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There are a number of key data-centric questions that must be answered when
developing classifiers for operator functional states. “Should a supervised or
unsupervised learning approach be used? What degree of labeling and transformation
must be performed on the data? What are the trade-offs between algorithm flexibility
and model interpretability, as generally these features are at odds?” Here, we focus
exclusively on the labeling of cognitive load data for supervised learning. We explored
three methods of labeling cognitive states for three-state classification. The first method
labels states derived from a tertiary split of trial difficulty during a spatial memory task.
The second method was more adaptive; it employed a mixed-effects stress–strain
curve and estimated an individual’s performance asymptotes with respect to the same
spatial memory task. The final method was similar to the second approach; however,
it employed a mixed-effects Rasch model to estimate individual capacity limits within
the context of item response theory for the spatial memory task. To assess the strength
of each of these labeling approaches, we compared the area under the curve (AUC)
for receiver operating curves (ROCs) from elastic net and random forest classifiers. We
chose these classifiers based on a combination of interpretability, flexibility, and past
modeling success. We tested these techniques across two groups of individuals and
two tasks to test the effects of different labeling techniques on cross-person and cross-
task transfer. Overall, we observed that the Rasch model labeling paired with a random
forest classifier led to the best model fits and showed evidence of both cross-person
and cross-task transfer.

Keywords: mental workload, transfer learning, brain–computer interface, functional near-infrared spectroscopy,
prefrontal cortex

INTRODUCTION

People can have “off days” where even the simplest tasks seem difficult, or days where they are “in
the zone” and tasks that would normally take hours are quick and easy. Being “off” or “in the zone”
are poorly defined common terms used to express a person’s current state of mind. We are able
to use these vague terms to express our state of mind to each other. However, as automation and
advanced intelligent systems become commonplace, there is a growing need to be able to precisely
communicate a person’s state of mind to these systems. A particularly interesting construct of
state of mind is mental workload. The field of human factors commonly discusses three mental
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workload states: mental overload/task saturation, mental
underload, and adequate load. There is contention regarding the
correct scientific definition of mental workload; however, there
is a degree of acceptance around the following: mental workload
is a product of the demand/s of the task and the capacity/ies of
the person performing the task, where demands and capacities
may be moderated by context (Young et al., 2015). Using this
definition of mental workload, we have tested several methods
of labeling mental workload and building models to classify a
person’s mental workload in real-time. Below, we discuss mental
workload states, methods for measuring mental workload, and a
brief overview of the various techniques we compared for data
labeling, data balancing, machine learning algorithms, and our
optimization parameters.

Mental workload in humans can be seen as analogous to
the stress–strain relationships seen in physical materials. This
may seem odd at first, but physical materials have a limit to
the stress they can endure without failing which interacts with
the environment. For example, the behavior of a beam that is
attached at one end but free on the other is a function of its
weight-bearing capacity, the mass placed on its free end (i.e.,
task demands), and environmental factors such as temperature.
Materials are rated for a maximum load with an exact cutoff.
A successful construction company uses exactly the correct
material for the job. If they use more durable—and expensive—
materials than the job requires, they reduce their profit margins.
If they use a material too weak for the load, the material will
fail. Similarly, we want to utilize human capital as efficiently and
effectively as possible. Ideally, all employees would be adequately
mentally loaded—given the correct amount and type of work—
at all times. Adequate load, unlike mental overload, is obviously
a positive state, one where we can accomplish what we set out
to do. Under the best conditions, it can also be accompanied
by interesting sensations such as euphoria, focus, and purpose
(Csikszentmihalyi and Csikszentmihalyi, 1992). However, some
employees receive too difficult or too much work, leaving them
“overloaded,” while others receive too little or too easy work and
are “underloaded.”

The ability to measure and identify mental workload states
has utility for maximizing safety, efficiency, performance,
and perhaps even well-being. It is well documented that
mental overload is an adverse state leading to slow and poor
performance. Loss of life in the fields of air and ground
transportation is often attributed to mental overload or task
saturation (Sumalt et al., 2019). Retrospectively, we all know the
feeling of being overloaded, not knowing what to do next, feeling
frozen, mentally cloudy, upside-down, or being buried under
the task at hand.

Mental underload is an elusive and adverse state. It has
been argued that mental underload is more difficult to observe
than mental overload, but its effects on performance are no
less potent, and given that it often occurs unnoticed makes it
even more devastating (Hancock et al., 1995). Colloquially, we
might liken mental underload to boredom. It’s the feeling in
the back of our mind when driving on a lonely country road,
feeling the compulsion to look away from the road, perhaps at
some houses or someone doing yard work. This occurs even

though we know we should be focused on what is on the road
in front of us. This is what is meant when mental underload is
referenced as inducing inefficient attentional strategies (Young
and Stanton, 2002). Under these effects, it only takes one moment
of misused attention in the wrong setting for a catastrophe
to occur. Thus, accurately measuring and classifying mental
workload is vital to safety.

Measuring Mental Workload in Humans
There are many methods for measuring mental workload in
humans, but they, generally, fall into one of three categories:
(1) self-report, (2) behavioral secondary tasks, or (3) physiological
measurement. The neuroergonomic approach to mental capacity
measurement stresses the integration of measurement types from
cognitive neuroscience, cognitive psychology, and human factors
to study the brain in relation to performance at work and in
everyday settings (Parasuraman and Rizzo, 2008). Essentially,
taking the best of subjective, behavioral, and physiological
measurement in an appropriate context to synthesize a holistic
view of a mental capacity. Neuroergonomics provides the
needed tools for non-invasive quantification of relevant cognitive
concepts and translating those into design recommendations.

Self-report measures or subjective evaluation is practiced
more regularly than other methods primarily due to the ease
and cost of administration. The most used subjective tool is the
National Aeronautics and Space Association Task Load Index
(NASA TLX). The NASA TLX is so widely used that the tool
has become synonymous with the concept of mental workload
(de Winter, 2014). However, the success of the NASA TLX has
not been without criticism. These include how it integrates
sources of load (Byers, 1989), its sensitivity to changes in
workload over time (Thornton, 1985; Miyake, 1997), how the
NASA TLX itself can be a source of workload (Monfort et al.,
2018), and the tool lacking construct validity (McKendrick and
Cherry, 2018). It has also been argued that there is no external
validation for what subjective workload tools measure (Hart
and Staveland, 1988). Additionally, self-report measures must be
administered retrospectively, even if during a brief pause in the
task, and are subject to lapses in memory and recency bias. Due to
these shortcomings, subjective metrics are often combined with
behavioral measurements.

Secondary task performance is the most common means of
behavioral assessment of mental workload. The theory being
that the decrement seen in performance on the secondary task
is due, primarily, to the combined task load exceeding an
individual’s mental workload capacity. The magnitude of this
decrement is taken to represent the workload required of the
primary task (Gopher, 1993; Wickens, 2008). However, dual-
task decrements have been criticized as performance varies
with resource allocation, but resources are only inferred from
performance (Navon, 1984). Thus, a further advancement in
mental workload measurement is related to measurement of the
brain’s processing of resources.

Neuroergonomics uses non-invasive neurophysiological tools
to measure known correlates of mental effort to assess workload
during a task. In order to do work, the brain requires oxygen
and glucose, which is supplied through the bloodstream; thus,
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when a brain region works harder, it uses more oxygen and
glucose and has increased blood flow. We can monitor this
process through non-invasive methods; here, we use functional
near-infrared spectroscopy (fNIRS) as it measures the changes in
oxygenated and deoxygenated hemoglobin by functional brain
regions or, more simply, changes in brain activity. Specifically,
we use fNIRS over the prefrontal cortex (PFC), which has a
functional relationship with working memory (WM) (Braver
et al., 1997; Cohen et al., 1997), decision making (Ramnani and
Owen, 2004; Figner et al., 2010), and executive control (Badre
et al., 2005; Badre and Wagner, 2007). Tasks that manipulate
workload by increasing the number of stimuli or complexity of
a task have reported a positive relationship with PFC activity
(Ayaz et al., 2011; Bogler et al., 2014; Derosière et al., 2014;
Herff et al., 2014). Interestingly, experiments where overload
is induced have produced a negative quadratic or ‘inverted u”
relationship with PFC activity (Durantin et al., 2014; McKendrick
et al., 2014). The effective measurement of mental workload
via brain metabolism using fNIRS has been successful in both
laboratory settings and complex natural settings (James et al.,
2011; McKendrick et al., 2016, 2017).

