, and low-consistency levels, respectively. These results
suggest that participants can acquire positional regularities of
radicals through statistical learning.

A repeated measures ANOVA with the experimental
condition as within factor was also performed on the accuracy
rate and reaction time for the recognition test to further examine
the participants’ sensitivity to the consistency of radicals. For
the accuracy, the results showed that there was a significant
consistency effect (F(2,48) = 32.30, p < 0.001, η2 = 0.57).
Follow-up contrasts demonstrated that participants were more
accurate in the high-consistency condition than the moderate-
and low-consistency conditions (ps < 0.001). It suggests that the
participants were sensitive to the positional consistency of target
radicals, and the high consistency facilitated their recognition of
pseudocharacters. However, there was no significant difference
among all three conditions on the reaction time (F(2,48) = 0.77,
p = 0.43, η2 = 0.03).

ERP Data
Figure 2 shows the grand average of ERPs at the four selected
electrodes for all conditions. Figure 3 shows the topographic
maps of the N1 for the difference between high consistency vs.
low consistency, high consistency vs. moderate consistency, and
moderate consistency vs. low consistency. The mean amplitude
at each selected electrode is shown in Table 2.

Repeated measures ANOVAs, with consistency level (low,
moderate, and high), electrode (P, O), and laterality (left, right)
as within-subject factors, revealed that the consistency effect
was significant (F(2,48) = 6.30, p < 0.01, η2 = 0.21). The
follow-up comparisons showed that the mean amplitude for the
low-consistency level (M = −2.46 µV) was more negative than
for the high-consistency level (M = −2.12 µV); however, the
difference between moderate-consistency level (M = −2.26 µV)
and high-consistency level was not significant, and the difference
between moderate-consistency level and low-consistency level
was not significant. The effect of electrode was significant
(F(1,24) = 5.21, p < 0.05, η2 = 0.18). The mean amplitude for

TABLE 1 | Reaction time (ms) and accuracy rate in the learning and recognition phases.

Conditions Learning phase Recognition phase

Reaction time Accuracy rate Reaction time Accuracy rate

Low consistency 670.184 (115.297) 0.887 (0.091) 1,345.247 (473.403) 0.612 (0.120)
Moderate consistency 671.308 (113.925) 0.886 (0.079) 1,480.098 (956.241) 0.644 (0.133)
High consistency 669.105 (112.214) 0.875 (0.099) 1,464.884 (566.967) 0.852 (0.105)

Note. The numbers in parentheses are standard deviations.
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P7/8 was more negative than for O1/2. The effect of laterality
was not significant (F(1,24) = 0.44, p = 0.51, η2 = 0.02). The
interaction of laterality by consistency level was not significant
(F(2,48) = 1.76, p = 0.18, η2 = 0.07). The interaction of electrode
by consistency level was not significant (F(2,48) = 0.86, p = 0.43,
η2 = 0.04). The interaction of laterality by electrode was not
significant (F(1,24) = 0.07, p = 0.79, η2 = 0.00). Moreover, the
three-way interaction of laterality by electrode by consistency
level was not significant (F(2,48) = 0.58, p = 0.57, η2 = 0.02).

FIGURE 2 | Grand averaged event-related potential (ERP) waveforms of
low-, moderate-, and high-consistency conditions in P1, O1, P8, and
O2 electrodes. High, high-consistency level; Mod, moderate-consistency
level; Low, low-consistency level.

DISCUSSION

Statistical learning is useful for acquiring orthographic
regularities, such as spelling patterns, in alphabetic languages
(e.g., Pacton et al., 2005; Treiman et al., 2018) and positional
regularities in non-alphabetic Chinese (e.g., He and Tong,
2017). Our study is the first to investigate the time course
and neural character correlate of statistical learning of one
key aspect of Chinese orthographic regularities (i.e., positional
regularities). Our core finding is that the low- and moderate-
consistency levels elicited a larger neural response in the time
window of 150–210 ms (i.e., the N1 component) than the
high-consistency level over the occipital–temporal area of the
brain (in particular, in the O1 electrode). This result suggests that
the N1 component may be a possible neural indicator associated
with statistical learning of positional regularities of Chinese
character orthography and that statistical learning occurs in the
early time window before 210 ms.