Machine learning has been used to successfully classify
mental workload states via brain activity. Early work using
functional magnetic resonance imaging (fMRI) identified states
differentiating pictures and sentences, or whether individuals
were reading words describing food, people, or buildings
(Mitchell et al., 2004). This work has been extended to other
states relating to mental workload. Several researchers have used
machine learning to classify task difficulty levels with 80% or
better accuracy within an individual (Wilson and Russell, 2003—
EEG with ANN; Gateau et al., 2015—fNIRS with SVM). Zander
et al. (2017) used this method during surgery simulations with
secondary auditory tasks (EEG with LDA), while others used a
similar process in an ecological simulator and real flight settings
(Gateau et al., 2018—fNIRS with SVM). Wilson and Russell
(2007) used electroencephalography to implement automation
aiding in a UAV navigation task, which led to greater performance
particularly when the classifier was trained within individuals
(EEG with ANN). Similar studies have deployed automation
under high-load conditions during air traffic control (Aricò et al.,
2016—fNIRS with stepwise LDA). While most tasks have been
classified at two or three mental workload levels, there has been
evidence of success at up to seven levels in complex supervisory
environments (Zhang et al., 2016—EEG with ECNN). Hong et al.
(2015) successfully used fNIRS to discriminate between different
tasks such as mental arithmetic versus motor imagery and on-task
versus off-task performance (fNIRS with LDA).

Most classifiers have been effective within participants. It
has also been shown that by accounting for the hierarchical
nature of human-time series data, classifiers can be trained at
the group level with similar individual performance to those
trained directly at the individual level (Wang et al., 2011—EEG
with Hierarchical Bayes). Although unsuccessful in Wang et al.
(2011), neural networks have also been successful in classifying
non-linear characteristics of neurological data to create cross-
person classifiers (Stikic et al., 2014). Unfortunately, even with
the past successes of within task difficulty level classification,

cross-task classification remains a technical challenge (Baldwin
and Penaranda, 2012—EEG with ANN). However, there has
been success in directly testing near transfer within an n-back
task where the kind of stimuli remembered (i.e., letters, images,
or locations) was the primary manipulation (Grimes et al.,
2008). Others have also shown indirect cross-task transfer via
improving task performance with an adaptive control algorithm
or associating an algorithm with subjective workload measures
(Yuksel et al., 2016).

Understanding individual differences in mental faculties are
of key importance to understanding mental workload states or
other performance concepts. This is explicit in theories such as
perceptual load theory (Lavie et al., 2004), cognitive load theory
(Sweller, 1994), and multiple resource theory (Wickens, 2008). All
refer to a mental faculty (i.e., WM, attention, etc.) that has a limit,
and beyond that limit, mental states and, relatedly, performance
change. Yet, these limits are not dictated by the task; they are
dictated by the individual. It is well understood that individuals
differ in terms of WM, attention reaction time, perceptual acuity,
etc. and these differences are what define changes in states of
mind. This means that conditions that might elicit a state of
mental overload in one individual may elicit a state of adequate
load in another, and potentially even a state of underload in a
particularly gifted individual. Further considering work in mental
resource and perceptual load theory, individuals can easily differ
in the overall parameters that define an overload state. It is easy to
imagine a situation when one individual reaches a state of mental
overload due to the attentional demands of a task exceeding
their capacity, but the same task doesn’t exceed their capacity for
WM, or vice versa.

Providing key trait level individual differences to the
classification algorithm could increase the performance of
supervised statistical learning classifiers. The common practice is
to rely on task parameters to classify difficulty, which a classifier
uses to learn. Using task parameters is the standard because
it is assumed that they provide a more objective label to train
over. However, this assumption only stands if we are using the
algorithm to differentiate between task conditions, essentially
task decomposition. This is not the case during workload
classification, as we have already argued that mental states of
workload are not wholly defined by the conditions of the task
but are also sensitive to individual differences. There are multiple
methods that can be used to incorporate individual differences
into labeling training data for supervised statistical learning.

Stress–strain curves and Rasch models can account for
individual differences by including a capacity metric and applying
logical rules to the model. A stress–strain model (Ramberg and
Osgood, 1943; Mander et al., 1988) has levels of stress modeled
along the x-axis and some measure of a material’s reaction to that
stress on the y-axis. The model has an initial linear phase where
reaction builds with increasing stress, eventually asymptotes, and
finally begins to decline. This model can be adapted to the context
of mental workload classification by using task difficulty in place
of stress and performance in place of reaction (for details, see the
section Stress–Strain Curve). In contrast, Rasch models (Andrich,
1988) plot the probability of successfully responding to a task
against the task’s difficulty. These curves can be created for each
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individual such that the curve’s intercept represents their scoring
on the trait that is responsible for the difficulty of the task (for
details, see the section Rasch Model).

The present experiment had three aims with regard to
applications in neuroadaptive systems. First, test the efficacy
of different models of labeling mental workload states for
supervised machine learning. Second, compare the efficacy
of regularized regression methods to ensemble classification
methods. Third, compare labeling and classification techniques
across two different memory-based tasks. We hypothesized
incorporating individual differences and states at the point of
data labeling would improve performance for initial training
and cross-validation, for cross-participant transfer, and for
cross-task transfer.

MATERIALS AND METHODS

Participants
Thirty-four Northrop Grumman Corporation (NGC) employees
volunteered to participate in this experiment. Recruitment
efforts included a solicitation in a company newsletter and word
of mouth. All participants’ behavioral and neurophysiological
data were de-identified. The only requirement to participate
was that the participant was 18 years of age or older and an
employee of NGC. One participant did not understand the
task instructions and was unable to adequately perform the
task; this person was removed from the sample, leaving a final
sample size of 33 participants. Nine of the 33 participants
were female (27.27%): the rest, male. Participants’ ages ranged
from 18 to 65 (M = 29, SD = 10.5). Participants’ highest
level of education achieved was evenly distributed across
GED, Bachelors, and Master’s degrees (30.3%), with the
remainder being two participants with associates degrees
and one with a Doctorate. This research complied with
the American Psychological Association Code of Ethics
and all participants provided informed consent prior to
participation. The study was approved by Advarra’s External
Institutional Review Board.

Materials
Intelligence, Surveillance, and Reconnaissance Task
Fnirs baseline calibration task
An fNIRS baseline calibration task and an ISR task were
programmed using Qt (with a combination of C++ and
JavaScript) and compiled together into an executable software
program. The baseline calibration task for fNIRS imaging was
created to elicit consistent brain activity by introducing a
stimulus that did not require intense mental processing. Instead
of the typical approach, which is to collect baseline brain activity
without a stimulus or instructions, our method attempts to
control the mental states during baseline across participants
by eliminating possible variability from mind wandering. The
stimulus was a black fixation cross on a gray background that
moved smoothly along a black line in the shape of a bowtie. The
fixation cross starts at the upper left corner of the bowtie and

moved for a duration of 6 s, during which the cross passed over
the entire bowtie figure before ending at the center.

ISR task description
This task was created to simulate the basic components of
ISR. For each level, the participant was presented with a set of
rules that contained information necessary for identifying and
responding to a given target. After a set period of time, the
rules disappeared and a screen consisting of a grid with four
quadrants was presented. On the grid, groups of four stimuli
would appear, one of which was the target. Using the information
from the rules that the participant was maintaining in their WM,
the participant had to visually search for the target on the grid
and identify it by clicking on it with the mouse pointer. Once
the participant clicked on the target, they then had to make a
correct keyboard response by remembering the response rules
and pressing a specific key. See Figure 1 for an example of a level.

The stimuli presented on the grid consisted of colored shapes
with a letter in the center. These objects could appear with
any combination of the following four features: color (blue, red,
yellow, green, white, black, and gray), shape (circle, triangle,
square, pentagon, hexagon, star, and hear), letter (l, t, b, d, c, o,
m, and w) and quadrant (upper left, upper right, lower left, and
lower right). There were a total of 1,568 possible combinations of
these four features, each being a unique stimulus. A randomized
list was used to select the four pieces to appear on the grid for
each board and then this was hardcoded so that every participant
saw the same levels. The response keys could be q, w, e, r, t, or
no response and which key needed to be pressed depended on a
rule based on a feature of the target (i.e., target is blue = “q,” target
is red = “w”).

Difficulty was manipulated through changes in memory load
by varying the number of rules that the participant had to
maintain in WM in order to successfully complete a level. The
number of rules that had to be maintained ranged from 1
to 10, resulting in 10 levels of difficulty. Each participant had
to complete three blocks of trials. Each block consisted of 10
levels, one for each difficulty, with each level containing four
groups of stimuli.

The duration of the rule-screen varied with the amount of
rules being presented. This was done in an attempt to ensure that
the time a participant viewed the rule-screen was spent reading
text rather than rehearsing the rules, which would aid encoding
and lessen the load on WM. The rule-screen’s duration started
at 2 s and had an additional 1.5 s added for every rule. Thus,
the shortest duration for a rule-screen was 3.5 s for level 1: the
longest, 17 s for level 10. After this duration, the rules would
disappear, leaving a white screen with a “start” button at the
bottom, allowing the participant to start the level when ready.
The first group of stimuli within each level appeared 2 s after the
play button was clicked, with a jitter. Each group was presented
for 6 s before disappearing, during which the participant could
find, click the target, and then press the correct response key. The
entry time for each subsequent group within a level was 50 ms
after the disappearance of the previous group, also with a jitter,
but ensuring that two boards would not appear at the same time.
The jitter times were selected by randomly sampling times from
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FIGURE 1 | A visual representation of the ISR task. (A) Progression of an example ISR level. Participants were presented with a ruleset for that level on the first
screen which disappeared after a short duration. Participants had to remember these provided rules throughout the entire level for accurate target identification and
response. After pressing the start button on the following screen, they would play four boards using this ruleset. (B) An example of a level ruleset. (C) Example of an
ISR board. On each board, participants saw four stimuli and had to use the mouse to select the target based on the target identification rules and press the
appropriate letter on the keyboard based on the target response rules. Based on the ruleset shown in panel (B), a correct response would be to click gray heart with
an “O” and pressing the letter “q” on the keyboard.

Gaussian distribution with a mean of 0 and a standard deviation
of 0.16, which ensures that 99.7% of the values sampled will be
in the interval [-250 ms, 250 ms]. Based on how the participant
responded to the group of stimuli, they received a score. For
clicking the target, they received a base score of five points and
then additional points based on how quickly they clicked. For
example, if they clicked the target after 3 s, they would receive
5 (base score)+ 6 s (group duration) – 3 s (click time) = 8 points.
The score for the keyboard response was calculated similarly:
5 points+ board duration - key press speed. These were summed
to get a total score. If only a click was made and not a key
response, then only the click score was used. Finally, the total
score was multiplied by a difficulty factor, which was equivalent
to the number of rules in the level. The purpose of this was
to give more credit for successfully completing harder levels.
These scores were not displayed to the participants, in order
to discourage random responses in an attempt to score points.
Target and response scores were calculated only for the first
instance of each event—i.e., if a target was clicked more than
once, only the first click event resulted in a score. Any event
occurring on a non-target, distractor, resulted in no score.

ISR task pilot testing
An initial version of the ISR task was created, in which each
difficulty level had three versions, created by varying the number

of target and response rules. For example, difficulty level 5 had the
following versions: three identification and two response rules,
two identification and three response rules, and one identification
and four response rules. We did a pilot test of these 30 levels,
with three trials for each, where we collected data from five
participants. We attempted to fit a quadratic polynomial function
to the results of the pilot test to select the versions of each
level that best fit that model. A quadratic function was used to
represent a stress–strain curve with a defined asymptote. During
fitting, we observed that there were three levels that did not have
a version that fit the model well. We also found that the number
of response rules played a bigger part in the task’s actual difficulty
(measured by participant performance) than the number of target
identification rules. With this knowledge, we created six new
levels and performed a second round of pilot testing, again
consisting of five participants with three trials per level. With the
results from the second pilot test, we selected the 10 levels that
had the strongest fit to a quadratic polynomial function.

Spatial WM Task
In a previous experiment, 30 different participants from a large,
mid-Atlantic university completed a spatial WM dot task on a
computer. The de-identified data were used, with permission
of the authors, to assess the generalizability of the methods
developed in this paper. In the WM task, participants completed
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10 trials at each of 10 difficulty levels, corresponding to the
number of dots they were asked to remember (1 to 10 dots). This
resulted in a total of 100 trials that were randomly presented.
During each trial, participants saw a black screen for 8 s, followed
by a white fixation cross on a gray background for 1 s. Then, the
randomly spaced dots appeared for 1 s, followed by a random
4-s noise mask. Participants responded by using a mouse to click
where they remembered the dots being located on a gray response
screen with a white fixation cross. When they were done selecting
locations with the mouse, they pressed the space bar to move to
the next trial. For full task details and results, see the full article
by McKendrick and Harwood (under review).

fNIRS Device
Measurements of PFC hemodynamics were acquired via raw
light intensities through an fNIRS Devices fNIR 2000 S system
(fNIR Devices LLC, Potomac, MD, United States1) composed of
four light emitters and eight photodetectors. This configuration
yields 16 dual-wavelength optodes measuring near-infrared
wavelengths of 730 and 850 nm. The sensor was placed over
the forehead in order to image prefrontal cortical regions. The
imaging temporal resolution was 10 Hz and the average emitter
to detector distance was 2.5 cm, allowing for light penetration of
approximately 1.25 cm deep into the human head. COBI Studio
software was used for data acquisition and visualization of data
quality during imaging (Ayaz et al., 2011).

Procedure
At the start of the study, participants were seated at a desk
in a quiet room in front of a Dell computer system that ran
both the ISR task and the fNIRS data acquisition software. Dual
21-inch monitors were used, one to display the fNIRS data
stream to the experimenter and the other for the participant to
complete the ISR task. Participants used a mouse and keyboard
to interact with the ISR task. The experimenter followed a printed
experimental protocol that contained an ordered procedure and
a script to read to each participant to keep sessions between
participants as similar as possible. After participants provided
written informed consent and completed a demographic survey,
the fNIRS headband was placed around their head and was
secured using self-adhesive bandaging strips to reduce motion
artifacts and ambient light. Noise canceling headphones were
placed over the participant’s ears and the fNIRS device was started
for a visual assessment of the quality of the data. Any necessary
adjustments were made at this point.

Once the fNIRS data quality was determined to be sufficient,
data recording was started and the ISR task was launched. All
instructions were built into the software and presented via text
on the screen. Before starting the ISR task, participants could
take as much time as was necessary for them to understand the
instructions. Once they felt they understood how to perform the
task, they were presented with three practice levels of varying
difficulty. These levels had two, six, and eight rules, respectively.
Different from the regular task, the practice groups of stimuli
would not disappear until participants clicked the correct target

1www.fnirdevices.com

and pressed the correct response key. Finally, following reminder
text about the rules of the task, the task began. As mentioned
above, the trials were split into three blocks, where each level
was seen once within a block. Each level had four groups of
stimuli (or trials). Therefore, each participant saw 120 trials over,
approximately, 30 min.

Data Analyses
fNIRS Data Preprocessing
The fNIRS processing pipeline was created using Python (Python
Core Team, 2015). Each participant’s raw light intensities were
first motion corrected using the procedure outlined by Cooper
et al. (2012), Molavi and Dumont (2012), and Brigadoi et al.
(2014). We used a Daubechies 5 (db5) wavelet filter from the
PyWavelets/pywt package to compute the wavelet coefficients
and applied a threshold, α, of 0.1, the same used by Molavi
and Dumont (2012). Then, the data were low-pass filtered
using a cutoff frequency of 0.12 Hz using the SciPy.signal
package (Jones et al., 2001) to attenuate high-frequency noise
associated with respiration and cardiac cycle effects (Ayaz et al.,
2010). Data were then converted to optical density (OD) by
calculating the -log of the filtered signal divided by the average,
filtered signal from the calibration task described in the section
fNIRS Baseline Calibration Task. Deoxygenated hemoglobin (Hb)
and oxygenated hemoglobin (HbO2) levels, in relation to the
baseline levels, were calculated by submitting the filtered light
intensities to the modified Beer-Lambert law (Ayaz et al.,
2012a,b). We then used the calculated Hb and HbO2 values
to calculate the oxygenation levels (Oxy) as HbO2 - Hb and
the approximate percent change in blood volume (HbT) as
HbO2 +Hb. We also calculated quadratic (y = x+ x2) and cubic
(y = x + x2

+ x3) polynomials of each hemodynamic measure
(Hb, HbO2, HbT, and Oxy). We included these polynomials
because previous research (McKendrick and Harwood, under
review) has shown that participants’ hemodynamic response is
non-linear as they transition through mental workload states (i.e.,
underload and overload). Given that the ISR task primarily taxed
the same underlying neural mechanism—WM—we suspected the
hemodynamic response to the ISR task would follow the same
pattern and wanted to include these features for our models.