Consistent with previous behavioral studies (e.g., He and
Tong, 2017), our results showed that all participants were able
to acquire positional regularities through statistical learning and
that consistency level impacted statistical learning performance,
with better performance appearing for high rather than
moderate- and low-consistency conditions. These results suggest
that statistical learning is a potential mechanism underlying
orthographic learning. Additionally, our results revealed that
the neural response was more negative for the moderate- and
low-consistency levels than for the high-consistency level in the
time window of 150–210 ms, indicating that statistical learning
of positional regularity may occur in the time window of the
N1 component. Indeed, this finding aligns with previous ERP
studies showing that theN1 component is related to orthographic
processing across writing systems (e.g., Bentin et al., 1999;
Maurer et al., 2006, 2008; Zhao et al., 2012) and learning
processes (e.g., McCandliss et al., 1997).

FIGURE 3 | Topographic maps of consistency effects. High, high-consistency level; Mod, moderate-consistency level; Low, low-consistency level.

TABLE 2 | Mean amplitudes between 150 and 210 ms for each condition in the ERP learning task at the electrodes of P7, O1, P8, and O2.

Conditions P7 O1 P8 O2

Low consistency −2.681 (2.768) −2.056 (2.825) −2.787 (2.944) −2.314 (2.996)
Moderate consistency −2.412 (2.813) −1.914 (2.804) −2.580 (2.967) −2.124 (3.027)
High consistency −2.241 (2.770) −1.645 (2.714) −2.558 (2.941) −2.018 (3.003)
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Our findings may be understood in terms of two competing
hypotheses concerning the underlying mechanisms of the
N1 effect. One assumes that the N1 effect was influenced by
familiarity of the stimulus (e.g., Posner and McCandliss, 2000;
Maurer et al., 2008). For example, a larger N1 was found for word
and word-like stimuli than for visual controls, and for real word
than for pseudowords in both children and adults (e.g., Maurer
et al., 2005, 2006).

In contrast, the other hypothesis argues that the N1 effect was
modulated by orthographic regularity but not by the familiarity
of letter strings (McCandliss et al., 1997). For example, in a
study by McCandliss et al. (1997), participants were trained to
learn 60 Keki words. Their brain responses to four types of
stimuli, i.e., familiar English words, Keki words, Keki control
words (i.e., unfamiliar words), and English consonant strings,
were recorded before training, 10 days after training, and 5 weeks
after training. The ERP results across all three sessions showed
that the familiar English stimuli elicited the least negative N1,
while the unfamiliar English consonant strings elicited the most
negative N1; the learned Keki and Keki-control strings were in
between. The authors thus argued that the negativity level of the
N1 is associated with the degree of orthographic regularity of the
letter string, with greater orthographic regularity associated with
less negative N1 response.

In line with the orthographic regularity hypothesis of
the N1 effect, we found that the low-consistency level (60%
or irregular: the target radicals occur in several different
positions) elicited the most negative N1 response, followed
by the moderate-consistency level (80% or semi-regular: the
target radicals have a primary and secondary positions), with
the high-consistency level (100% or regular: the target radicals
always appear in one specific position) eliciting the least negative
N1 response. Additionally, the topographic distribution showed
that the N1 was located in the left occipital–temporal areas,
particularly, in the O1 electrode, which is also consistent with
previous ERP and brain imagining studies showing posterior
areas related to visual orthography (e.g., McCandliss et al., 2003;
Maurer et al., 2005, 2008). Taken together, our findings are in
accordance with the hypothesis that the N1 is influenced by
orthographic regularity and also suggest that the N1 could be
a neural indicator of statistical learning of positional regularity
in Chinese.

It is noted that the pseudocharacters used in this study
were created using real Geba characters that were used in
the Naxi minority in Western China (Li, 2014), but which
have never been exposed or taught to the participants. It
is suspected that the results of the present study could be
different from the results using real Chinese characters. In
fact, a recent behavioral study (He, 2015) has examined this
question using different visual learning materials including

Chinese pseudocharacters (e.g., , ), Geba pseudocharacters
(e.g., , ), and nameless figures (e.g., , ). The results from
the recognition test suggested that the participants could learn
the positional configurations of stimuli from statistical learning
with all types of orthographic codes, although the difference of
orthographic types did influence the participants’ accuracy and
reaction time in recognizing the exposed stimuli. Nevertheless,
researchers should further clarify the answer to this question by
directly comparing how different visual materials influence the
neural mechanism of orthographic statistical learning in Chinese.

By employing an artificial orthographic learning paradigm
to systematically manipulate statistical consistency of the target
radicals, the present study is the first to demonstrate that
the orthographic statistical learning process occurs quite early
within the time window of 150–210 ms and that the N1 might
be a neural indicator of orthographic statistical learning in
Chinese. With the statistical learning of positional regularity
ERP component (N1) identified, it would be worthwhile for
future research to investigate whether the same component
is evoked in other aspects of statistical learning of Chinese
character orthography, such as orthography–phonology and
orthography–semantics mappings.
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