Behavioral Data Analyses
Generalized and linear mixed-effects models
All forthcoming descriptive modeling tests employ general
linear models, linear mixed-effects models, or generalized
linear mixed-effects models implemented in R (R Core
Team, 2013) via the lme4 package (Bates et al., 2014).
Linear mixed-effects estimates were computed with restricted
maximum likelihood and generalized linear mixed estimates
were computed with maximum likelihood and binomial link
functions. Denominator degrees of freedom and p-values were
estimated via Satterthwaite corrections implemented via the
lmerTest package (Kuznetsova et al., 2017).

Nested model comparison
The Bayesian information criterion (BIC; Schwarz, 1978) was
used to select the fixed and random effects in the final models
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for each dependent variable. Competing models were constructed
by adding potentially meaningful random and fixed effects to a
null model. The null model was specified in each case as having
no fixed effects and a random effect of participant intercept. The
competing models were compared with BIC and the strength
of evidence criterion described by Kass and Raftery (1995) was
employed. In the procedure, deviations of greater than 2 BIC are
viewed as a meaningful difference. The final model was selected
based on having the lowest BIC, with no other models of interest
having a BIC deviance of less than 2 (McKendrick et al., 2017).

Behavioral Data Labeling Methods
We investigated three methods of labeling mental workload based
on participants’ performance on the ISR and WM tasks. We
compared a split based on task difficulty (difficulty split), Rasch
modeling that is based in item response theory, and a stress–
strain relationship adapted from physics. Using the different
labeling techniques, we were able to label each sample of fNIRS
data as being measured while the participant was in one of three
mental workload states: underload, adequate load, or overload.
In the following sections, we provide an overview of each
labeling technique.

Difficulty split
The most common method for labeling workload states is to
use a task’s difficulty conditions. We refer to this method as
difficulty split labeling. For this method, at least one condition
is designed to be more challenging than another. Essentially,
a task parameter, such as number of items, is used to categorize
difficulty. If there are many difficulty conditions, as in our
experiment (i.e., 10 difficulty levels), the conditions can be
grouped to reduce the number of class labels. We grouped our
difficulty conditions into three classes for labeling. The underload
class referred to conditions with 3 or less rules, the adequate
load class refers to conditions with 4 to 7 rules, and the overload
class referred to conditions with 8 to 10 rules (1). For a visual
representation, see the left panel in Figure 2.

Rasch model
This capacity model is based on adopting Item Response Theory:
Rasch Models, as a person–characteristic curve, for identifying
individual state capacities. A Rasch model assumes variability in

either a latent trait or the content of a group of test items. The
varying condition is modeled on the x-axis and the probability of
successes is modeled on the y-axis. The function for representing
this response is logistic in nature, it has clearly defined upper
and lower bounds, and its parameters consist of an intercept
and slope. This model can be adopted in the context of mental
workload classification by using test difficulty on the x-axis and
the probability of correct response on the y-axis. A curve can
be fit to each individual that participates in the test with mixed-
effects modeling. For this model, we assume that an individual’s
latent trait is synonymous with their capacity for that mental
faculty. If we include information on an individual’s performance
at their capacity, which is the intercept of the Rasch model (i.e.,
point of 50% success), we can create a simple set of rules for
defining the states of underload, adequate load, and overload (see
the section Mental State Labeling Definitions for Capacity Models
for an example).

Stress–strain curve
This capacity model is based on adopting stress–strain curves,
in a general sense, for identifying individual state capacities.
A stress–strain model assumes some level of stress modeled on
the x-axis and some measure of performance/reaction to that
stress on the y-axis. The model has an initial linear phase where
performance builds with increasing stress, eventually asymptotes,
and finally begins to decline. This model can be adopted in the
context of mental workload classification by using test difficulty
in place of stress on the x-axis and a performance metric that
has a weighting parameter from test difficulty on the y-axis.
Like with Rasch models, a curve can be fit to each individual
that participates in the test with mixed-effects modeling. Also
similar to Rasch models, we can use an estimate of an individual’s
latent trait capacity (x,y-coordinate for stress–strain stationary
point/asymptote) to define states of underload, adequate load,
and overload (see the section Mental State Labeling Definitions
for Capacity Models for an example).

Mental state labeling definitions for capacity models
Rasch and stress–strain models both have explicit representations
of capacity. We use this representation to define different mental
workload states. After the model has been built, a task is
compared to an individual’s capacity to perform the task in

FIGURE 2 | Example breakdown of classification under each of the three labeling methods. (Left) Rasch model, (Middle) Stress–strain, and (Right) Difficulty Split.
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order to determine the mental workload state the individual
was in. If the task’s difficulty is greater than the individual’s
capacity and their performance on the task is below the modeled
performance, the state is labeled as overload. Conversely, if the
task’s difficulty is less than the individual’s capacity and their
performance on the task is below the modeled performance, the
state is labeled as underload. In all other conditions, the state is
labeled as adequate load.

For example, a participant was modeled and found to have
a capacity of 5, at which level they were expected to achieve a
score of 15. They actually performed a task with a difficulty of 7
and received a score of only 10. This task exceeded their capacity,
5, and their performance was below their expected performance
of 15; therefore, this condition would be labeled as overload.
Had their performance been 15 or greater at this capacity, this
condition would have been labeled as adequate load.

Continuing the same example, the individual also performed
a task with a difficulty of 4 and received a score of 10. The
individual’s model predicted they would score a 12 on a task
with difficulty of 4. Therefore, they were below their capacity
of 5 and their actual performance, 10, was below their expected
performance of 12; therefore, this condition would be labeled
as underload. Had their performance been 12 or greater, this
condition would have been labeled as adequate load.

Following the above procedure, we created a mixed-effects
model representing the population estimates of performance
as well as estimates for each individual; this is depicted in
Figure 3 for Rasch and stress–strain models. By applying the
above rules to the individual conditioned models from Figure 3,
we created labels specific to each individual. Summing the labels
(-1 = underload, 0 = adequate load, and 1 = overload) and plotting
those sums against each difficulty level produced Figure 2, which

FIGURE 3 | Representation of general (left) and generalized (right) mixed effects regressions. Black hashed line depicts fixed effects, and red lines depict random
effects conditioned on individual participants.
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represents the distribution of labeled states for each of the three
labeling methods.

Data Balancing Techniques
The Rasch and stress–strain labeling techniques result in large
class imbalances, as can be seen from Figure 2, while the
difficulty split technique results in fairly balanced classes. There
are several techniques used to handle unbalanced datasets, such
as collecting more data, modifying class weights, or over- and
under-sampling techniques. Collecting enough data to result in a
balanced dataset is infeasible, so we explored both modifying class
weights while training and balancing the datasets beforehand.
Modifying class weights is done during model training and was
added as a parameter to explore in our models’ optimizations
(see the sections Elastic Net Optimization and Random Forest
Optimization). The over-sampling technique we used was the
Synthetic Minority Over-sampling Technique (Smote). Over-
sampling with Smote helps deal with the class imbalance issue but
it can cause the borders between the classes to blur, making the
classification problem more difficult. In order to deal with this,
we used two under-sampling techniques as cleaning methods
after our Smote over-sampling: Tomek links and Edited Nearest
Neighbor (ENN) (Batista et al., 2004). Below, we provide a brief
overview of these techniques. Before the data balancing methods
were applied, we separated three participants’ data for each task.
This creates a three-participant validation set for each task and
ensures that this validation set data does not bleed into the
training set due to the data balancing.

Synthetic minority over-sampling technique
SMOTE is an over-sampling method that creates new minority
class examples via interpolation. The main idea is to find groups
of minority class samples that lie near one another and to
interpolate between them, thus creating new, synthetic samples
of the minority classes. This allows for the minority class to be
increased without leading to over-fitting, as occurs when over-
sampling with replacement. The technical details of how the
Smote algorithm performs can be found in Chawla et al. (2002).

Tomek links
A Tomek link is defined as two data points that are each other’s
closest neighbors but have different class memberships (Tomek,
1976). If this is the case, then we can argue that, either one
of these points is noise or that both are borderline samples.
Once a Tomek link has been found, we can either remove the
point belonging to the majority class or we can remove both
points. The first would be an under-sampling technique, while
the second is a data cleaning technique. In our case, we are
interested in using Tomek links as a data cleaning technique as
removing both points will most increase the class separation.
Thus, we first apply the Smote algorithm to our original dataset
and then use Tomek links to clean the oversampled dataset,
resulting in a balanced dataset with well-defined class borders,
as suggested by Batista et al. (2004). To implement the Smote-
Tomek method of over-sampling followed by cleaning, Python’s
SMOTETomek class from the imblearn library was used. Using
the Smote-Tomek methodology increased the number of samples
by 65.21, 5.66, and 65.66% for the stress–strain, difficulty split,

and Rasch model labeling techniques, respectively. This makes
sense, when referring to Figure 2, where we see that the difficulty
split technique already has a nearly even class split and the
other two methods are drastically imbalanced. With the increased
number of samples described above, all three labeling techniques
have approximately even class splits.

Edited nearest neighbors
As suggested by Batista et al. (2004), we also explored using
Wilson’s ENN rule as a data cleaning technique after applying
the Smote algorithm (Wilson, 1972). The ENN rule looks at each
data point, finds its three nearest neighbors, and compares their
class labels. If the data point’s class differs from at least two of its
nearest neighbors, then that data point is removed. To implement
the Smote-ENN method of over-sampling followed by cleaning,
Python’s SMOTEENN class from the imblearn library was
used. Using the Smote-ENN methodology increased the number
of samples by 64.63, 5.28, and 65.20% for the stress–strain,
difficulty split, and Rasch model labeling techniques, respectively.
Again, this makes sense for the same reasons mentioned in the
section Tomek Links. With the increased number of samples
described above, all three labeling techniques have approximately
even class splits.

Machine Learning Algorithms
We investigated two algorithms for classifying mental workload
based on the fNIRS signal. We compared a regularized regression
model (i.e., elastic net) (Zou and Hastie, 2005) to an ensemble
discursive model (i.e., random forest; Breiman, 2001). These
models were chosen for their interpretability and, typically,
good generalizability, as well as their Python implementations
available via the scikit-learn library. Below, for each of the two
algorithms, we detail the parameters over which we explored
during model optimization. Each technique was optimized for
the area under the curve (AUC) of the model’s receiver operating
characteristic curve (ROC; TP rate vs. FP rate). ROC AUC was
chosen as our optimization parameter because, as compared
to accuracy, it provides a more complete single metric of
model misclassifications. For both models, we used all of the
hemodynamic parameters we computed (Hb, HbO2, HbT, and
Oxy) and all of their polynomial formations (see the section
fNIRS Data Preprocessing) across all 16 channels as features and
all measurements taken during the task (ISR or WM) as samples.
All optimizations, as described in the following sections, were
performed on the training sets of data for each task only; the
optimizations were not performed using the three-participant
validation sets set aside before data balancing (see the section
Data Balancing Techniques).

Elastic net optimization
We optimized three tuning parameters: the mixing-ratio between
L1 and L2 regularization, the strength of penalization, and
the misclassification penalization weights associated with the
classes. The mixing-ratio controls the type of penalty applied
and is bound between zero and one. A mixing-ratio of zero
corresponds to an L2, ridge penalty: one corresponds to an
L1, LASSO penalty. The penalization parameter controls how
strong the penalization is; the stronger the penalization, the
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more regularization of the model’s feature coefficients, potentially
resulting in a sparse model. The class weights control how much
a misclassification for each class is penalized and can be used
to help account for class imbalances in the dataset by applying
greater penalizations to the minority classes; this is the other
method of dealing with imbalanced datasets mentioned in the
section Data Balancing Techniques.

The optimization was performed using a grid-search cross-
validation method. The grid spanned 20 mixing-ratio values
linearly spaced between (0, 1.0), inclusive, 40 penalization values
logarithmically spaced between (10−2, 101), inclusive, and three
class weight settings of [None, “balanced,” {-1: 100, 0: 1, 1:
100}]. The “None” class weight setting does not apply any
misclassification penalization, while the “balanced” setting sets
the weights to be inversely proportional to the class frequencies.
The final setting sets the class weight for each minority class
(underload and overload) to 100 times greater than the majority
class (adequate load), thus pushing the model to better learn
the minority classes. Each of the 2,400 parameter combinations
was evaluated using stratified fivefold cross-validation with ROC
AUC as the evaluation metric. During the cross-validation, we
did not place any further restraints on how the training data
were split into the folds other than it be stratified, to ensure
that each fold was a good representation of the whole in terms
of class balance.

Random forest optimization
We optimized four tuning parameters: the minimum number
of samples required to split an internal node, the number of
features to consider when looking for the best split, the number of
trees in the forest, and the misclassification penalization weights
associated with the classes. The minimum number of samples
required to split a node controls how large each tree can grow.
The lower the number, the deeper the tree can grow, with two
resulting in fully developed trees. The number of features to
consider sets the size of the random subset of features considered
when splitting a node. The lower the number, the more variance
is reduced but bias is also increased. The number of trees in the
forest controls how many decision trees the forest contains. More
trees is generally better, but is limited by computation time and
performance plateaus as the number increases. The class weight
functions the same as for the elastic net described in the section
Elastic Net Optimization.

The optimization was performed using a grid-search cross-
validation method. The grid spanned the following values for
each parameter: four minimum number of samples to split
values: [2, 5, 10, 50], three maximum number of features to
consider settings: [“sqrt,” “log2,” 0.50], two number of trees in
the forest values: [50, 100], and two class weight settings: [None,
“balanced”]. The “sqrt” and “log2” settings for the maximum
number of features take that function of the total number of
features available [i.e., sqrt(total_features), log2(total_features)],
and the decimal value takes that percentage of the total features.
The class weight settings are, again, as described for the elastic
net in the section Elastic Net Optimization. Each of the 48
parameter combinations were evaluated using stratified fivefold
cross-validation (with the same requirements as above) and ROC

AUC as the evaluation metric. There were fewer models tested
for the random forest than for the elastic net because the random
forests take significantly longer to train and test.

Overall Processing and Optimization
Through the combination of different labeling techniques
(difficulty split, Rasch, and stress–strain) and class balancing
techniques (unbalanced, Smote-Tomek, and Smote-ENN), we
had nine different datasets for each task (ISR—see the section
Intelligence, Surveillance, and Reconnaissance Task and WM—see
the section Spatial WM Task). For each dataset, we optimized
two algorithms (elastic net and random forest), resulting in
36 optimized models. To validate the models, we performed
two tests. First, we held out three participants from each task’s
training dataset to test cross-person transfer of each model
(i.e., a model optimized on ISR data was validated against
hold-out participants’ ISR data). Next, the models were used
to classify the data from the other task to test cross-task
transfer of each model (i.e., a model optimized on ISR data
was tested on WM data). In this way, we were able to gauge a
model’s performance on both a new participant doing the same
task the model was trained on, as well as a new participant
performing a new task.

RESULTS

Behavioral Results
Isr Task Analysis
Irs stress–strain labeling
The most parsimonious stress–strain model for the ISR task
score, as defined by the methods described in the sections Stress–
Strain Curve and Mental State Labeling Definitions for Capacity
Models, specified a polynomial quadratic effect of number of rules
(i.e., intercept, B = –8.99, SE = 2.02, df = 3893, p = 8.47e–6; linear
slope, B = 25.05, SE = 1.25, df = 81.51, p = 2e–16; quadratic slope,
B = –1.85, SE = 0.12, df = 60.35, p = 2e–16). Random effects
of participant’s linear and quadratic slopes for number of rules
were also selected.

The random effect of participant’s linear slope suggests
that individuals differed in the initial load of their memory
for the task rules. The random quadratic slope suggests that
individuals also differed in how their memory systems responded
to being overload by the task rules (Figure 3, top left). However,
after accounting for this random variance, there was still a
parsimonious polynomial quadratic fixed effect of number of
rules. Using this model, we labeled the participants’ mental
workload state throughout their performance on the ISR task.

ISR rasch labeling
The most parsimonious Rasch model for the ISR task accuracy, as
defined by the methods described in the sections Rasch Model and
Mental State Labeling Definitions for Capacity Models, specified a
linear effect of number of rules (i.e., intercept, B = 3.48, SE = 0.30,
p = 2e–16; linear slope B = –0.54, SE = 0.04, p = 2e–16). Random
effects of participant and linear slope for number of rules were
also selected.
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TABLE 1 | ISR cross-validation.

Effects AUC B Estimate Std. p

GINI Err.

Rasch: Random-Forest: Tomek 0.91 0.82 0.03 3.57E−37

Stress–Strain: Random-Forest: Tomek 0.87 −0.07 0.05 1.20E−01

Diff-Split: Random-Forest: Tomek 0.82 −0.17 0.05 4.08E−04

Rasch: Elastic Net: Tomek 0.77 −0.27 0.05 1.21E−07

Rasch: Random Forest: unbalanced 0.74 −0.34 0.05 3.36E−10

Rasch: Random Forest: ENN 0.91 0.00 0.05 9.80E−01

Stress–Strain: Elastic Net: Tomek 0.64 −0.20 0.07 3.17E−03

Diff-Split: Elastic Net: Tomek 0.54 −0.31 0.07 1.54E−05

Stress–Strain: Random Forest: 0.64 −0.14 0.07 3.79E−02

Unbalanced

Diff-Split: Random Forest: Unbalanced 0.50 −0.31 0.07 9.25E−06

Stress–Strain: Random Forest: ENN 0.88 0.00 0.07 9.55E−01

Diff-Split: Random Forest: ENN 0.83 0.00 0.07 9.71E−01

Rasch: Elastic Net: Unbalanced 0.56 −0.09 0.07 1.66E−01

Rasch: Elastic Net: ENN 0.78 0.01 0.07 8.35E−01

Stress–Strain: Elastic Net: Unbalanced 0.64 0.58 0.09 2.36E−08

Diff-Split: Elastic Net: Unbalanced 0.53 0.74 0.09 1.57E−11

Stress–Strain: Elastic Net: ENN 0.64 −0.02 0.09 8.36E−01

Diff-Split: Elastic Net: ENN 0.54 0.00 0.09 9.60E−01

Bold value is p < 0.05.

TABLE 2 | ISR hold-out participants.

Effects AUC B Estimate Std. p

GINI Err.

Rasch: Random Forest 0.81 0.62 0.06 2.79E−13

Stress–Strain: Random Forest 0.67 −0.28 0.09 2.82E−03

Diff-Split: Random Forest 0.51 −0.60 0.09 1.16E−08

Rasch: Elastic Net 0.53 −0.56 0.09 7.02E−08

Stress–Strain: Elastic Net 0.58 0.37 0.12 4.50E−03

Diff-Split: Elastic Net 0.49 0.53 0.12 8.61E−05

Bold value is p < 0.05.

TABLE 3 | Working memory transfer.

Effects AUC B Estimate Std. p

GINI Err.

Rasch: Random Forest 0.78 0.55 0.02 1.05E−97

Stress–Strain: Random Forest 0.69 −0.18 0.03 2.74E−09

Diff-Split: Random Forest 0.53 −0.49 0.03 4.68E−49

Rasch: Elastic Net 0.57 −0.41 0.03 2.65E−37

Stress–Strain: Elastic Net 0.48 0.00 0.04 9.82E−01

Diff-Split: Elastic Net 0.49 0.33 0.04 2.05E−14

Bold value is p < 0.05.

The random effect of participant suggests that individuals
differed in their capacity for task performance. Furthermore, the
probability of successful performance was also influenced by the
number of rules presented (Figure 3, bottom left). However,
after accounting for this random variance, there was still a
parsimonious fixed effect of number of rules. Using this model,
we labeled the participants’ mental workload state throughout
their performance on the ISR task.

TABLE 4 | Working memory cross-validation.

Effects AUC B Estimate Std. p

GINI Err.

Rasch: Random Forest: Tomek 0.92 0.84 0.04 1.33E−35

Stress–Strain: Random Forest: Tomek 0.91 −0.01 0.05 8.82E−01

Diff-Split: Random Forest: Tomek 0.85 −0.14 0.05 5.89E−03

Rasch: Elastic Net: Tomek 0.69 −0.45 0.05 2.70E−13

Rasch: Random Forest: ENN 0.92 0.01 0.05 8.33E−01

Rasch: Random Forest: Unbalanced 0.73 −0.38 0.05 1.08E−10

Stress–Strain: Elastic Net: Tomek 0.73 0.07 0.07 3.22E−01

Diff-Split: Elastic Net: Tomek 0.60 −0.05 0.07 5.22E−01

Stress–Strain: Random Forest: ENN 0.92 0.00 0.07 9.89E−01

Diff-Split: Random Forest: ENN 0.85 0.00 0.07 9.54E−01

Stress–Strain: Random Forest: 0.66 −0.12 0.07 8.68E−02

Unbalanced

Diff-Split: Random Forest: Unbalanced 0.53 −0.26 0.07 5.72E−04

Rasch: Elastic Net: ENN 0.70 0.00 0.07 9.67E−01

Rasch: Elastic Net: Unbalanced 0.51 0.00 0.07 9.81E−01

Stress–Strain: Elastic Net: ENN 0.73 0.01 0.10 9.36E−01

Diff-Split: Elastic Net: ENN 0.60 −0.01 0.10 9.04E−01

Stress–Strain: Elastic Net: Unbalanced 0.63 0.31 0.10 3.08E−03

Diff-Split: Elastic Net: Unbalanced 0.53 0.50 0.10 3.93E−06

Bold value is p < 0.05.

TABLE 5 | Working memory hold-out.

Effects AUC B Estimate Std. p

GINI Err.

Rasch: Random Forest 0.82 0.63 0.07 2.38E−12

Stress–Strain: Random Forest 0.78 −0.06 0.10 5.06E−01

Diff-Split: Random Forest 0.48 −0.68 0.10 5.94E−09

Rasch: Elastic Net 0.45 −0.74 0.10 5.57E−10

Stress–Strain: Elastic Net 0.60 0.38 0.14 6.89E−03

Diff-Split: Elastic Net 0.49 0.77 0.14 7.40E−07

Bold value is p < 0.05.

TABLE 6 | Working memory ISR transfer.

Effects AUC B Estimate Std. p

GINI Err.

Rasch: Random Forest 0.80 0.60 0.02 1.73E−102

Stress–Strain: Random Forest 0.72 −0.16 0.03 3.11E−07

Diff-Split: Random Forest 0.50 −0.59 0.03 4.24E−62

Rasch: Elastic Net 0.49 −0.62 0.03 5.15E−67

Stress–Strain: Elastic Net 0.47 0.14 0.04 2.27E−03

Diff-Split: Elastic Net 0.50 0.62 0.04 8.72E−39

Bold value is p < 0.05.

WM Task Analysis
WM stress–strain labeling
The most parsimonious stress–strain model for the WM number
of locations recalled, as defined by the methods described in the
sections Stress–Strain Curve and Mental State Labeling Definitions
for Capacity Models, specified a polynomial quadratic effect
of number of locations presented (i.e., intercept, B = –0.14,
SE = 0.09, df = 2970, p = 0.115; linear slope, B = 1.20, SE = 0.04,
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df = 2970, p = 2e–16; quadratic slope, B = −0.07, SE = 0.01,
df = 187.40, p = 2e–16). Random effects of participant’s quadratic
slope for number of locations were also selected.

The random effect of participant’s quadratic slope suggests
that individuals differed in how their memory systems responded
to being overloaded by the number of locations to be recalled
(Figure 3, top right). However, after accounting for this random
variance, there was still a parsimonious polynomial quadratic
fixed effect of number of locations. Using this model, we
labeled the participants’ mental workload state throughout their
performance on the WM task.

WM rasch labeling
The most parsimonious Rasch model for the WM response
accuracy, as defined by the methods described in the sections
Rasch Model and Mental State Labeling Definitions for Capacity
Models, specified a linear effect of number of locations to
be recalled (i.e., intercept, B = 4.01, SE = 0.19, p = 2e-16;

linear slope, B = −0.41, SE = 0.01, p = 2e–16). Random
effects of participant and linear slope for number of locations
were also selected.

The random effect of participant suggests that individuals
differed in their capacity for task performance. Furthermore,
the probability of successful performance was also influenced
by the number of locations presented (Figure 3, bottom
right). However, after accounting for this random variance,
there was still a parsimonious fixed effect of number of
locations to be remembered. Using this model, we labeled
the participants’ mental workload state throughout their
performance on the WM task.

Model Optimization Across All
Parameters
Our analyses were performed to address the following hypotheses
regarding incorporating individual differences into class

FIGURE 4 | Regression estimates for fivefold cross-validation on the ISR task across various combinations of techniques. Points along the y-axis are GINI Index
values for individual folds, lines are the regression estimate, and bars are the error of the estimate. (Top) Balancing techniques and labeling methods, (Middle)
machine learning algorithms and labeling methods, and (Bottom) machine learning algorithms and balancing techniques.
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labeling: (1) this would lead to better initial training and cross-
validation of supervised machine learning algorithms, (2) this
would lead to better performance of an algorithm trained on
person “A” and used to predict the states of person “B,” and
(3) this would lead to better performance of an algorithm
trained on task “A” and used to predict the states of persons
performing task “B.” The sections ISR Cross-Validation and WM
Cross-Validation discuss the tests of hypothesis 1, the sections ISR
Hold-Out Participants Validation and WM Hold-Out Participant
Validation discuss the tests of hypothesis 2, and the sections ISR
Transfer to WM Validation and WM Transfer to ISR Validation
discuss the tests of hypothesis 3.

After, we optimized the 36 models described in the section
Overall Processing and Optimization, we performed six linear
regressions to test the effects of manipulating labeling, algorithms,
and class balancing. To improve the interpretability of our null
hypothesis, the ROC AUCs were converted to GINI Index values
using the relation GINI = AUC∗2-1. Therefore, the null hypothesis
in our regressions represent a true zero of no information
learned by the model. Our random forest model trained on the
Smote-Tomek balanced dataset with Rasch labels was our best-
performing model during optimization cross-validation for both
the ISR and WM datasets. Therefore, we Dummy coded these
parameters in our regression so we could compare other labeling,
algorithms, and class balancing performance against this model.

Tables 1–6 present the results of each test as well as the
results of our regression across the models. In each table, the
“Effects” column shows the model tested, in the format “Labeling
technique: Algorithm: Balancing technique," the “B Estimate
GINI” column shows the shifted GINI Index unstandardized beta
coefficient as described above, and the “Std. Err.” and “p” columns
show those parameters for each unstandardized beta. Tables 1, 4
present the results of the optimization process for each model on
the ISR and WM datasets, respectively; in these tables, the “AUC”
column is the mean ROC AUC across the cross-validations
performed for the most optimal model parameters. Tables 2, 5
present the results of the in-task, cross-person test for the ISR
and WM datasets, respectively; in these tables, the “AUC” column
is the mean ROC AUC the model achieved when predicting
the mental workload state of the validation participants. Finally,
Tables 3, 6 present the results of the cross-task test for the ISR
and WM datasets, respectively; in these tables, the “AUC” column
is the mean ROC AUC the model achieved when predicting the
mental workload state of the other task’s participants.

ISR Model Validation
ISR cross-validation
The results of our regression on the GINI Index values from
training cross-validation on the ISR task are presented in
Figure 4 and Table 1. The most parsimonious model included

FIGURE 5 | Regression estimates for hold-out participants on the ISR task across labeling technique and machine learning algorithm. Points along the y-axis are
GINI Index values for individual folds, lines are the regression estimate, and bars are the error of the estimate.
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a three-way interaction between labeling technique, model, and
class balancing technique. First, we see that Rasch labels are
significantly better than difficulty split labels. Next, we see that
random forests outperformed elastic nets, and that Smote-Tomek
and Smote-ENN balancing both outperformed the unbalanced
technique. Furthermore both difficulty split and stress–strain
labeling techniques, when paired with either elastic nets or an
unbalanced dataset, performed significantly worse that Rasch
labels with random forests, regardless of dataset balance, or
Rasch Labels with Smote-Tomek, regardless of algorithm. Finally,
elastic nets paired with unbalanced and either difficulty split
or stress–strain labels did not perform as poorly as the main
effects and two-way interactions would have predicted. However,
this is likely due to it being difficult for the models to perform
lower than chance.

ISR hold-out participants validation
The results of our regression on the GINI Index values from
testing our models on the ISR task hold-out participants are
presented in Figure 5 and Table 2. The most parsimonious model
included a two-way interaction between labeling technique and
model. First, we can conclude that Rasch labels are significantly
better than stress–strain and difficulty split labels. Next, we see
that random forests again outperformed elastic nets. Finally,

elastic nets paired with either difficulty split or stress–strain
labels did not perform as poorly as the main effects would have
predicted. For difficulty split labeling, this is likely because it was
difficult for the models to perform lower than chance.

ISR transfer to WM validation
The results of our regression on the GINI Index values from
training our models on the ISR task and predicting states in
the WM task are presented in Figure 6 and Table 3. The most
parsimonious model included a two-way interaction between
labeling technique and model. The direction and magnitude
of effects are essentially equivalent to what was observed for
cross-person transfer in the section ISR Hold-Out Participants
Validation. However, our error estimates are much lower due to
the increased amount of data.

WM Model Validation
WM cross-validation
The results of our regression on the cross-validated GINI Index
values from training our models on the WM task are presented
in Figure 7 and Table 4. The most parsimonious model included
a three-way interaction between labeling technique, model, and
class balancing technique. First, we see that Rasch labels are
significantly better than difficulty split labels. Next, we see

FIGURE 6 | Regression estimates for models trained on the ISR task and transferred to the WM task across labeling technique and machine learning algorithm.
Points along the y-axis are GINI Index values for individual folds, lines are the regression estimate, and bars are the error of the estimate.
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FIGURE 7 | Regression estimates for fivefold cross-validation on the WM task and various combinations of techniques. Points along the y-axis are GINI Index values
for individual folds, lines are the regression estimate, and bars are the error of the estimate. (Top) Balancing techniques and labeling methods, (Middle) machine
learning algorithms and labeling methods, and (Bottom) machine learning algorithms and balancing techniques.

that random forests outperformed elastic nets and that Smote-
Tomek balancing outperformed the unbalanced technique.
Furthermore, difficulty split, when paired with an unbalanced
dataset, performed significantly worse than with Smote-Tomek.
Finally, elastic nets paired with unbalanced and either stress–
strain or difficulty split labels did not perform as poorly as the
main effects and two-way interactions would have predicted.
However, this is likely because it was difficult for the models to
perform lower than chance.

WM hold-out participant validation
The results of our regression on the GINI Index values from
testing our models on the WM task hold-out participants are
presented in Figure 8 and Table 5. The most parsimonious model
included a two-way interaction between labeling technique and
model. First, Rasch labels are significantly better than difficulty
split labels. Next, we see that random forests again outperformed
elastic nets. Finally, elastic nets paired with either stress–strain
or difficulty split labels did not perform as poorly as the main
effects would have predicted. For difficulty split labeling, this
is likely because it was difficult for the models to perform
lower than chance.

WM transfer to ISR validation
The results of our regression on the GINI Index values from
training our models on the ISR task and predicting states in
the WM task are presented in Figure 9 and Table 6. The most
parsimonious model included a two-way interaction between
labeling technique and model. The direction and magnitude
of effects are essentially equivalent to what was observed for
cross-person transfer in the section WM Hold-Out Participant
Validation. One addition is that Rasch models also outperformed
stress–strain models, and this was likely because error estimates
were much lower due to the increased amount of data.

DISCUSSION

As the presence of automation and advanced intelligent
systems become commonplace, there must be methods that
can communicate a human’s state of mind to these systems;
of particular interest is mental workload. Our work here has
accepted mental workload to be a product of the demand/s of
the task and the capacity/ies of the person performing the task,
where demands and capacities may be moderated by context
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FIGURE 8 | Regression estimates for hold-out participants on the WM task across labeling technique and machine learning algorithm. Points along the y-axis are
GINI Index values for individual folds, lines are the regression estimate, and bars are the error of the estimate.

(Young et al., 2015). In this study, we have tested three methods
of labeling mental workload, two algorithms for supervised
learning, and three techniques for handling class imbalances. We
tested the effects of these methods following, within-task model
optimization, hold-out tests with participants not used in the
initial training, and cross-task cross-person transfer.

We had clear hypotheses regarding the effects of labeling
methods that include individual differences, whereas our tests
of algorithms and class imbalance techniques were more
exploratory. We tested three hypotheses for the effects of
incorporating individual differences into class labeling: (1) this
would lead to better initial training and cross-validation of
supervised machine learning algorithms, (2) this would lead to
better performance of an algorithm trained on person “A” and
used to predict the states of person “B,” and (3) this would lead
to better performance of an algorithm trained on task “A” and
used to predict the states of persons performing task “B.” Notable
is the fact that hypothesis 3 assumes that both task “A” and task
“B” tax the same cognitive construct, in our case mental workload
caused by memory load.

We observed strong evidence that certain algorithms, labeling,
and balancing techniques lead to superior training, as measured
with cross-validation. The results in the sections ISR Cross-
validation and WM Cross-Validation show clear advantages for

random forest algorithms and either of the two Smote data
balancing techniques. These differences are consistent across
both the ISR and WM tasks. Of greatest interest are the effects
observed for the labeling techniques. Across the majority of
combinations tested, we see that the labeling techniques that
incorporate individual differences (i.e., Rasch and stress–strain)
into the state labels lead to better model fits than the alternative.
This is in direct support of hypothesis 1. Of note is how poorly
models performed on the ISR task when states were labeled
solely based on the difficulty of the task (i.e., difficulty split). The
use of difficulty for labeling training data was still significantly
worse than using a Rasch model even when combined with
random forests and Smote-Tomek. The superior model fits
from individual difference-based labels provides evidence that
mental workload states are moderated by an individual’s traits
(i.e., WM capacity).

Our results from the sections ISR Hold-Out Participants
Validation and WM Hold-Out Participant Validation further
support the benefits of including individual differences in the
labels for supervised training. These sections test hypothesis 2 by
testing the effects of transferring states learned on one individual
and predicting states in a different individual. Across both the
ISR and WM task, we saw that the major effects were coming
from the algorithms and how the data were labeled. In support
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FIGURE 9 | Regression estimates for models trained on the WM task and transferred to the ISR task across labeling technique and machine learning algorithm.
Points along the y-axis are GINI Index values for individual folds, lines are the regression estimate, and bars are the error of the estimate.

of hypothesis 2, we saw that Rasch labeling produced the best-
fitting models. Furthermore, the trends of performance for the
algorithms and labeling methods were similar across the ISR
and WM tasks. Most importantly, we observed that labels based
solely on task difficulty performed no better than chance. Yet,
both labeling techniques that used individual differences when
paired with random forests produced better than chance results.
Again, the Rasch model-based labels provided quite good model
fits across all participants not in the initial optimization and
training steps. The worst-fitting random forest Rasch model on
an individual across both tasks was 0.45 on the GINI index; this
was as good as the best individual fit when elastic nets were
employed in the same context.

The support for including individual differences in supervised
learning labels is further bolstered by our observations in the
sections ISR Transfer to WM Validation and WM Transfer to
ISR Validation. In these sections, we test hypothesis 3, regarding
how well a model would perform when trained on a group of
individuals in one task and then applied to a different group of
individuals on a different task. Again, we saw that the majority
of variance in model fit could be explained by the algorithms
and labeling techniques. We, also again, observed the best model
fits with Rasch labeling. This trend was consistent regardless of
whether the model was trained on the ISR or WM task. These
model fits were also similar to what was observed in the previous

sections. Specifically, random forests paired with either of the
individual difference label techniques were the only models that
consistently learned, providing clear support for hypothesis 3.

Overall, our results provide strong support for our hypothesis
that to robustly predict mental states, individual differences
should be encoded into the labels used by supervised learning
algorithms. We see that when individual differences are included,
we can produce good model fits during initial training but most
importantly also during transfer.

Consistent transfer of mental workload state prediction across
individuals and across tasks is a first step toward broad use
of generalizable passive brain–computer interfaces (Zander and
Kothe, 2011). In fNIRS, EEG, and fMRI, researchers have shown
person generalizable models to be possible (Mitchell et al., 2004;
Grimes et al., 2008; Wang et al., 2011; Yuksel et al., 2016).
Furthermore, within these modalities, there is evidence that
cognitive state models trained on one task can correlate with
or enhance performance on a separate task (Berka et al., 2007;
Yuksel et al., 2016). Supervised models have also been previously
shown to transfer across different kinds of stimuli within a
common task structure (Grimes et al., 2008). Our work extends
these accomplishments in two ways. First, we show cross-person
and cross-task transfer simultaneously, across both groups and
tasks. It is also important to note that this occurs in two tasks that
have different stimuli, encoding, and response schemas. Second,
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we demonstrate that these models don’t just correlate with or
enhance task performance but can predict specific mental states
in a different task.

The success of both individual difference labeling techniques,
and Rasch labeling in particular, provides evidence that it may
be possible to develop individual and task independent classifiers
of specific mental workload states. It may be possible that
additional classifiers could be created for cognitive states beyond
memory. For example, a classifier that reflects the transition
points between early and late attentional filtering as described
in perceptual load theory (Lavie et al., 2004). Perhaps even more
ambitious, many classifiers could be run in parallel accounting for
different cognitive resource pools. Following Multiple Resource
Theory software systems could adapt how humans interact
within machine systems to take advantage of the channels
with the highest bandwidth. There has already been success
in adapting learning via passive brain–computer interfaces,
yielding improved performance, engagement, and enjoyment in
the learning task (Yuksel et al., 2016).

Limitations and Future Work
We see this work as a starting point to understanding the benefits
of bolstering supervised learners with individual differences
information; in that regard, the study was not without limitations.
First, we only compared two supervised learning algorithms. It is
possible that other algorithms can produce superior performance
to random forests and this should be explored. It may be possible
that simpler algorithms can produce similar results to those
observed with random forests. In this sense, this is why we
are not prepared to say that regularized algorithms are poor
performers on this type of data. In our case, many of our
features were polynomial, which led to high correlations between
our features; elastic nets do not handle this well. There may
be other regularized algorithms that deal better with correlated
features; we plan to explore this in the future. Transitioning
to the tasks we used, both of which were externally paced
and relatively basic, and because they were examined under
controlled conditions, only one parameter (memory load) was
allowed to vary. To further vet mental state prediction, tests
need to be performed on more applied, self-paced tasks where
the solutions and responses are more open-ended. Further, we
plan to explore the robustness of mental state predictors in the
context of more varied environments where multiple cognitive
parameters are allowed to vary, and separate states may be
elicited for them.

CONCLUSION

The aim of the current study was to assess the importance of
incorporating individual differences into the labeling schema
for supervised machine learning to predict mental workload
states from neurophysiological data. Within this context, we
also wanted to explore the effects of two different algorithms
for supervised learning (i.e., random forests and elastic nets)
as well as the effects of different methods for handling class
imbalances for supervised learning [i.e., Smote-Tomek, Smote-
ENN, and modifying class weights (unbalanced)]. To assess
these effects, we tested the model fits of each label, algorithm,
and balancing combination during cross-validation, cross-person
transfer, and cross-task transfer. We observed strong model fits
across all test conditions only when using a combination of
labels incorporating individual differences and random forests
learners. We take this as evidence that supervised learners used
for neurophysiological mental state prediction greatly benefit
from labels that incorporate individual differences. Furthermore,
these findings provide evidence that it may be possible to develop
person- and task-independent classifiers of specific mental states,
when states are defined via individual differences modeling.
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